Layered materials for electronics Grace Huili Xing Electrical and Computer Engineering, Materials Science and Engineering Cornell University Electrical Engineering, University of Notre Dame Students/Postdocs: Vishwanath Suresh, Mingda Oscar Li, Rusen Yan, Shudong Xiao Faculty collaborators: Debdeep Jena, David Mueller (Cornell); Lei Liu, Tengfei Luo, Xinyu Liu, Jacek Furdyna, Sergei Rouvimov, Vladimir Protasenko, Susan Fullerton, Alan Seabaugh (UND); KJ Cho, Moon Kim, Bob Wallace (UT Dallas); Randall Feenstra (CMU); Andy Kummel (UCSD); Joshua Robinson (PSU); Libai Huang (Purdue) Partly funded by NSF, AFOSR, SRC/DARPA Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 1 Graphene: The “Devices” Landscape Flexible electronics Graphene Conven2onal Devices Novel Devices BisFETs FETs RF LNAs Transparent electrodes GNR TFETs GNR FETs Bilayer FETs f-‐mul2pliers, mixers SymFETs Sensors Klein-‐FETs Veselago Lens Tunable Photodetectors THz source/detectors/modulators Passive circuit elements Plasmonics Courtesy of D. Jena Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 2 Layered Materials: The “Devices” Landscape Flexible/Wearable Conven2onal Devices FETs EmiSers Memories RF amplifiers f-‐mul2pliers, mixers Modulators Layered Materials insulators, semiconductors, metals, superconductors (0 eV – 6 eV) Detectors Novel Devices Vallytronics Nonlinear op2cs Thin-‐TFETs Solar Cells Thermoelectronics Passive circuit elements Sensors/Actuators Collec2ve effects T-‐FETs Phase change memories Phase engineering Phonon/Spin engineering Keep looking for more ideas Logic – Memory – Analog – Communication Devices - Sensors/Actuators - Flexible/Wearable Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 3 Outline Logic – Memory – Analog – Communication Devices Sensors/Actuators - Flexible/Wearable Passive elements – Active devices • Initial market applications should be Defect Resilient • Defect Control: within the layered materials (growth/ stacking), on and around layered materials (passivation) • Contact Engineering in highly scaled devices Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 4 GaN RF technology in Xing-Jena group Difference between InGaAs & GaN is due to gm G G n+ GaN Plasma oxide n+ GaN InAl(Ga)N AlN GaN/SiC Speed ling a c s d Lg, Ls ling a c s g L G Passiva5on S D InAl(Ga)N AlN GaN/SiC eng Gate l 2009 ing l a c s ) th (Lg Regrown contacts: reduce R in charging delay (RC) Dielectric Free passiva2on (DFP): reduce gate extension S 2011 Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) n+ GaN InAl(Ga)N n+ GaN AlN GaN/SiC T gates, speed limited by Cfringing/gm: increase gm! n+ GaN G Plasma oxide InAl(Ga)N AlN GaN/SiC n+ GaN DFP: O2 Plasma G D InAl(Ga)N AlN GaN/SiC 2013 Year 5 Ohmimc contacts in 2D Crystals Debdeep Jena, Kaustav Banerjee, Grace Huili Xing Nature Materials 13 1076 (2014) Goal: 2D crystals electronics Bo'lenecks & Solu1ons Transport: Tunneling vs mobility Contacts: High contact resistance Epitaxy: Control of defects Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 6 Material characterization: thermal property, band alignment Rusen Yan simulation measured Andras Kis Rusen Yan et al ACS Nano, 2014 • First measurement of monolayer MoS2 thermal conductivity: ~100x smaller than that of graphene • Thermal conductivity theory by Prof. Tengfei Luo • First band alignment with graphene electrode using internal photoemission (IPE) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) Rusen Yan et al, APL 2012 and 2013 Kun, Nano Lett. 2013 7 TFET 101 n- TFET (tunnel field effect transistor) Thermal tail is small due to the bandgap filtering thus TFETs are not fundamentally limited by the thermionic emission process in MOSFETs. n- MOSFET Thermal tail is responsible to the subthreshold current EB EB A. Seabaugh and Q. Zhang, Proceedings of the IEEE, 98(12), 2095 (2010) Anderson & Anderson, Fundamentals of Semiconductor Devices, McGraw Hill (2005) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 8 Benchmarking switches 102 2012 ST: Spin-Torque SpinFET Energy (fJ) 100 10-1 Graphene pn junction BISFET CMOS high performance Preferred Corner 10-4 10-1 Graphene nanoribbon Tunnel-FETs 100 ST oscillator All-spin logic ST Transfer/ Domain-Wall ST Majority Nanomagnet Logic gate CMOS low power Heterojunction III-V 10-2 10-3 ST transfer triad Spin-wave 101 TFETs outperform other technologies in industry benchmarks 101 102 Delay (ps) 103 104 Nikonov and Young, Proceedings of IEEE (2013) Uniform methodology for benchmarking beyond-CMOS devices, 2012 arXiv:1302.0244 [pdf] Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 9 Steep transistors based on tunneling in compound semiconductors E ne rg y (e V ) 1.0 MIND results (compiled by Alan Seabaugh) • • • Tunneling from quasi-3D source to 2D channel produces steep slope • Near broken gap alignment produces steeper slope G aS b E1 0.0 InP InA s -‐1.0 G. Zhou, H. G. Xing et al, EDL 2011 D WTe2 G S S D E ne rg y (e V ) • First demo of homojunction TFETs: Datta et al, 2009 IEDM First demos of Type-I TFETs: Xing et al, 2011 EDL First demos of Type-II TFETs: Datta et al, 2011 APEX; Xing et al, 2011 DRC First demos of Type-III TFETs: Wernersson et al, 2012 DRC Xing et al, 2012 IEDM 0.5 E fp -‐0.5 III-V Tunnel FETs • V G S = 0 V O F F s ta te 0 1.0 0.5 E1 0.0 InP InA s -‐0.5 -‐1.0 20 V G S = 0.2 V G aS b E fp O N s ta te MoS2 0 5 10 15 P os ition (nm) 20 G. Zhou, H. G. Xing et al, IEDM 2012 M. Li, H. G. Xing et al. JAP 2014. arXiv: 1312.2557 Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 5 10 15 P os ition (nm) 10 III-‐V and 2D-‐semiconductor TFETs: scalability ITRS: TFET body thickness ~ 1-2 nm for 10 nm node D. Jena, Proceedings of IEEE (2013) • Quantization renders sub-2 nm region inaccessible for 3D semiconductor TFETs • Stacked TFET geometry offers unique electrostatic control of broken gap heterojunctions Incomplete list compiled by H.G. Xing in 2013 Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 11 New Device Proposal: Thin-‐TFET • Two-dimentional Heterojunction Interlayer Tunnel FET (Thin-TFET) • Predicted performance is among the best intrinsic switching energy – delay product Mingda Oscar Li M. Li et al, DRC 2014, M. Li et al, J-‐EDS 2014 M. Li et al, JAP 2014 Another embodiment: lateral heterojunccon V D S = -‐0.4 V 10 1 V D S = -‐0.3 V 10 0 V BG=0 V D S = -‐0.2 V 10 -‐1 V D S = -‐0.1 V A ve ra g e S S for V D S = -‐0.2 V from -‐3 10 -‐2 10 -‐3 -‐0.4 10 to 10 µA /µm : ~ 21 m V /de c -‐0.3 -‐0.2 V T G (V ) -‐0.1 0.0 C u rren t D en s ity ( µA /µm ) 60 V BG=0 V T G = -‐0.4 V V T G = -‐0.3 V 40 V T G = -‐0.2 V 10 2 3 10 Greg Snider C u rre n t D e n s ity ( µA /µm ) David Esseni 20 V T G = -‐0.1 V 0 -‐0.4 V T G = 0 V -‐0.3 -‐0.2 -‐0.1 0.0 V D S (V ) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 12 Devices: MoS2/WSe2 Vertical P-‐N Junctions 10-6 Pd MoS 2/WSe 2 heterojunction Schottky junction -8 10 p-n junction Vg (V) MoS2 WSe2 -40 i p -20 n p 0 n i 20 n n 40 n n -10 I d (A) 10 WSe2 MoS2 Vg -40V -20V 0V 20V 40V -12 10 Ti/Au -14 10 -16 10 -2 -1 0 1 2 Vd (V) n-MoS2 (Shudong Xiao et al, DRC 2014) MoS 2 FET 14 10 Vg= -20V, p-n junction 2.0 WSe2 F ET Pd Ti ⎛ dV ⎞ log⎜ ⎟ ⎝ dI ⎠ 12 10 1.5 10 10 Vd (V) R (Ω) p-WSe2 8 n-MoS2 15 .24 1.0 14 .18 13 .12 10 12 .05 10 .99 n-WSe2 Pd Vg= 40V, Schottky diode 9.9 28 0.5 6 10 8.8 65 Ti Pd 7.8 03 6.7 40 -40 -20 0 Vg (V) 20 40 -40 -20 0 20 40 Vg (V) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 13 Dual gated vdW tunnel diodes and transistors Top gate Mo S2 S ZrO Top gate 2 D MoS2/WSe2 WS e2 ZrO 2 Bottom gate Bottom gate 20 nm 1.0 2.0 VGate-MoS = 3V 2 VNDR-peak (V) I D (nA) 1.5 VGate-WSe = -3.5 V 1.0 -3.3 V -3.0 V 2 0.5 0.0 0.0 77K 0.3 0.8 η = 0.83 0.6 77K 0.4 0.6 VD (V) 0.9 1.2 -3.6 -3.4 -3.2 -3.0 -2.8 V Gate-WSe (V) 2 (UC Berkeley) Javey Group: T. Roy et al. ACS Nano 2015 9 (2), 2071-2079 The first observation of NDR in TMDC heterostructures (at 77 K) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 14 vdW solids Esaki Diodes First 2D crystal Esaki Diodes at RT (Rusen Yan and H. G. Xing et al., SubmiYed, arXiv:1504.02810) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 15 Outline • Introduction • Our attempt on Defect Control – MBE growth Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 16 Chemical Vapor Transport Growth (I) Xiaodong Xu et al, U. Washington, 2013 Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 17 Scattering and Mobility limits in Monolayer MoS2 Intrinsic mobility accessible in CLEAN, SUSPENDED layers Very low impurity densities: intrinsic/remote phonon scattering determine the highest attainable mobilities. Currently reported electron mobilices are limited by Ionized impurity scafering High-κ gate dielectrics can increase the electron mobility only for samples infected with very high impurity densities D. Jena, Silicon Nanoelectronics Workshop 2014 Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 18 Chemical Vapor Transport Growth (II) MoO3 S Jun Luo et al. Rice University (2013) and many other group Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 19 Challenges in growth of transition metal dichalcogenides (TMD) CVD, PVD, MBE? Zoom View - Mo-Se Phase Diagram (1990 Brewer L.) http://www1.asminternational.org.proxy.library.nd.edu/asm MBE Advantages: - in-situ growth monitoring for layer number control - clean growth environment, heterostructures - non-equilibrium growth may offer paths for stoichiometry control. MoSe2 Phase diagram Challenges: low metal adatom mobility (hybrid MBE growth is being explored) Vishwanath, H.G. Xing et al. J-2D, 024007 (2015) ASM international 2006 Mo-Se Phase Diagram (1990 Brewer L.) ASM Alloy Phase Diagrams Center, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) ASM International, Park, OH, USA, 20 2006-2013 http://www1.asminternational.org/AsmEnterprise/APD, Materials Calculated MoS2 phase diagram and defect formation energy Zoom View - Mo-S Phase Diagram (1990 Brewer L.) http://www1.asminternational.org.proxy.library.nd.edu/asmenterpri... KJ Cho, UT Dallas, 2014 lars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; nterprise/APD, ASM International, Materials Park, OH, USA, 2006-2013 Vishwanath, H. G. Xing et al. J-2D, 024007 (2015) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 21 MBE growth of layered materials Conventional epitaxy: 3D on 3D crystals Van der Waals epitaxy: 2D on 2D crystals Quasi Van der Waals epitaxy: 2D on terminated 3D crystals e.g. Bi2Se3 on GaAs Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 22 Pioneers of MBE of 2D crystals • A. Koma Group [2] Material Group Materials grown by Van der Waals epitaxy Quasi-1D Se/Te Te/Se/Ta Quasi-2D TX2(MoSe2, GaSe)/MoS2 • W. Jaegermann Group Material Source Materials grown Metal organic Van der Waals epitaxy WS2/TX2 (HOPG, MoTe2 (0001)) Van der Waals epitaxy using Knudsen cell TX2 (SnSe2,SnS2)/ TX2 (SnSe2,SnS2, WSe2 MoS2, MoTe2, GaSe) TX2 (MoSe2)/SnS2 TX2/mica Quasi-2D on 3D TX2(NbSe2, MoSe2)/SGaAs(111) TX2 (MoSe2) /CaF2(111) Organic Phthalocyanine/TX2 [3]; [4] ü They demonstrated proof of concept MBE growth of 2D crsytals. ü Limited characterization was done by them, esp. using Transmission Electron Microscopy (TEM). [2] A.Koma et.al. Journal of Crystal Growth, Vol. 111, 1029—1032 (1991); [3] S. Tiefenbacher et.al. Surface Science 318 (1994) L1161-L1164; [4] R. Schlaf et.al. J. Appl. Phys. 85, 2732- 2753(1999); APS March Meeting 2014, Suresh Vishwanath (sv728@cornell.edu) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) Vishwanath et al. J-2D, 024007 (2015) 23 MBE MoSe2: giant bandgap renormalization (UC Berkeley/Stanford) Miguel Ugeda, Zhi-Xun Shen and Michael Crommie et al. Nat. Mat. (2014) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 24 MBE growth of MoSe2 on different substrates MoSe2 on HOPG Cs-HRTEM Plane-view HRTEM Diffraction MoSe2 HOPG MoSe2 on CaF2 MoSe2 CaF2 MoSe2 on Sapphire MoSe2 Sapphire Vishwanath, H. G. Xing et al. J-2D, 024007 (2015) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 25 Optical property of MBE MoSe2 PL of monolayer MBE MoSe2 Absorption spectrum of MBE MoSe2 Sharp band edge absorption: < 20 meV/dec! (comparable to the best 3D semiconductors) Lorentzian fit of the PL peak gives the maximum at 1.565eV which is consistent with the published data at around 1.57eV. Vishwanath et al. J-2D, 024007 (2015) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 26 Low defect MBE WSe2 • Very low defect density found in MBE WSe2 • Electronic bandgap in monolayer WSe2 found to be 2.27 eV • Type-I band alignment found between monolayer and bilayer WSe2. Vishwanath, Jun Park, Andy Kummel and Grace Xing et al, submitted (2015) Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) 27 Conclusions Contact Engineering Defect resilient applications Defect Control High performance devices Lemma of New Technology (Herbert Kroemer, 1995) SnSe The principle applications of any sufficiently new and innovative technology always have been – and will continue to be – applications created by that technology. Grace Huili Xing (hxing@nd.edu, grace.xing@cornell.edu) Exfoliated MoS2 28
© Copyright 2025