Wavy-ply sandwich with crushable core:

CompTest 2015
Madrid, 10th April 2015
Wavy-ply sandwich with crushable core:
design, simulation and testing
Soraia Pimenta
soraia.pimenta@imperial.ac.uk
Paul Robinson
Full paper in: Pimenta S, Robinson P (2014), β€œWavy-ply sandwich with composite skins and crushable core for ductility and energy
absorption”, Composite Structures, vol:116, pages:364-376. DOI: http://dx.doi.org/10.1016/j.compstruct.2014.05.020
Towards ductile composites…
Brittle conventional composites
𝜎 (MPa)
1000
 Damage / defect sensitive
CFRP (AS4/M56)
750
 Difficult to inspect
Aluminium 2024-T3
500
 Catastrophic failure
250
πœ€ (%)
0
0
5
10
15
20
Programme Grant
The concept
Initial configuration
Wavy composite skins
Foam core
Response under loading
οƒœ Unfolding of skins
 Extra extension
οƒœ Crushing of core
 Extra energy dissipation
πœ€βˆž
𝜎∞
Outline
ο‚Œ Design
 Simulation
ο‚Ž Testing
Design definition
Wavy skins
Foam core
οƒœ
οƒœ
Increase failure strain  maximise excess length
 large waviness
Preserve high strength  minimise bending stresses  small waviness
Materials
οƒœ
Skins
M21/T800 UD
𝑑 p = 0.193 mm
οƒœ
Wave geometry
sinusoid
2𝐴w
Core
Rohacell foam
25
5
Design of wave geometry
Selected configuration
0
sinusoid
unfolding
2𝐴w
1
25
tension
2
π‘‹βˆž (MPa)
Analytical modelling
οƒœ
5
Failure criterion:
𝜎unfolding + 𝜎∞ = 𝑋skin
οƒœ
Failure stress:
π‘‹βˆž = 𝑋skin βˆ’ 𝜎unfolding
οƒœ
Failure strain:
π‘‹βˆž
π‘’βˆž = πœ€unfolding +
𝐸skin
2500
𝐴w 
2000
1500
𝐴w = 5 mm
1000
500
π‘’βˆž (%)
0
0
5
10
Design of bridging region
Bridging
region
premature
delamination
crushing
foam core
opening
stresses
Avoid premature delamination
οƒœ
Soft, crushable foam
wavy skin
foam core
οƒœ
Epoxy fillet at bridging region
epoxy fillet
Design definition
Wavy skins
Foam core
οƒœ
οƒœ
Increase failure strain  maximise excess length
 large waviness
Preserve high strength  minimise bending stresses  small waviness
Materials
οƒœ
Skins
M21/T800 UD
𝑑 p = 0.193 mm
οƒœ
Wave geometry
οƒœ
Epoxy fillet
sinusoid
10
Core
Rohacell foam
Density?
Bridging region
25
5
𝑑f
Outline
ο‚Œ Design
 Simulation
ο‚Ž Testing
FE model
epoxy
cohesive
elements
foam
cohesive
elements
CFRP skin
foam core
epoxy fillet
foam core
Modelling the crushable foam
Crushable foam with volumetric hardening
von Mises stress
uniaxial
tension
Densification
𝜎c (MPa)
6
pure
shear
4
uniaxial
compression
hydrostatic
tension
hydrostatic
compression
hydrostatic pressure
οƒΎ Uniaxial crushing yield stress
datasheet
οƒΎ Hydrostatic yield pressure
𝑓(crushing yield stress, shear strength, tensile strength)
οƒΎ Hydrostatic tensile strength
𝑓(crushing yield stress, shear strength, tensile strength)
𝜌c = 0.075 g/cm3
2
𝜌c = 0.052 g/cm3
𝜌c = 0.032 g/cm3
0
0.0
οƒœ
0.2
0.4
0.6
πœ€c
0.8
Strain hardening:
Constant hydrostatic tension
Self-similar flow
Simulated response of wavy sandwich
𝜎∞ (MPa)
1500
1000
500
πœ€βˆž (%)
0
0
2
4
6
8
plastic deformation
in foam
Simulated response of wavy sandwich
𝜎∞ (MPa)
1500
1000
500
πœ€βˆž (%)
0
0
2
4
6
8
degradation of
skin-core
interface
foam crushing
Simulated response of wavy sandwich
𝜎∞ (MPa)
1500
1000
500
πœ€βˆž (%)
0
0
2
4
6
8
foam densification
Simulated response of wavy sandwich
𝜎∞ (MPa)
1500
1000
500
πœ€βˆž (%)
0
0
2
skin tensile failure
4
6
8
Effect of foam core
𝜎∞ (MPa)
𝜌c = 0.052 g/cm3
𝜎c (MPa)
1500
6
1000
4
500
2
𝜌c = 0.075 g/cm3
𝜌c = 0.032 g/cm3
0
0
2
4
οƒΎ Lighter foam: lower stresses
6
8
πœ€βˆž (%) 0
πœ€c
0.0
0.2
0.4
0.6
0.8
 Denser foam: delamination
Effect of epoxy fillet
𝜎∞ (MPa)
𝑑 f = 0.5 mm
1500
𝑑 f = 0.7 mm
1000
𝑑f
500
πœ€βˆž (%)
𝑑 f = 0.3 mm
0
0
2
4
6
οƒΎ Thicker fillet: stress concentrations
8
 Thinner fillet: delamination
Design definition
Wavy skins
Foam core
οƒœ
οƒœ
Increase failure strain  maximise excess length
 large waviness
Preserve high strength  minimise bending stresses  small waviness
Materials
οƒœ
Skins
M21/T800 UD
𝑑 p = 0.193 mm
οƒœ
Wave geometry
οƒœ
Epoxy fillet
sinusoid
10
Core
Rohacell foam
πœŒπ‘ = 0.052 g/cm3
Bridging region
0.5
25
5
Outline
ο‚Œ Design
 Simulation
ο‚Ž Testing
Manufacturing
CNC-machined
foam cells
CNC-machined
aluminium moulds
Test specimens
οƒœ
οƒœ
240 mm
Set A:
as designed
Set B:
larger fillet
Overcoming premature delamination
𝜎∞ (MPa)
1500
1000
500
0
0
2
4
6
8
πœ€βˆž
(%)
Test specimens
οƒœ
οƒœ
240 mm
Set A:
as designed
Set B:
larger fillet
Experiments vs FE
As-designed set (0.5 mm fillet)
𝜎∞ (MPa)
Modified set (larger fillet)
𝜎∞ (MPa)
Experimental
1500
1000
1000
500
500
0
2
4
6
𝑑 f = 0.6 mm
1500
FE
0
𝑑 f = 0.5 mm
8
πœ€βˆž
(%)
0
0
2
4
6
Large deformations and crushing of the core
8
πœ€βˆž
(%)
Deformation fields
Outline
ο‚Œ Design
 Simulation
ο‚Ž Testing
Potential of wavy-ply sandwich
Withstand large deformations
Energy absorption by core
𝜎∞ (MPa)
other
contributions
π‘ˆ (kJ/kg)
10
1500
elastic
energy
8
6
1000
4
500
2
0
0
2
4
6
8
πœ€βˆž
(%)
plastic
dissipation
0
0
2
4
6
8
πœ€βˆž
(%)
Potential applications
οƒœ
Blast protection
οƒœ
Protective casing of pressure vessels
Correlation between FE and experiments
𝜎∞ (MPa)
Experimental
FE
1500
1000
500
0
0
2
4
6
8
πœ€βˆž
(%)
Potential applications
οƒœ
Blast protection
οƒœ
Protective casing of pressure vessels
Acknowledgments
Evonik Industries AG
οƒœ
Rohacell foam materials
Soraia Pimenta’s Research Fellowship
This work was supported by the EPSRC Programme Grant EP/I02946X/1 on High Performance
Ductile Composite Technology in collaboration with the University of Bristol.
Programme Grant