Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 100, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu PERIODIC SOLUTIONS FOR NONLINEAR NEUTRAL DELAY INTEGRO-DIFFERENTIAL EQUATIONS AZZEDDINE BELLOUR, EL HADI AIT DADS Abstract. In this article, we consider a model for the spread of certain infectious disease governed by a delay integro-differential equation. We obtain the existence and the uniqueness of a positive periodic solution, by using Perov’s fixed point theorem in generalized metric spaces. 1. Introduction The existence of positive solutions to the integral equation with non constant delay Z t x(t) = f (s, x(s))ds, (1.1) t−σ(t) was considered in [4, 13, 18, 23]. This equation is a mathematical model for the spread of certain infectious diseases with a contact rate that varies seasonally. Here x(t) is the proportion of infectious in population at time t, σ(t) is the length of time in which an individual remains infectious, f (t, x(t)) is the proportion of new infectious per unit of time (see, for example, [5, 9, 21]). Ait Dads and Ezzinbi [4] and Ding et al [10] studied the existence of a positive pseudo almost periodic solution. Ezzinbi and Hachimi [13], Torrej´on [23], Xu and Yuan [24] showed the existence of a positive almost periodic solution. The existence of a positive almost automorphic solution was studied in [12, 15, 18]. Bica and Mure¸san [7, 8] studied the existence and uniqueness of a positive periodic solution of (1.1) by using Perov’s fixed point theorem in the case of f depends also on x0 (t) and σ(t) = σ is constant. Ait Dads and Ezzinbi [3] considered the existence of a positive almost periodic solution, Ding et al [11] studied the existence of positive almost automorphic solutions for the neutral nonlinear delay integral equation Z t x(t) = γx(t − τ ) + (1 − γ) f (s, x(s))ds, (1.2) t−τ where 0 ≤ γ < 1. We refer to [2, 17] for the meaning of (1.2) in the context of epidemics. 2010 Mathematics Subject Classification. 45D05, 45G10, 47H30. Key words and phrases. Neutral delay integro-differential equation; periodic solution; Perov’s fixed point theorem. c 2015 Texas State University - San Marcos. Submitted December 14, 2014. Published April 14, 2015. 1 2 A. BELLOUR, E. AIT DADS EJDE-2015/100 In this paper, we consider the more general equation Z t x(t) = γx(t − σ(t)) + (1 − γ) f (s, x(s), x0 (s))ds, (1.3) t−σ(t) Equation (1.3) includes many important integral and functional equations that arise in biomathematics (see for example [1, 6, 8, 9, 14, 16, 18, 19, 21]). We would to use Perov’s fixed point theorem to obtain conditions for the existence and uniqueness of a positive periodic solution to (1.3). This work is motivated by the work of Wei Long and Hui-Sheng Ding [18]. Moreover, the results obtained in this paper generalize several ones obtained in [6, 8, 19, 21], and the main goal in this work is to study the existence and uniqueness of solutions when σ(t) is not constant in (1.3). 2. Preliminaries and generalized metric spaces In this section, we recall the following notation and results in generalized metric spaces. Definition 2.1 ( [20]). Let X be a nonempty set and d : X × X → Rn be a mapping such that for all x, y, z ∈ X, one has: (i) d(x, y) ≥ 0Rn and d(x, y) = 0Rn ⇔ x = y, (ii) d(x, y) = d(y, x), (iii) d(x, y) ≤ d(x, z) + d(z, y), where for x = (x1 , x2 , . . . , xn ) and y = (y1 , y2 , . . . , yn ) from Rn , we have x ≤ y ⇔ xi ≤ yi , for i = 1, n. Then d is called a generalized metric and (X, d) is a generalized metric space. Definition 2.2 ( [22]). Let (E, k · k) be a generalized Banach space, the norm k · k : E → Rn has the following properties: (i) kxk ≥ 0 for all x ∈ E and kxk = 0 if and only if x = 0. (ii) kλxk = |λ| kxk for all λ ∈ K = R or C and for all x ∈ E. (iii) kx + yk ≤ kxk + kyk for all x, y ∈ E (the inequalities are defined by components in Rn ). Remark 2.3. A generalized Banach space is a generalized complete metric space. Definition 2.4 ( [20]). If (E, d) is a generalized complete metric space and T : E → E which satisfies the inequality d(T x, T y) ≤ Ad(x, y) for all x, y ∈ E, where A is a matrix convergent to zero (the norms of it its eigenvalues are in the interval [0, 1)). We say that T is a Picard operator or generalized contraction. We recall the following Perov’s fixed point theorem. Theorem 2.5 ( [20]). Let (E, d) be a complete generalized metric space. If T : E → E is a map for which there exists a matrix A ∈ Mn (R) such that d(T x, T y) ≤ Ad(x, y), ∀x, y ∈ E and the norms of the eigenvalues of A are in the interval [0, 1), then T has a unique fixed point x∗ ∈ E and the sequence of successive approximations xm = T m (x0 ) converges to x∗ for any x0 ∈ E. Moreover, the following estimation holds d(xm , x∗ ) ≤ Am (In − A)−1 d(x0 , x1 ), ∀m ∈ N∗ . EJDE-2015/100 PERIODIC SOLUTIONS 3 3. Main result In this section, we study the existence and uniqueness of a positive and periodic solution for the equation (1.3). We consider the following functional spaces P (ω) = {x ∈ C(R) : x(t + ω) = x(t), ∀t ∈ R} P 1 (ω) = {x ∈ C 1 (R) : x(t + ω) = x(t), ∀t ∈ R} K + (ω) = {x ∈ P 1 (ω) : x(t) ≥ 0, ∀t ∈ R} and denote by E the product space E = K + (ω) × P (ω) which is a generalized metric space with the generalized metric dC : E × E → R2 , defined by dC ((x1 , y1 ), (x2 , y2 )) = (kx1 − x2 k + kx01 − x02 k, ky1 − y2 k) where kuk = max{|u(t)| : t ∈ [0, ω]} for any u ∈ P (ω). Before stating the main result, we need the following lemma. Lemma 3.1. (E, dC ) is a complete generalized metric space. Proof. Let (xn ) = (xn , yn ) be a Cauchy sequence, then for any = (1 , 2 ) > 0, there exists n0 ∈ N such that for all n, m ≥ n0 , we have dC ((xm , ym ), (xn , yn )) ≤ . Hence, for all n, m ≥ n0 , kxm − xn k + kx0m − x0n k ≤ 1 and kym − yn k ≤ 2 . Then, (xn ), (x0n ) and (yn ) are Cauchy sequences in P (ω). It is clear that (P (ω), k · k) is a Banach space, hence there exists y ∈ P (ω) such that lim kyn − yk = 0 n→+∞ (3.1) and there exist x, w ∈ P (ω) such that limn→+∞ kxn −xk = limn→+∞ kx0n −wk = 0. Now, since for all n ≥ n0 , and all t ∈ R+ , Z t xn (t) = xn (0) + x0n (s)ds. 0 Then, by Lebesgue’s Dominated Convergence Theorem, x0 (t) = w(t) for all t ∈ R+ . Therefore, for all n ∈ N and all t ∈ R, xn (t) ≥ 0. Then for all t ∈ R, x(t) ≥ 0. As a consequence, x ∈ K + (ω) and lim (kxn − xk + kx0n − x0 k) = 0 . n→+∞ (3.2) Finally, we deduce, by (3.1) and (3.2), that (xn ) converges to (x, y) ∈ E and (E, dC ) is a complete generalized metric space. Equation (1.3) will be studied under the following assumptions: (H1) f ∈ C(R × R+ × R, (0, +∞)) and there exists ω > 0 such that f (t + ω, x, y) = f (t, x, y) , ∀(t, x, y) ∈ R × R+ × R. (H2) There exist α, β > 0 such that |f (t, u, v) − f (t, u0 , v 0 )| ≤ α|u − u0 | + β|v − v 0 |, for all t ∈ R and all u, u0 ∈ R+ , for all v, v 0 ∈ R. (H3) σ ∈ P 1 (ω) and inf t∈[0,ω] σ(t) = σ0 > 0. Let σ1 = supt∈[0,ω] σ(t), σ2 = supt∈[0,ω] |σ 0 (t)| and assume that γ(1 + σ2 ) < 1. Under the hypothesis (H1)–(H3), we will use Perov’s fixed point theorem to prove the following main result. 4 A. BELLOUR, E. AIT DADS EJDE-2015/100 Theorem 3.2. If the hypotheses (H1)–(H3) hold, and if p γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) + L + ζ < 2, where, L = max(γ(1 + σ2 ), γ + (1 − γ)α(2 + σ1 + σ2 )) and ζ = γ 2 σ2 (2 + σ2 ) + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 4α(2 + σ1 + σ2 )) + (L − γ)2 + 2γβ(1 − γ)(1 + σ2 )(2 + σ2 ) − 2L(β(1 − γ)(2 + σ2 ) + γσ2 ). Then, (1.3) has a unique solution in K + (ω). Proof. If we differentiate (1.3) with respect to t and denoting x0 (t) = y(t), for all t ∈ R, we obtain h y(t) = γ(1 − σ 0 (t))y(t − σ(t)) + (1 − γ) f (t, x(t), y(t)) i − (1 − σ 0 (t))f (t − σ(t), x(t − σ(t)), y(t − σ(t))) , which leads to Z t x(t) = γx(t − σ(t)) + (1 − γ) f (s, x(s), y(s))ds, t−σ(t) h y(t) = γ(1 − σ 0 (t))y(t − σ(t)) + (1 − γ) f (t, x(t), y(t)) i − (1 − σ 0 (t))f (t − σ(t), x(t − σ(t)), y(t − σ(t))) . Let T : E → C(R) × C(R) be the map defined by T1 (x, y)(t) T (x, y)(t) = , T2 (x, y)(t) where Z t T1 (x, y)(t) = γx(t − σ(t)) + (1 − γ) f (s, x(s), y(s))ds, t−σ(t) and h T2 (x, y)(t) = γ(1 − σ 0 (t))y(t − σ(t)) + (1 − γ) f (t, x(t), y(t)) i − (1 − σ 0 (t))f (t − σ(t), x(t − σ(t)), y(t − σ(t))) . (3.3) From Conditions (H1) and (H3), one has that T1 (E) ⊂ C 1 (R). Hence, from the condition that f is ω-periodic with respect to t, it follows that T1 (E) ⊂ K + (ω). indeed Z t+ω T1 (x, y)(t + ω) = γx(t + ω − σ(t + ω)) + (1 − γ) f (s, x(s), y(s))ds t+ω−σ(t+ω) Z t = γx(t − σ(t)) + (1 − γ) f (s − ω, x(s − ω), y(s − ω))ds t−σ(t) = T1 (x, y)(t), ∀t ∈ R, ∀(x, y) ∈ E. In addition in the same way, one has T2 (x, y)(t + ω) = T2 (x, y)(t). Consequently, T (E) ⊂ E. Moreover, from Conditions (H2), |T1 (x1 , y1 )(t) − T1 (x2 , y2 )(t)| + |T10 (x1 , y1 )(t) − T10 (x2 , y2 )(t)| ≤ γ|x1 (t − σ(t)) − x2 (t − σ(t))| EJDE-2015/100 PERIODIC SOLUTIONS Z t [α|x1 (s) − x2 (s)| + β|y1 (s) − y2 (s)|]ds + (1 − γ) + γ(1 − 5 t−σ(t) σ 0 (t))|x01 (t − σ(t)) − x02 (t − σ(t))| + (1 − γ)(α|x1 (t) − x2 (t)| + β|y1 (t) − y2 (t)|) + (1 − γ)|1 − σ 0 (t)|α|x1 (t − σ(t)) − x2 (t − σ(t))| + (1 − γ)|1 − σ 0 (t)|β|y1 (t − σ(t)) − y2 (t − σ(t))| ≤ L(kx1 − x2 k + kx01 − x02 k) + (1 − γ)β(1 + σ1 + σ2 )ky1 − y2 k where L = max(γ(1 + σ2 ), γ + (1 − γ)α(2 + σ1 + σ2 )). {z } | {z } | r1 r2 Similarly, one has |T2 (x1 , y1 )(t) − T2 (x2 , y2 )(t)| ≤ (2 + σ2 )(1 − γ)αkx1 − x2 k + [γ(1 + σ2 ) + (1 − γ)β(2 + σ2 )]ky1 − y2 k ≤ (2 + σ2 )(1 − γ)α(kx1 − x2 k + kx01 − x02 k) + [γ(1 + σ2 ) + (1 − γ)β(2 + σ2 )]ky1 − y2 k. So dC (T (x1 , y1 ), T (x2 , y2 )) ≤ A kx1 − x2 k + kx01 − x02 k , ky1 − y2 k where L (1 − γ)β(2 + σ1 + σ2 ) . A= (2 + σ2 )(1 − γ)α γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) The eigenvalues of this matrix are p 1 λ1 = [γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) + L + ζ], 2 p 1 λ2 = [γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) + L − ζ] 2 where ζ = γ 2 σ2 (2 + σ2 ) + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 4α(2 + σ1 + σ2 )) + (L − γ)2 + 2γβ(1 − γ)(1 + σ2 )(2 + σ2 ) − 2L(β(1 − γ)(2 + σ2 ) + γσ2 ). In what follows, we show that the eigenvalues of the matrix A are nonnegative real numbers (λ1 , λ2 ∈ R+ ). Step 1: We show that λ1 , λ2 are real numbers. It suffices to prove that ζ ≥ 0. We have two cases: Case 1: If L = r1 , then ζ = γ 2 σ2 (2 + σ2 ) + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 4α(2 + σ1 + σ2 )) + γ 2 σ22 + 2γβ(1 − γ)(1 + σ2 )(2 + σ2 ) − 2γ(1 + σ2 )(β(1 − γ)(2 + σ2 ) + γσ2 ) = γ 2 σ2 (2 + σ2 ) + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 4α(2 + σ1 + σ2 )) + γ 2 σ22 − 2γ 2 σ2 (1 + σ2 ) = (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 4α(2 + σ1 + σ2 )) ≥ 0. 6 A. BELLOUR, E. AIT DADS EJDE-2015/100 Case 2: If L = r2 , then ζ = γ 2 σ2 (2 + σ2 ) + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 4α(2 + σ1 + σ2 )) + (1 − γ)2 α2 (2 + σ1 + σ2 )2 + 2γβ(1 − γ)(1 + σ2 )(2 + σ2 ) − 2(γ + (1 − γ)α(2 + σ1 + σ2 ))(β(1 − γ)(2 + σ2 ) + γσ2 ) = γ 2 σ2 (2 + σ2 ) + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 2α(2 + σ1 + σ2 )) + (1 − γ)2 α2 (2 + σ1 + σ2 )2 + 2γβ(1 − γ)σ2 (2 + σ2 ) − 2γσ2 (γ + (1 − γ)α(2 + σ1 + σ2 )) = γ 2 σ22 + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 2α(2 + σ1 + σ2 )) + (1 − γ)2 α2 (2 + σ1 + σ2 )2 + 2γβ(1 − γ)σ2 (2 + σ2 ) − 2γσ2 (1 − γ)α(2 + σ1 + σ2 ) = (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 2α(2 + σ1 + σ2 )) + 2γβ(1 − γ)σ2 (2 + σ2 ) + ((1 − γ)α(2 + σ1 + σ2 ) − γσ2 )2 ≥ 0. Step 2: We show that λ2 is nonnegative. We have two cases: Case 1: If L = r1 , then [γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) + L]2 − ζ = 4γ 2 (1 + σ2 )2 + (1 − γ)2 β 2 (2 + σ2 )2 + 4γ(1 + σ2 )(1 − γ)β(1 + σ2 ) − ζ = 4γ 2 (1 + σ2 )2 + 4(1 − γ)β(2 + σ2 )(r1 − r2 + γ) ≥ 0. Case 2: If L = r2 , then [γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) + L]2 − ζ = [γ(2 + σ2 ) + (1 − γ)β(2 + σ2 ) + (1 − γ)α(2 + σ1 + σ2 )]2 − ζ = γ 2 (2 + σ2 )2 + (1 − γ)2 β(2 + σ2 )(β(2 + σ2 ) + 2α(2 + σ1 + σ2 )) + 2γβ(1 − γ)(2 + σ2 )2 + (1 − γ)2 α2 (2 + σ1 + σ2 )2 + 2γ(1 − γ)(2 + σ2 )α(2 + σ1 + σ2 ) − ζ = 4γ 2 (1 + σ2 ) + 4γβ(1 − γ)(2 + σ2 ) + 4γ(1 − γ)α(2 + σ1 + σ2 )(1 + σ2 ) ≥ 0. Which implies that λ2 ≥ 0. We remark that λ1 > λ2 , this implies that λ1 and λ2 belong to the open unit disc of R2 if and only if λ1 < 1, which is equivalent to p γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) + L + ζ < 2. Then, by Perov’s fixed point theorem, the operator T has a unique solution x∗ = (x∗ , y∗ ) ∈ K + (ω) × P (ω), which implies that x∗ ∈ C 1 (R), and for all t ∈ R, h (x∗ )0 (t) = γ(1 − σ 0 (t))(x∗ )0 (t − σ(t)) + (1 − γ) f (t, x∗ (t), y∗ (t)) i − (1 − σ 0 (t))f (t − σ(t), x∗ (t − σ(t)), y∗ (t − σ(t))) . Hence, by using (3.3), for all t ∈ R, ((x∗ )0 − y∗ )(t) = γ(1 − σ 0 (t))((x∗ )0 − y∗ )(t − σ(t)). EJDE-2015/100 PERIODIC SOLUTIONS 7 Then, k(x∗ )0 − y∗ k ≤ γ(1 + σ2 )k(x∗ )0 − y∗ k. We deduce, by Condition (H3), that (x∗ )0 = y∗ and x∗ is the unique solution of (1.3). To illustrate this result, we have the following example. Example 3.3. Consider (1.3) where f is ω-periodic with respect to t and σ is 5 < 1, L = ω-periodic, γ = σ1 = σ2 = 41 , α = 16 , β = 15 , then γ(1 + σ2 ) = 16 5 9 9 max( 16 , 16 ) = 16 and √ p 67 + 2749 ∼ γ(1 + σ2 ) + (1 − γ)β(2 + σ2 ) + L + ζ = = 1.86 < 2. 80 Thus, by Theorem 3.2, Equation (1.3) has a unique positive ω-periodic solution. The following proposition gives an estimation of the error between the exact solution and the approximate solution of (1.3). Proposition 3.4. Under the assumptions of Theorem 3.2, the solution of (1.3), which is obtained by the successive approximations method starting from any x0 = (x0 , y0 ) ∈ E, satisfies the estimate m m 1 e1 λ 1 + e2 λ m e3 λm m ∗ 1 0 2 1 + e4 λ2 dC (x , x ) ≤ m m × dC (x , x ), e7 λm µ(λ1 − λ2 ) e5 λm 1 + e6 λ 2 1 + e8 λ2 where µ = (1 − L)(1 − γ(1 + σ2 ) − β(2 + σ2 )(1 − γ)) − (1 − γ)2 αβ(2 + σ2 )(2 + σ1 + σ2 ), xm = T (xm−1 ), xm = (xm , ym ), for all m ∈ N∗ and e1 = (a(L − λ2 ) − c2 ), e2 = (a(λ1 − L) + c2 ) e3 = (b(L − λ2 ) − c(1 − L)), e4 = (b(λ1 − L) + c(1 − L)) a(L − λ2 ) a(L − λ1 ) − c), e6 = (L − λ2 )(c − ) c c b(L − λ2 ) b(L − λ1 ) e7 = (L − λ1 )( + L − 1), e8 = (L − λ2 )(1 − L − ) c c such that e5 = (L − λ1 )( (3.4) a = 1 − γ(1 + σ2 ) − β(2 + σ2 )(1 − γ) b = (1 − γ)β(2 + σ1 + σ2 ) c = (2 + σ2 )(1 − γ)α. Proof. From Theorem 2.5, by the conditions of Theorem 3.2, one has dC (xm , x∗ ) ≤ Am (I − A)−1 dC (x1 , x0 ), ∀m ∈ N∗ . We have A m m (L − λ2 )λm 1 + (λ1 − L)λ2 1 = λ1 − λ2 m (L−λ1 )(L−λ2 )(λm 1 −λ2 ) (1−γ)α(2+σ2 ) ! m (1 − γ)α(2 + σ2 )(λm 2 − λ1 ) , m (λ1 − L)λm 1 + (L − λ2 )λ2 and 1 − γ(1 + σ2 ) − β(2 + σ2 )(1 − γ) (1 − γ)β(2 + σ1 + σ2 ) | {z } | {z } 1 a b , = (2 + σ2 )(1 − γ)α 1−L µ | {z } (I − A)−1 c 8 A. BELLOUR, E. AIT DADS EJDE-2015/100 where µ = (1 − L)(1 − γ(1 + σ2 ) − β(2 + σ2 )(1 − γ)) − (1 − γ)2 αβ(2 + σ2 )(2 + σ1 + σ2 ). Which implies m m 1 e1 λ 1 + e2 λ m e3 λ m 2 1 + e4 λ 2 Am (I − A)−1 = m m , e7 λ m µ(λ1 − λ2 ) e5 λm 1 + e6 λ 2 1 + e8 λ 2 where ei , i = 1, . . . , 8 are given by (3.4). References [1] E. Ait Dads, O. Arino, K. Ezzinbi; Existence de solution p´ eriodique d’une ´ equation int´ egrale non lin´ eaire ` a retard d´ ependant du temps, Journal Facta Universitatis, Ser. Math, and Inf. (1996), 79-92. [2] E. Ait Dads, P. Cieutat, L. Lhachimi; Existence of positive almost periodic or ergodic solutions for some neutral nonlinear integral equations, Journal of Differential and integral equations. 22 (2009), 1075-1096. [3] E. Ait Dads, K. Ezzinbi; Almost periodic solution for some neutral nonlinear integral equation, Nonlinear Anal. 28 (1997), 1479-1489. [4] E. Ait Dads, K. Ezzinbi; Existence of positive pseudo almost periodic solution for a class of functional equations arising in epidemic problems, Cybernetics and Systems Analysis. 30 (1994), 133-144. [5] J. B´ elair; Population models with state-dependent delays, in Mathematical Population Dynamics (O. Arino, D. E. Axelrod and M. Kimmel, eds.), Marcel Dekker, New York. (1991), 165-176. [6] A. M. Bica, S. Mure¸san; Periodic solutions for a delay integro-differential equations in Biomathematics, RGMIA Res. Report Coll. 6 (2003), 755-761. [7] A. M. Bica, S. Mure¸san; Parameter dependence of the solution of a delay integro-differential equation arising in infectious diseases, Fixed Point Theory. 6 (2005), 79-89. [8] A. M. Bica, S. Mure¸san; Smooth dependence by LAG of the solution of a delay integrodifferential equation from Biomathematics, Communications in Mathematical Analysis. 1 (2006), 64-74. [9] K. L. Cooke, J. L. Kaplan; A periodicity thseshold theorem for epidemics and population growth, Math. Biosciences. 31 (1976), 87-104. [10] H. S. Ding, Y. Y. Chen, G. M. N’Gu´ er´ ekata; Existence of positive pseudo almost periodic solutions to a class of neutral integral equations, Nonlinear Analysis TMA. 74 (2011), 73567364. [11] H. S. Ding, J. Liang, G. M. N’Gu´ er´ ekata, T. J. Xiao; Existence of positive almost automorphic solutions to neutral nonlinear integral equations, Nonlinear Analysis TMA. 69 (2008), 11881199. [12] H. S. Ding, J. Liang, T. J. Xiao; Positive almost automorphic solutions for a class of nonlinear delay integral equations, Applicable Analysis. 88 (2009), 231-242. [13] K. Ezzinbi, M. A. Hachimi; Existence of positive almost periodic solutions of functional equations via Hilberts projective metric, Nonlinear Anal. 26 (1996) 1169-1176. [14] C. A. Iancu; Numerical method for approximating the solution of an integral equation from biomathematics, Studia Univ. Babes-Bolyai, Mathematica. 43 (1988), 37-45. [15] L. Kikina, K. Kikina; Positive almost automorphic solutions for some nonlinear integral equations, Int. journal of Math. Analysis. 5 (2011), 1459-1467. [16] D. Guo, V. Lakshmikantham; Positive solutions of nonlinear integral equations arising in infections diseases, J. Math. Anal. Appl. 134 (1988), 1-8. [17] L. Lhachimi; Contribution a ` l’´ etude qualitative et quantitative de certaines ´ equations fonctionnelles: Etude de cas d’´ equations int´ egrales ` a retard et de type neutre, ´ equations diff´ erentielles et ´ equations aux diff´ erences., Th` ese de doctorat, Universit´ e Cadi Ayyad Marrakech, 2010. [18] W. Long, H. S. Ding; Positive almost automorphic solutions for some nonlinear delay integral equations, Electronic Journal of Differential Equations. 2008, 57 (2008), 1-8. [19] S. Mure¸san, A. Bica; Parameter dependence of the solution of a delay integro-differential equation arising in infectious diseases, Fixed Point Theory. 6 (2005), 79-89. [20] A. I. Perov, A. V. Kibenko; On a general method to study the boundary value problems, Iz. Akod. Nank. 30 (1966), 249-264. EJDE-2015/100 PERIODIC SOLUTIONS 9 [21] H. L. Smith; On periodic solutions of a delay integral equation modelling epidemics, J. Math. Biology. 4 (1977), 69-80. [22] A. Szilard; A note on Perov’s fixed point theorem, Fixed point theory. 4 (2003), 105-108. [23] R. Torrej´ on; Positive almost periodic solutions of a nonlinear integral equation from the theory of epidemics, J. Math. Analysis Applic. 156 (1991), 510-534. [24] B. Xu, R. Yuan; The existence of positive almost periodic type solutions for some neutral nonlinear integral equation, Nonlinear Analysis. 60 (2005), 669-684. Azzeddine Bellour Department of Mathematics, Ecole Normale Superieure de Constantine, Constantine, Algeria E-mail address: bellourazze123@yahoo.com El Hadi Ait Dads University Cadi Ayyad, Department of Mathematics, Faculty of Sciences Semlalia B.P. 2390, Marrakech, Morocco. ´ Associe ´e au CNRST URAC 02 UMMISCO UMI 209, UPMC, IRD Bondy France. Unite E-mail address: aitdads@uca.ma
© Copyright 2025