Introduction to Signal Processing Iasonas Kokkinos Ecole Centrale Paris Lecture 9 Linear Models and Signal Compression = ^ x = + µ + w1u1+w2u2+w3u3+w4u4+ … 1 Lecture 8: Mean Square Estimation • Optimality criterion: Solution: Or: d = Rc 2 3 Optimal LTI Wiener Filter Clean Signal Input Output Linear TI Discrete-time Filter + - Desired Response + Noise • • • • Denoising: Smoothing: Prediction: Deconvolution: + Estimation Error Causal Filter Non-causal Filter (with, or without noise) Optimal (Wiener) Filter IIR Non-Causal Wiener Filters System Function Wiener-Hopf Equations: Correlations: 4 Ergodic Processes • In theory: we model a family of functions with a stochastic process • In practice: we only observe a single realization of this process • Ergodicity: from a single member, we can determine the properties of the whole family 5 Ergodic Processes • Ergodicity: estimate process statistics from a single realization • Mean- and covariance- ergodic process: • Optimal estimator can be determined from a single realization of the process 6 Implications of MSE criterion • Optimal estimator: • Estimation error: orthogonal to inputs 7 8 Projection Theorem Hilbert Space :Subspace spanned by basis elements • Theorem: There is a unique vector error norm. • The corresponding error vector therefore and that minimizes the is orthogonal to Slide credits: P. Maragos 9 Approximation Problem Hilbert Space • Problem: Approximate with the linear combination minimizes the energy • Solution: Normal Equations that Approximation Error (Pythagorean Theorem): Slide credits: P. Maragos Minimum Mean Squared Error Estimation 10 Hilbert Space • :`Vectors’: Random Variables • Minimum Mean Squared Error: • Normal Equations: Slide credits: P. Maragos 11 Least Squares Error Approximation Hilbert Space • :`Vectors’: Sequences with N elements • Least Squares : Deterministic Interpretation • Normal Equations Slide credits: P. Maragos A geometric interpretation • 12 Task: minimize L2 distance between target vector and point on the span of a basis • Projection theorem: • Orthogonal projection • Reconstruction Error Slide credits: P. Maragos 13 Application: Linear Speech Modeling 14 Application: Linear Speech Modeling Synthesis Analysis Speech Signal Model Excitation Model Excitation Speech signal Random Signals ¨ Speech signal: ¨ Scatter plots of successive samples Application: Linear Predictive Model of Speech • Time-varying model of speech production 16 Problem determination • Simplified speech model: • Linear Predictor with coefficients • How can we find optimal predictor coefficients? 17 Linear Model Identification 18 • Short time average prediction error: Where: • Summation over a limited interval of the speech signal • At mimimum: Autocorrelation method for LPC • Prediction error can be large on the boundaries • Hamming Windowing: • Squared error 19 20 Autocorrelation Method for LPC • R: Toeplitz matrix – • Levinson-Durbin algorithm All poles inside unit circle (stable system) Linear Prediction Analysis 21 Phoneme/IY/ Phoneme/AH/ LPC Spectrum 22 Analysis Order 23 LPC Vocoder LPC Synthesizer 24 LPC Synthesizer 25 Signal Compression Problem = ^ x = + µ + w1u1+w2u2+w3u3+w4u4+ … ‘λακωνίζειν εστί φιλοσοφείν’ (laconic is philosophic) Image representations Canonical basis 26 Image representations Harmonic basis (Fourier transform) 27 28 Appearance modelling for faces • When viewed as vectors of pixel values, face images are extremely high-dimensional – 100x100 image = 10,000 dimensions • Very few vectors correspond to valid face images • Can we model the subspace of faces with a few dimensions? New subspace: `better’ coordinate system 29 New coordinates reflect the distribution of the data. Mean Few coordinates suffice to represent a high dimensional vector They can be viewed as parameters of a model 1. Active Shape Models 29 30 PCA (Karhunen-Loeve transform) Dimitris Manolakis et al., Statistical and Adaptive Signal Processing, ARTECH House 31 PCA (Karhunen-Loeve transform) Dimitris Manolakis et al., Statistical and Adaptive Signal Processing, ARTECH House 32 PCA (Karhunen-Loeve transform) Dimitris Manolakis et al., Statistical and Adaptive Signal Processing, ARTECH House 33 PCA (Karhunen-Loeve transform) Dimitris Manolakis et al., Statistical and Adaptive Signal Processing, ARTECH House 34 Covariance matrix reminder • Covariance matrix: • Uncorrelated coordinates: diagonal covariance Height, Income Height, Weight 35 PCA: decorrelation of random variables • PCA: projection onto eigenvectors of covariance matrix Dimensionality reduction by using only leading eigenvectors Grades in 60 courses -> Good in math, physics, computer science 35 36 PCA: step by step 1. Compute the empirical mean and subtract it from the data, and compute empirical covariance matrix 2. Compute eigenvalue decomposition of the covariance matrix resulting in 3. Retain only the k eigenvectors with highest corresponding eigenvalues. 1. Active Shape Models 37 Eigenfaces: Key idea • Assume that most face images lie on a low-dimensional subspace determined by the first k (k<d) directions of maximum variance • Use PCA to determine the vectors or “eigenfaces” u1,…uk that span that subspace • Represent all face images in the dataset as linear combinations of eigenfaces • Same idea as shapes M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 38 Eigenfaces example • Training images • x1,…,xN 39 How about natural images? • Training images • x1,…,xN 40 Eigenfaces example Principal component (eigenvector) uk µ + 3σkuk µ – 3σkuk 41 Eigenfaces example • Face x in “face space” coordinates: = 42 Eigenfaces example • Face x in “face space” coordinates: = • Reconstruction: = ^ x = + µ + w1u1+w2u2+w3u3+w4u4+ … 43 Recognition with eigenfaces • Process labeled training images: • Find mean µ and covariance matrix Σ • Find k principal components (eigenvectors of Σ) u1,…uk • Project each training image xi onto subspace spanned by principal components: (wi1,…,wik) = (u1T(xi – µ), … , ukT(xi – µ)) • Given novel image x: • Project onto subspace: (w1,…,wk) = (u1T(x – µ), … , ukT(x – µ)) • Check reconstruction error x – x to determine whether image is really a face ^ • Classify as closest training face in k-dimensional subspace M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 44 Can we do it for the ensemble of natural images? 50 100 150 200 50 250 100 300 150 350 200 400 250 50 300 100 450 500 50 100 150 200 350 250 300 350 400 450 150 500 200 400 250 450 300 500 50 100 150 350 200 250 300 350 100 150 400 450 500 400 450 500 50 200 250 300 350 400 450 500 PCA of natural image patches 45 2nd order statistics, translation invariance & Fourier Proof: in the appendix R Gray, Toeplitz and Circulant Matrices, A review http://ee.stanford.edu/~gray/toeplitz.pdf 46 Power Spectrum & Autocorrelation 47 • Definition of power spectrum of a WSS stochastic process x[n]: • Wiener-Khintchine-Einstein theorem: • The power spectrum of a WSS stochastic process equals the DTFT of its autocorrelation => power spectrum captures all of the 2nd order statistical information Power spectrum of natural images 48 49 2nd order generative model for images PCA of natural images <-> Harmonic Basis Fourier transform: change of basis (rotation) PCA: in new coordinate system, variables are uncorrelated Gaussian variables: uncorrelated= independent Synthesis equation: Coefficients Basis Fourier Synthesis Equation: use sinusoidals as signal basis 2D: Image generation: sample Fourier coefficients & invert 50 51 Maybe we should do it for patches? And also let’s do it with a real harmonic basis 50 100 150 200 50 250 100 300 150 350 200 400 250 50 300 100 450 500 50 100 150 200 350 250 300 350 400 450 150 500 200 400 250 450 300 500 50 100 150 350 200 250 300 350 100 150 400 450 500 400 450 500 50 200 250 300 350 400 450 500 http://en.wikipedia.org/wiki/Discrete_cosine_transform 1D Discrete Cosine Transform (DCT) matrix 1 ⎡ ⎢ 2 ⎢ 2 ⎢ cos π C= 2n n ⎢ " ⎢ (n − 1)π ⎢ ⎢⎣cos 2n 1 2 3π cos 2n " (n − 1)3π cos 2n 1 ⎤ ⎥ 2 (2n − 1)π ⎥⎥ ! cos 2n ⎥ ! " ⎥ (n − 1)(2n − 1)π ⎥ ! cos ⎥⎦ 2n ! ⎡ ⎢ ⎢ ⎢ 2 C −1 = C T = n ⎢⎢ ⎢ ⎢ ⎣ 1 2 1 2 " 1 2 cos π 2n 3π cos 2n " (2n − 1)π cos 2n (n − 1)π ⎤ ⎥ 2n (n − 1)3π ⎥⎥ ! cos 2n ⎥ ⎥ ! " (n − 1)(2n − 1)π ⎥ ! cos ⎥ 2n ⎦ ! cos DCT vs. DFT: better energy concentration 52 53 Image Compression 54 Image Compression • Gray-Scale Example: • Value Range 0 (black) --- 255 (white) 63 33 36 28 63 81 27 18 17 11 22 48 72 52 28 15 17 16 132 100 56 19 10 9 187 186 166 88 13 34 184 203 199 177 82 44 211 214 208 198 134 52 211 210 203 191 133 79 86 98 104 108 47 77 21 55 43 51 97 73 78 83 74 86 55 Image Compression • 2D-DCT of matrix -304 210 -327 -260 93 -84 89 33 -9 42 -5 15 10 3 12 30 104 -69 10 67 70 -10 -66 16 24 -19 -20 -26 18 27 -7 -10 17 32 -12 -1 2 0 -3 -3 Y 20 -15 -2 21 -17 -15 3 -6 -12 7 21 8 -5 9 -3 0 29 -7 -4 7 -2 -3 12 -1 Reminder: Power spectrum of natural images Energy is typically concentrated at low frequencies Highenergy midenergy Lowenergy 56 57 Zig-Zag Scan • Group low frequency coefficients in top of vector and high frequency coefficients at the bottom • Maps 8 x 8 matrix to a 1 x 64 vector 8x8 ... 1x64 57 58 Image Compression • 2D-DCT of matrix -304 210 -327 -260 93 -84 89 33 -9 42 -5 15 10 3 12 30 104 -69 10 67 70 -10 -66 16 24 -19 -20 -26 18 27 -7 -10 17 32 -12 -1 2 0 -3 -3 20 -15 -2 21 -17 -15 3 -6 -12 7 21 8 -5 9 -3 0 29 -7 -4 7 -2 -3 12 -1 59 Image Compression • Cut the least significant components -304 210 -327 -260 93 -84 89 33 -9 42 -5 15 10 0 0 0 104 -69 10 67 70 -10 -66 16 24 -19 -20 0 18 0 0 0 0 0 0 0 0 0 0 0 20 -12 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 Reconstructing the Image • New Matrix and Compressed Image 55 41 27 39 56 69 92 106 35 22 7 16 35 59 88 101 65 49 21 5 6 28 62 73 130 114 75 28 -7 -1 33 46 180 175 148 95 33 16 45 59 200 206 203 165 92 55 71 82 205 207 214 193 121 70 75 83 214 205 209 196 129 75 78 85 61 Can You Tell the Difference? Original Compressed 62 Image Compression Original Compressed 63 JPEG Modes Progressive Mode: It allows a coarse version of an image to be transmitted at a low rate, which is then progressively improved over subsequent transmissions. – Spectral Selection : Send DC component and first few AC coefficients first, then gradually some more ACs. Spectral Selection: First Scan: Second Scan: Third Scan: Nth Scan: . . Image Pixels 63 64 Principal Component Analysis (PCA) • Find a low-dimensional subspace to reconstruct high-dimensional data • Reconstruction on orthogonal basis Approximation with K terms 65 Alternative compression scheme: vector quantization http://www.data-compression.com/vqanim.shtml 66 K-Means algorithm – Coordinate descent on distortion cost: F (m, c) = N X i=1 |xi cm(i) |2 – Local minima (multiple initializations to find better solution) Additive Image Patch Modeling K = PCA D Clustering 67 68 Three Modeling Regimes sparsity PCA Sparse Coding (next lecture) Clustering
© Copyright 2025