Synthèse et propriétés optiques de pérovskites pour le photovoltaïque et l’émission de lumière Emmanuelle DELEPORTE Laboratoire Aimé Cotton 1 PHOTOGRAPHIE DE L’EQUIPE « NANOPHOT » AUJOURD’HUI Emmanuelle Deleporte (Pr. ENS Cachan) Jean-‐SébasKen Lauret (Pr ENS Cachan) Pérovskites hybrides Camille Sonneville (ATER) KaKa Abdel Baki (Ph D) Anne Debarre (CNRS) Gaëlle Allard-‐Tripé (Ingénieur d’Etudes CNRS) Nanotubes de carbone Haytham Zahra (Ph D) Géraud Delport (PhD) Vincenzo Ardizzone (post-‐doc) Nanospectroscopie Meriem Stamboul (PhD) Khaoula Jemli (PhD) Hiba Diab (PhD) 2 Pérovskites hybrides pour l’émission(OLEDs, lasers) et le photovoltaïque (cellules solaires) En collaboraKon étroite avec Pierre Audebert (Pr ENS Cachan PPSM) (CH3NH3)PbI3 Laurent Galmiche (Ingénieur d’Etudes ENS Cachan PPSM) (C6H5-‐C2H4-‐NH3)2PbI4 7 mm x 5 mm x 3 mm PMPI Cristaux Couches minces Nanopar*cules 3 Pas*lles GOALS LIGHT-MATTER COUPLING PHOTOVOLTAÏC QUANTUM OPTICS Necessity of Systems which COLLECT light: nano-antennas Physical analysis of the energy transfers Role of the interfaces Systems which EMIT light: microcavities Polariton lasers Single photon sources • Material engineering • Mastery of the material • Precise knowledge of the electronic properties 4 OPTICAL EXPERIMENTS • Absorption spectroscopy • Angle-resolved reflectivity • Photoluminescence spectroscopy • Microphotoluminescence à Individual object • Pump-probe ultrafast spectroscopy (femtosecond) From the near UV (300 nm) to the IR (1,5 microns) range, from 10K to 300K Light-matter interaction Information on the electronic structure of the nanomaterials, confinement effects, energy transfer Linear and non-linear optical properties of semiconducting nanomaterials Dynamics of electronic interactions 5 Perovskites - Du matériau massif à la structure en couches perovskite 3D AMX3 : AA :M :X perovskite 2D A2MX4 : des monocouches de MX6 séparées par des AX ”nos” perovskite hybrides organiqueinorganique : A : organique (R-NH3 ) M : métal ( Pb) X : halogène (Cl, Br, I) perovskite 2D A3M2X7 : des bicouches de MX6 séparées par des AX (R-NH3)2MX4 6 Synthesis of 2D-layered perovskites Collaboration with PPSM ( P. Audebert, L. Galmiche) ENS Cachan Our perovskites: (R-NH3)2MX4 R :phenyl+alkyl chain ; M : metal ; X: halogen Step 1: Synthesis Inorganic salt (PbI2, PbBr2, PbCl2) Organic molecules (synthesis at PPSM) Solvent Step 2: Deposition by spin-coating 7 2D-layered perovskite thin films (10 – 100 nm) Synthesis of 2D-layered perovskites Effect of the spin-coating Perovskites in solution Densité optique (u.a.) 4 (C6H5C2H4NH3)2PbI4 Deposition by spincoating 3 2D-layered perovskites 1,0 2 Densité optique T = 300 K 0,8 1 0,6 0 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 Energie (eV) A sharp peak appears at low energy (2,40 eV, FWHM = 80 meV à 300 K) 0,4 0,2 0,0 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 Self-assembled 2D-layered perovskites Energie (eV) 8 Synthesis of 2D-layered perovskites X diffraction L. Largeau, O. Mauguin (LPN) Molecular crystal K. Gauthron et al, Optics Express 18 (2010) 5912. 9 Multi-quantum well structure 6 Ǻ 10 Ǻ Inorganic layer Organic layer Quantum confinement + Dielectric confinement εp > εb Eb 220 - 480 meV Strong excitonic effects Observable at 300 K (kBT = 26 meV) 10 4 Optimization of the spin-coating parameters : - nature of the solvent, of the substrate, of the solution concentration - duration, speed and acceleration Reproducibility of the deposition Densité optique Densité optique 1,01,0 dépôt 11 dépôt dépôt 2 0,80,8 0,60,6 0,40,4 0,20,2 (C6H5-C2H4-NH3)2PbI4 0,00,0 1,81,82,02,02,22,22,42,42,62,62,82,83,03,03,23,23,43,43,63,63,83,84,04,0 Energie Energie(eV) (eV) 11 Tunability : influence of M, X and R Collaboration with PPSM (P. Audebert, L. Galmiche) (Pb, I) à green (Pb, Br) à blue, violet (Pb, Cl) à near UV (Sn, I) à orange-red 12 7 Tunability : mixed perovskites (R-NH3)2MX4-xYx Accordabilité du gap optique G. Lanty et al, J. Phys. Chem. Lett. 2014 Exciton de Wannier 8 PEPX Photoluminescence Luminescence at room temperature PL of PEPI, λexc = 405 nm P h o to lu m in es c en c e A b s o rb an c e 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 E ne rg y (e V ) PL of PEPB, λexc = 325 nm Stokes-Shift: several 10 meV 14 9 CAVITES VERTICALES EN COUPLAGE FORT, POLARITONS: Contexte • Bose-Einstein condensate (BEC) at solid state CdTe ZnO: LASMEA + CRHEA 2013 J. Kasprzak et al Nature 2006 Figure 1: Fabrication of the fully-hybrid bulk ZnO microcavity. a, A single-crystal c-ZnO substrate is covered by a HfO2/SiO2 DBR. b, The whole DBR/ZnO substrate is flipped upside-down and transferred to a glass substrate. c, The ZnO substrate is backside etched/polished down to a thickness of several tens to hundreds nanometers. d, A HfO2/SiO2 DBR is deposited on top of the processed ZnO substrate. e, Emission intensity below threshold measured along the thickness gradient and showing the first five polariton modes (cavity thickness from λ/2 to 5λ/2) . P. G. Savvidis et al Phys. Rev. Lett. 2000 • Low threshold polariton lasers • Optical parametric amplifier Light-matter strong coupling MICROCAVITY POLARITONS Planar microcavity: mirror 1 Active medium mirror 2 Ex Eph(k//) Hk// = New eigentstates of the system = polaritons V 2.5 UPB 2.4 UP,k// LP,k// = α(k//) ph,k// + β(k//) ex,k// = - β(k//) ph,k// + α(k//) ex,k// Eex(k//) 2.6 Energie (eV) Ωext << Ωmod à strong coupling V Eexciton 2.3 Ephoton 2.2 LPB 0 2 4 6 k// 8 10 16 12 Light-matter srong coupling Example of structure 35 nm 50 nm 50 nm 50 nm Precise control of the position of the peroskite layer at an anti-node of the intracavity electric field Strong coupling regime G. Lanty, New J. Phys. 10 (2008) 065007. 17 Effet de «bottleneck» (1) phénomène observé également pour des microcavités inorganiques sous faible densité d’excitation 18 33 CAVITE: Cavités hybrides semiconducteur/pérovskites POLARITONS HYBRIDES PMPBàLPB α au produit des parts relatives à la transition excitonique de la pérovskite des deux branches V. Agranovich, Solid State Comm 1997 Hybrid microcavity ZnO/MFMPB Collaboration with CRHEA (J. Zúñiga Pérez) et LASMEA (J. Leymarie) G. Lanty et al, Phys. Rev. B84 (2011) 195449 CAVITE: Cavités à haut facteur de qualité Top mirror PMMA Perovskite SiO2 layer Bottom mirror (dielectric) Silica substrate Dépôt d’un miroir diélectrique pour fermer la cavité = Un défi technologique Top Mirror Migration Method Développée par Z. Han High quality factor cavities Q = 90 New technology of report of the dielectric mirror: Useful for organic electronics when it is necessary to combine different technologies Z. Han et al, Optics Letters 37, 5061, 2012 Z. Han et al, APEX 6 (2013) 106701 Photoluminescence confinement of zero-dimensional polaritons in perovskite-based mie. Photoluminescence of discrete polaritonic states are observed for ric sphere-like defects which are spontaneously nucleated on the top inewidth of these confined states are found much sharper (almost one of photonic modes in the perovskite planar microcavity. Our results organic-inorganic cavity polariton in confined microstructure and sugealize integrated polaritonic devices operating at room temperature. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature 3 - quasiparticles final samples as shown in Fig. 1(d). Notice that simietweenlar quantum defects have been reported for GaAs based cavities 1], have[17]. emerged In this case, they were attributed to point-like deundamental and fects formed during the molecular beam epitaxy of the laritons provide top mirror. of Bose-Einstein Confocal microphotoluminescence on single sphere-like stem [2–6]. defectsOn is performed at room temperature, using a laser on [7] beam and bal(405 nm) focused onto a 1.5 µm spot diameter by a te in engineered microscope objective (N A = 0.65). Polariton emission is new generation imaged on a CCD camera coupled to a monochromator. rt microcavities We first report the study of polariton emission of a Q-factors as high representative sphere-like defect in our sample, denoted th the facilities D1. techFigure. 2(a) presents the photoluminescence inteny di↵erent sity I(x, E) of polariton emission within D1 as a function he small exciton position and energy. We distinguish five discrete poregime of is limited modes, which correspond to 0D polaritons within or roomlariton temperthe matedefect due to confinement of the photonic compoented into We use the method proposed by Zajac et al [17] gy suchnent. as GaN to calculate the potential confinement of these polarirganic-inorganic tons.BoseOur hypothesis is that D1 is perfectly symmetalthough rictemperand all physical quantities only depend on the radial at room distance 6, 29, 30], no po-r. We denote by n (r), the wave function of th confined state and by In (r) its photoluminesrature the has nbeen FIG. 1. (a) Di↵erent steps of the samplefrom fabrication. (b) ed withcence the patemission intensity. In (r) is extracted directly microscopy image of an ensemble of sphere-like defects l as thethe fragility intensity Optical of polariton emission in real space I(x, E): FIG. 3. Far field emission intensity measured in D1. Inset: on the top Bragg mirror. (c) SEM image of a sphere-like fore anInobstacle (r) / I(|x|defect = r, E = E ). The spectrally integrated n Integrated photoluminescence intensity as a function of enin the top Bragg mirror before the release from its nic device operdensity of confined states D(r) is given by: ergy.nm. substrate, having a diameter of 900 nm and height of 300 MEB images H.S. Nguyen et al, APL 2014 Q = 750! Bien connaître le matériau Chimie du matériau: -‐ Propriétés de self-‐assemblage -‐ Différentes formes -‐ AmélioraKon du photobleaching -‐ FoncKonnalisaKon, nano-‐antennes Physique du matériau: -‐ Structure de bandes -‐ Propriétés excitoniques -‐ Accordabilité du bandgap -‐ Pompe-‐sonde: propriétés de relaxaKon 25 Improvement of the luminescence efficiency and of the self-organization ability (R- (CH2)n-NH3)2PbX4 Change of: • flexibility of the ring R • steric encumbrance of the ring R • length of the alkyl chain: n S. Zhang et al, Acta Materiala 57 (2009) 3301. 26 Different forms 8 mm x 4 mm x 15 mm 7 mm x 5 mm x 3 mm • Crystal bulks: – Evaporation of solution – Slow solution exchange PEPI PMPI • Nanoparticles: – Spray-drying method – Solution method (PbI2 nanoparticles reacting with corresponding ammonium salts) Luminescence of nanoparticules : (Spray-‐drying) P. Audebert et al. Chem. Mater., 21 (2):210– 214, 2009. Transmission Electronic Microscopy: Sizes are from 50 to 500 nm 27 27 Improvement of the photobleaching • Elimination of halogen species in inorganic parts Iodine indicator (a) (b) PhotodegradaKon of perovskites with aromaKc ring is due to the aiack by electrophilic radical Reference Exposed under a 325 nm HeCd laser at 27 mW CMPI: I2 Dimerization PEPI: Radicalar substitution 28 28 MATERIAU:(AmélioraPon(du(photobleaching( MATERIAU: AmélioraKon du photobleaching Fluorinated (R-NH Fluorinated (R-NH3)2PbI4 perovskites 3)2PbI4 perovskites Pb I N C 0.8 F 1.0 4FPEPI doped PMMA 4FPEPI doped PMMA Intensity (Arb.Unit) Intensity (Arb.Unit) 1.0 0.8 MATERIAU:(AmélioraPon(du(photobleaching( 4FPEPI (R-NH3)2PbI4 perovskites 0.4 0.6 AFM 50 nm PEPI 0.4 AFM(50(nm(PEPI( PEPI doped Fig. 2.PMMA AFMFig. images of (a) PEPI 10% and (b) p 2. AFM Roughness 10images nm of (a) PEPI 10 PEPI doped PMMA 0.2 0.2 4FPEPI doped PMMA Intensity (Arb.Unit) Pb I N C F 1.0 0.6 0.8 0.0 0.0 0 4FPEPI PEPI PEPI ∆= ! N ! N 1 1 (xi − xave ) ∑ ∆= N i=1 N∑ i=1 where 800 N iswhere the1200 total pixels inofeach AFM imagA 0 200 400 1600 1800ofnumber N1400 isnumber the total pixels in each Fig. 2. AFM 600 images of1000 (a) PEPI 10% and (b) pfPEPI doped PMMA. AFM 300 nm 200 400 600 800 1000 1200 1400 1600 1800of is2.the average height for10% each image. is fou x Fig. AFM images (a) PEPI and AFM (b) pfPEPI doped∆PMMA. ave height for PMMA each AFM imag Timexave (s) is the average AFM(300(nm(( 4FPEPI doped 4FPEPI thin layer. thin Thislayer. valueThis of ∆ value represents 25 % of Timespin-coated (s) spin-coated of ∆ represent 4FPEPI(doped(PMMA Roughness 1 nm 0.6 an obstacleanto! the fabrication of high quality factor microc obstacle to the fabrication of high quality fac N ! 1 the realization of a vertical microcavity containingcontaini a PEPI Included in a PMMA matrix = 4FPEPI doped PMMA 2 microcavity ∆ the = realization (xi PMMA − of x1aveaN)vertical AFM(50(nm(PEPI( doped PMMA ∑ 2 Included inPEPI a PMMA matrix = 4FPEPI doped Fig. 2. AFM images (a) PEPI and N i=1 mirror, themirror, monolithic deposition of ∆= (xideposition − xaavetop ) dielectric ∑ of the monolithic of10% a top mirror dielec( N 0.4 i=1 be impossible. WeiPhys. et al,J. D: Appl. Phys. (2013) 135105 beinimpossible. Y. Wei et Y. al,J. D: Phys. Appl. where Phys. (2013) 135105 29 at the 19 N 46 is the total46 number of pixels each AFM image, xi the height ith pixel, 19 where N is the total number of pixels in each AFM image, x the height atillu thP In order to improve the long-time stability under i Wei et,Express Optics Express 20 (2012)height 10401 average for each AFM ∆ isimprove found tothe be 10.5516 nmstability for the In image. order to long-time Y. Wei et,Y.Optics 20 x(2012) 10401 ave is the the This average height for each AFM ∆ in is ! found be 10.5516 ave is perovskite active layer the vertical microcav spin-coated xthin layer. value of ∆ represents 25embedded %image. oflayer the thickness of to the and win perovskite active embedded in layer the vertica PEPI thin layer. This value of ∆arepresents 25 % of thickness of the the l 0.2 N ifby ovskites included inincluded polymer Inspired an obstacle spin-coated to the fabrication of high quality factor microcavities: forthe example, we cons ovskites in amatrix. polymer Inspire 1 matrix. MATERIAU: FoncKonnalisaKon, nanoantennes To improve the exciton photogeneration performance: improve the light absorption Introduce an absorber in the organic part : = nano-antenna Inorganic layer Organic layer solutions of A) Standard effected from similar concentration PEPB, B) NAAB casting and C) The NAAB doped PEPB. The last picture shows that the doped film emits much more light than the other deposits, including the pure imide itself, the emission of which displays a low quantum yield in the solid state. Chromophores (6) Hong, X.; Ishihara, T.; Nurmikko, A. V. Phys. Rev. B 1992, 45, 6961–6964. (7) Symonds, C.; Bellessa, J.; Plenet, J. C.; Bréhier, A.; Parashkov, R.; Lauret, J. S.; Deleporte, E. Appl. Phys. Lett. 2007, 90. Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Nature, 2013, 499, 316-319. (8) Symonds, C.; Bonnand, C.; Plenet, J. C.; Bréhier, A.; Parashkov, R.; Lauret, J. S.; Deleporte, E.; Bellessa, J. New J. Phys. 2008, 10. Liu, M.; Johnston, M.B.; Snaith, H.J. Nature, Constraints on the choice of the absorbant 2013, 501, 395-402. (9) Koutselas, I.; absorber Bampoulis, P.; Maratou, E.; Evagelinou, T.; - Efficient UV Pagona, G.; Papavassiliou, G. C. The Journal of Physical Chem- Energy transfer from the absorber to the perovskite istry C 2011, 115, 8475–8483. (10) Chang, J. A.;steric Rhee, J.encumbrance H.; Im, S. H.; Lee, Y. H.; Kim, H.; - One phenyl Seok, S. I.; Nazeeruddin, M. K.; Gratzel, M. Nano Letters 2010, - Binding between phenyl and ammonium: 1 to 3 alkyl 10, 2609–2612. Fig 5: Photograph of the three perovskite layers taken under ilThèse K. Jemli lumination with a standard laboratory lamp (broad band at 360 nm). From right to left: Standard PEPB perovskite layer; NAAB microcrystal layer and 10% NAAB doped PEPB layer. (11) Yu, X.; Lei, B.; Kuang, D.; Su, C. Chem. Sci. 2011, 2, 1396– 1400. (12) Bréhier, A.; Parashkov, R.; Lauret, J. S.; Deleporte, E. Appl. Phys. Lett. 2006, 89, 171110. (13) Lanty, G.; Bréhier, A.; Parashkov, R.; Lauret, J.; Deleporte, E. New J. Phys. 2008, 10, 065007. (14) Wei, Y.; Lauret, J. S.; Galmiche, L.; Audebert, P.; Deleporte, E. Opt. Express 2012, 20, 10399–10405. 30 Photoluminescence en fonction de la température PL Intenisty (arb. unit) Collaboration avec le LPN (J. Bloch, K. Gauthron) PhE-PbI4 10 K 20 K 40 K 60 K 80 K 90 K 110 K 130 K 150 K 170 K 190 K 210 K 230 K 250 K 300 K 5.0x10-4 4.0x10-4 -4 3.0x10 2.0x10-4 • Présence de deux raies • Décalage vers le bleu lorsque T augmente • Élargissement et baisse d’intensité quand T augmente 1.0x10-4 0.0 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 Energy (eV) K. Gauthron et al, Optics Express 18 (2010) 5912 31 Photoluminescence en fonction de la température PhE-PbI4 (1) Lee et al PRB 33, 5512 (1986) E a = 60 meV (étude Integrated PL) h ωLO = 1 3 , 7 m e V (phonon dans PbI2) fixé Γ0 = 17 ± 1 meV a = 0.03 ± 0.01 meV/K ΓLO = 70 meV 32 Excitation de la Photoluminescence (2K) PLE détectées sur les différentes raies PL intensity (norm.) 1,0 2K 0,5 0,0 continuu m 2,4 2,6 Energy (eV) PLE intensity (arb. unit) 1,0 0,5 0,0 2,8 - “Stoke’s shift” = 7 meV Ne Varie pas en fonction de la température - ELiaison = 205 meV 33 Tunability : mixed perovskites (R-NH3)2MX4-xYx Accordabilité du gap optique G. Lanty et al, J. Phys. Chem. Lett. 2014 Exciton de Wannier 34 8 MATERIAU: Pompe-‐sonde, propriétés de relaxaKon 1,2 P pum p= 0 .2 µW ;P probe = 0 .0 1 µW λ(probe )= 5 1 7 nm ; λ(pum p)= 4 4 0 nm ; 1,1 0.10 1,0 D eltaT /T at 0 ps D eltaT /T at 5 ps D eltaT /T at 30 ps D eltaT /T at 90 ps D eltaT /T at 300 ps D eltaT /T at 600 ps 0.08 0,8 0,7 0,5 4 4 0 nm 4 6 0 nm 4 8 0 nm 5 0 0 nm 5 1 7 nm 0,4 0,3 0,2 0,1 0.04 0.02 0.00 -‐0.02 2.20 0,0 -‐0,1 D e lta T /T 0.06 0,6 ΔT n o rm a lis é à 1 0,9 -‐200 -‐100 0 100 200 300 R etard en fs 400 500 600 700 2.25 2.30 2.35 2.40 2.45 2.50 2.55 E nerg ie (eV) • Temps de vie de l’exciton: environ 110 ps • Forte interaction exciton-phonon (<100 fs) • Importance des effets de type Auger • Phase Space Filling / Renormalisation de la fonction d’onde 35 Thèse Katia Abdelbaki, soutenue le 5 décembre, article en cours de rédaction 2.60 THANK YOU FOR YOUR ATTENTION 36
© Copyright 2024