Espectroscopía de alta resolución con el nuevo instrumento GRACES Eder Martioli Investigador Científico y Gerente de la Oficina Gemini Brasil (BrGO) GRACES 15 años de ciência con Gemini - La Plata, 02 de Junio de 2015. CONTENIDO 1. El instrumento GRACES 2. Los datos de GRACES 3. El proyecto OPERA y la reducción de los datos 4. Oportunidad cientifica con GRACES GRACES 15 años de ciência con Gemini - La Plata, 02 de Junio de 2015. GRACES Gemini Remote Access to CFHT ESPaDOnS Spectrograph Gemini CFHT Source: A-N Chene et al. SPIE 2014 paper \ ESPaDOnS Echelle SpectroPolarimetric Device for the Observation of Stars at CFHT ESPaDOnS ESPaDOnS con GRACES! ESPaDOnS con GRACES! Los datos de ESPaDOnS y GRACES flat Th-Ar objeto fabry-perot bias polarimetria ESPaDOnS vs. GRACES etro m i lar Po CFHT - ESPaDOnS modos fibras star-only: polar: ∥ ⟂ star+sky: ø1.6” star star sky ø1.6” ø2.2” 10” slices Gemini - GRACES modos fibras slices star-only: star+sky: ø1.2” star star sky ø1.2” ø1.2” 1’ ESPaDOnS vs. GRACES Configuración instrumental ESPaDOnS GRACES Modo star star+sky star star+sky focal ratio f/8 f/8 f/16 f/16 number of slices 6 3 4 2 number of fibers 1 2 1 2 fiber size (μm) 100 100 165 165 fiber length (m) 36 36 270 270 resolution 80,000 67,000 55,000 33,000 aperture size (arcsec) 1.6 1.6 1.2 1.2 EL PERFIL INSTRUMENTAL DE GRACES Star+Sky Low-Res Star-Only Hi-Res EL PROYECTO OPERA (CFHT) Open-source Pipeline for ESPaDOnS Reduction and Analysis Web: http://sourceforge.net/projects/opera-pipeline/ Paper: Software and Cyberinfrastructure for Astronomy II. Proceedings of the SPIE, Volume 8451, id. 84512B-84512B-21 (2012) Paper: GRACES: Gemini remote access to CFHT ESPaDOnS spectrograph through the longest astronomical fiber ever made: experimental phase completed, Chené, A.-N. et al., Proceedings of the SPIE, Volume 9151, id. 915147 16 pp. (2014) Paper científico en preparación Reducción de los datos con OPERA 1. Calibración Datos de calibración -> para generar productos de calibración 2. Reducción Productos de calibración -> para extraer los espectros de ciencia 3. Análisis Obtener informaciones de los datos reducidos Reducción de los datos con OPERA Calibración 1. 2. 3. 4. 5. 6. Master combining Gain and Noise Geometry Instrument Profile Aperture Wavelength calibration Reducción 1. 2. 3. 4. 5. 6. Optimal Extraction Telluric Wavelength Correction Heliocentric Correction Flat-fielding Normalization by continuum Flux calibration Reducción con OPERA “in a nutshell” Ganancia/Ruido Geometría Perfil Instrumental Abertura Perfil Instrumental Abertura Calibración en longitud de onda Extracción Flat-fielding / Normalización / Calibración en flujo operaInstrumentProfileCalibration Perfil instrumental super amostrado bidimensional como función de las coordenadas de la imagen Flujo Primero la medición del Perfil Espacial abertura (a) CFHT IP for Star-Only 80k - 6 slices / 1 fiber 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 IP IP CFHT IP for Polar 65K - 3 slices / 2 fibers 0.07 0.03 0.02 0.02 0.01 0.01 0 0 -0.01 0 5 10 15 20 25 30 -0.01 -20 35 -15 -10 -5 0 pixels pixels CFHT IP for Special Mode - 2 slices / 3 fibers 5 10 15 20 CFHT IP for S+S 65k - 3 slices / 2 fibers 0.06 0.08 0.07 0.05 0.06 0.04 0.05 0.03 IP IP 0.04 0.03 0.02 0.02 0.01 0.01 0 0 -0.01 0 5 10 15 20 pixels 25 30 35 -0.01 0 5 10 15 20 pixels 25 30 35 Después viene la medición de un perfil instrumental 2D super amostrado orientación líneas 1 píxel abertura (a) columnas Perfil instrumental 2D super amostrado Modo Star-only Fabry-Perot Th-Ar operaExtractionApertureCalibration La abertura para la extracción Calibración de la abertura utilizando un perfil instrumental bidimensional masterincalibration frame. ADU Fast readout mode. Nominal gain and noise values for ESPaDOnS in Fast readout mode are 1.5 e−/ADU and e−,and respectively. b. 4.7 Gain Noise: measure CCD gain and noise using on a set of flat-field and bias exposures. As an example, for data obtained on 2014-05-06 the measured gain was 1.68±0.02 e−/ADU and the noise was 5.51 e−, with a bias level of 490 ADU in Fast readout mode. Nominal gain and noise values for ESPaDOnS in Fast readout mode are 1.5 e−/ADU and 4.7 e−, respectively. LOS 2 MODOS DE OPERACIÓN DE GRACES Figure 8. Left panel shows a section of a flat-field frame in Star-Only (4-slice) mode, showing a few orders in the far red. Right panel shows the same section of a flat-field frame in Star+Sky (2-slice) mode. Figure 8. Left panel shows a section of a flat-field frame in Star-Only (4-slice) mode, showing a few orders in the far red. Right panel shows the same section of a flat-field frame in Star+Sky (2-slice) mode. Chene et al. isSPIE 2014 paper Figure 9. Top panels show measurements of the instrument profile for orders 35Source: and 36,A-N where left panel in Star-Only mode and right panel is Star+Sky mode. Bottom panels show the same measurements with aperture sub-pixels masked out. 1 Figure 9. Top panels show measurements of the instrument profile for orders 35 and 36, where left panel is in Star-Only mode and right panel is Star+Sky mode. Bottom panels show the same measurements with aperture sub-pixels masked out. IRAF (http://iraf.noao.edu) is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. operaWavelengthCalibration Calibración píxel / longitud de onda utilizando g. 19.— Example of two apertures with heights of 0.6 (left panel) and 1.0 pixel (rig un espectro de Th-Ar anel). The 2D IPs are plotted with the aperture sub-pixels masked out for better isuali on. 1. Algoritmo para detectar líneas espectrales utilizando 2.7.entre Wavelength Calibration correlación cruzada la imagen y el perfil bidimensional The module operaWavelengthCalibration performs the pixel-to-wavelength calib defrom las alíneas un atlas de Th-Ar on, where2. it Identificación detects spectral lines Th-Ar con comparison exposure and combine th nes with known atlas data to create a calibration polynomial solution of the form: 3. Ajuste polinomial (d) = a0 + a1 d + a2 d2 + a3 d3 + ... + anp dnp , (3 where4. d is the distance vector given by equation 35, a 0,...,np are the coefficients and np Utiliza superposición de los órdenes para generar e maximum order of the polynomial. For ESPaDOnS we found that it is sufficient to u polynomial with np =una 3. solución única y homogénea Algoritmo de detección de líneas Medición de los centros de las líneas algorithm is applied for an oversampled tilted aperture, in which th from a two-dimensional instrument illumination profile as explained of a 2D IP for flux extraction seems to be a necessary calibration for operaExtraction tilted profiles, typically found in fiber-fed spectrographs that use pseudo-slit and with limited CCD pixel size, such as in ESPaDOnS. Extracción del espectro The three methods for extraction implemented in operaExtrac 1. RAW: Raw Sum; 2. STD: Standard Extraction (with background subtraction); 3. OPT: Optimal Extraction. The algorithms for each of these methods are described in mor 3.1.1. Raw Sum xc,yc x y the sums must use or reject the same set of pixels. Extracción Raw Sum Note that the pixel values (Ci00 ,j 0 ) 3.1.1. of the master comparison image are – 38 – image indexes (i, j), therefore we have to use the following relationship to c This method obtainsindexes: the energy flux density spectrum by countin the image and sub-pixel and events Mi0 j 0 is ainbad pixel mask given by: photo-electron each spectral element. The flux is given by i,j 1pixel x, y values over an extraction area defined by the extraction aperture calibr ⇢ 0 1 FLOOR(x if of Ii0 j 0both <c + SATURATION & mi0 j 0 = 1a i = x 0 ), detector readout and the variance includesMcontributions the i 0 0 ij = otherwise,+ y 0 ), j 0= FLOOR(y 0 c is jgiven The raw flux fi0 j 0 for each individual sub-pixel by: where the quantity mi0 j 0 is a boolean for a pre-defined bad pixel mask – 38 –0in the parenthesis do 0 where the function FLOOR() rounds(i,the number easily obtain the image pixel indexes j) from indexes (i (Ii0 j 0 the Bi0sub-pixel )GA s j0 closest i0 j 0 = Mi0 j 0and yc is sampled in ,steps of 1 p 31 integer, and 32. xc (y) is the tracefpolynomial F0 0 andimage. Mi0 j 0 is aEquations bad pixel mask given the extension of the 26 and 27by: give ixj0i0 and yj0 0 . The output spectrum is given by an array of spectral elements, whe 0 2 of ⇢ Analogously to the defined in equation letsub-pixels defin where Ii0 j 0and is the rawpeak-probability value an image pixel, B isof& the 0 0 0sum 0 21 Sraw (d) the variance (d) are calculated as the 1 if I < SATURATION mus ij i0 raw j0 = 1 v i j raw Mi 0 j 0 = probability: 0 otherwise, d, i.e..,pixel sensitivity image, Fplaced thedistance normalized function (flat-field), G is i0 j 0 is at x’,y’ i’,j’ is the fractional area of the a sub-pixel, where quantity mi j i.e., is a boolean for a pre-defined bad pixel mask. 0 0 0 0 easily obtain thepline image indexes (i, j) from sub-pixel indexes (i , 0 ⇥the 1 = ppixel ⇥ pglobalmax (C ? ), localmax 0 0 N x Ny 1X X 31 and 32. , f i0 j 0 A ASsraw=(d) = @ Ymeaning samp samp where plocalmaxThe is output a boolean valueis with same in equation spectrum given the byX an array of spectralaselements, where S of(d) theflux variance calculated as the sumwithin of sub-pixels bility Flux p given value S(y ) are being the maximum a give Elem Raw in e-a and globalmax,iraw (yj 2 j raw (d) i0 Nx0 Ny0 i0 j0 j0 X p as: at A/2), distance i.e..,aperture A/2 < yplaced < yj + ford, 2an A,X calculated 2 (2 e As + fi0 j 0 ), raw (d) = 0 Nx0 Ny0 XX 1 2lying within where fStandard is given by equation 50 and the sum is calculated for sub-pixels 1. Extract or Raw spectrum (S ) and respective variances ( i0 j 0 given std/raw std/raw ), as by: the extraction aperture. function FITd represents a fit along dispersion direction described in sections 3.1.1 The and 3.1.2. 1 in section 2.5. analogously to the fit used for the elements of the 2D0 IP, as described ˆi0 j 0 for each sub-pixel (i0 , j 0 ) is 2. Construct spatial profile ( ), where the fit profile data B C C B 3.given Revise by:variance estimates: ˆi0 j 0 (d) = FITd B fi0 j 0 C , (5 C B 0 N0 N Px Py i A @ Nx0 Ny0 h 0 1 XX p fi0 j 0 2 2 ˆ (53) (2 e + bi0 j 0 ) As + i0 j 0 S j 0prev , new = B C i0 j0 B fi0 j 0 C ˆi0 jby C , is calculated for sub-pixels 0 (d)equation (52) lying with = FITd B where fi0 j 0 is given 50 and the sum 0 C B 0 N N Px Py Arepresents a fit along dispersion directio @ the extraction aperture. The function FIT 0 0 where Sprev is the flux previously calculated using feither i j d Standard/Raw (first iteration) j0 the fit used for thei0elements of the 2D IP, as described in section 2.5 or Optimalanalogously (in further to iterations) method. Extracción óptima Horne et al. (1986) & Marsh et al. (1989) 0 is given by equation 50 and the sum is calculated for sub-pixels lying within where fi0 j3. Revise variance – 42 –sub-pixel values are identified 4. Mask optimal outliers. In estimates: this step the highly deviant the extraction aperture. The function FITd represents a fit along dispersion direction 0 and ignored in the flux calculation (step in the refinement of the spatial profile Nx0 5)Nyand i h X X analogously to the fit used for the2 elements of the 2D IP, asp described in section 2.5. 2 ˆ (step 2 - above second iteration). So, the mask(2function M 0 0 is updated as follows: (5 new = e + bi0 j 0 ) i jAs + i0 j 0 Sprev , i0 j0 3. Revise variance estimates: Ny0 ⇣ ⌘ Nx0 P P ˆi0 j 0 fi0 j 0 / 2 ( 0 0 N new N y h – 42 x –X 2 2 (first iteratio i ˆiStandard/Raw X p 0 0 where Sifprev the flux previously calculated using 0 < 0j 0 = 0either 0 0 j 0 Sprev ) < ⌘ 1 I2 i0 jis SATURATION & m 1 & (f i j i i j new 2 S Mi 0 j 0 = (53) = (2 + bopt ) ANs 0+N 0ˆi⇣0 j 0 Sprev , ⌘ i0 j 0 = new e or0Optimal (in further iterations) method. y otherwise,0 0 Px P ˆ2 i j 2 / 0 0 new ij (54) 0 0 i j 4. Mask optimal outliers. In this step the highly deviant sub-pixel values are identifi 2 (first iteration) Ny0 Ny0 ⇣ ⌘ Nx0 units where theinput flux previously calculated using either Standard/Raw Nx0 P whereSprev ⌘ isisand an threshold which defines the cuto↵ in of . For ESPaDOnS P P P ignored in theˆ flux calculation (step 5) and in the refinement of the spatial profi 2 ˆ 0 0 0 j 0 f i0 j 0 / ij i⇡ new means a 2.5 cut. orwe Optimal further iterations) method. use as (in default the value ⌘ 7, which (step 2 - above second iteration). So, the mask function Mi0 j 0 is updated as follows: 0 0 0 0 i j i j 2 Sopt = (55) opt = N 0 N 0 ⇣ 0 N0 ⇣ ⌘ ⌘ N y y 2 Px P 4.5.Mask optimal outliers. In this highly deviant sub-pixel values are identified Extract optimal spectrum Soptˆstep variances , Px P 2 2andthe opt 2 2 ˆ i0 j 0 / new i0 j 0 / new ( and ignored in the flux calculation (step 5) and in thei0 refinement of the spatial profile2 j0 i0 j 0 1 if Ii0 j 0 < SATURATION & mi0 j 0 = 1 & (fi0 j 0 ˆi0 j 0 Sprev ) < ⌘ 2 0 0 new Extracción de imágenes de calibración flux (e-/elem) 40 Bias - order 35 Raw Sum Optimal Flat - order 35 Raw Sum Optimal Th-Ar - order 35 Raw Sum Optimal Fabry-Perot - order 35 Raw Sum Optimal 20 0 -20 flux (e-/elem) -40 300000 200000 100000 flux (e-/elem) 0 100000 50000 flux (e-/elem) 0 200000 100000 0 0 500 1000 1500 2000 2500 d (pixels) 3000 3500 4000 4500 Extracción en vários niveles de flujo ~SNR per pixel flux (e-/elem) flux (e-/elem) flux (e-/elem) flux (e-/elem) 200 Raw Sum Optimal orders 57 and 58 - faint target 150 orders Faint target: V=13.2, texp=1000 s min max <1 2 1 250 2 1000 50 3000 59 58 100 50 0 orders 32 and 33 - faint target Raw Sum Optimal 7500 5000 33 32 2500 0 Raw Sum Optimal orders 57 and 58 - bright target 20000 Bright target: V=3.4, texp=10 s 59 58 10000 0 orders 32 and 33 - bright target Raw Sum Optimal 75000 50000 33 32 25000 0 0 500 1000 1500 2000 2500 d (pixels) 3000 3500 4000 4500 Extracción de imágenes saturadas Optimal Extraction Raw Extraction flux (e-/elem) + order number * 3e5 1.05e+07 1e+07 9.5e+06 9e+06 0 500 1000 1500 2000 2500 3000 spectral element index 3500 4000 4500 Resolución espectral Polar mode (POL) 190000 190000 Beam 0 Beam 1 (FP IP) * (FITS Image) POL (Th-Ar IP) * (FITS Image) POL Libre-Esprit POL Na doublet model R=80000 180000 170000 170000 160000 160000 150000 150000 140000 130000 140000 120000 110000 110000 589.7 100000 ∆v ≈ -22 km/s 589.6 589.5 589.4 589.3 RV_corr = -13.6 km/s RV_vega = -13.9 km/s ∆RV = -27.5 km/s 130000 RV_corr = -13.7 km/s RV_vega = -13.9 km/s ∆RV = -27.6 km/s 120000 100000 Beam 0 - SP2 (FP IP) * (FITS Image) SP2 (Th-Ar IP) * (FITS Image) SP2 Libre-Esprit SP2 Na doublet model R=80000 180000 flux (e-/elem) flux (e-/elem) Star-only mode (SP2) 589.2 (nm) 589.1 589 588.9 588.8 589.7 Beam 1 Beam 0 ∆v ≈ -26 km/s 589.6 589.5 589.4 589.3 589.2 (nm) 589.1 589 588.9 588.8 Beam 0 Figure 6. Sample of ThAr spectra (up) and flat field images (down) obtained in the two- (left) and four-slice modes (right). Note how clearly the sliced images can be seen on the ThAr emission lines. La primera luz de GRACES Figure 7 shows the raw 2D spectrum of GRACES first light, when the A3 star HIP57258 (V=9.00 mag) was observed on May 6, 2014. We see that is covers the optical band from ~405 nm tode ~1.032014 µm (i.e. from order 58 to order 22), however en 6 de Mayo the spectrum gets very dim bluer than 420 nm. The spectrum is continuous (gap-less) until 922.5 nm, and small 1-2 nm 4.2 Raw spectra gaps appear between the last 3 orders. Figure 7. Raw 2D spectrum of the A3 star HIP 57258, also the GRACES first light! La primera luz de GRACES 6 de Mayo de 2014 35 and 36 (central wavelength at 648 nm and 630 nm, respectively) for both instrument modes as indicated in the figure. e. Aperture: this step performs measurements of the tilt angle of a rectangular aperture for extraction. It uses the instrument profile to measure the tilt angle that maximizes the flux fraction inside the aperture. The calibrated aperture is aligned with the monochromatic image of the pseudo-slit, allowing unbiased flux measurements of each spectral element. Bottom panels in Figure 9 show the instrument profiles with the measured extraction apertures masked out. The average tilt measured for Star-only mode is −2.64±0.07 degrees and for Star+Sky mode is 1.63±0.04 degrees. Resolución Espectral Figure 10. Left panels show measurements of the RMS (in red) and median (in green) residual wavelength of matched spectral lines, where top panel is Star-Only mode and bottom panel is Star+Sky mode. Right panels show measurements of spectral 14 10 Two-slice mode 19mag 20mag 6 21mag 2 500 700 S/N after 1 hour S/N after 1 hour Sensibilidad Instrumental 7 5 Four-slice mode 19mag 3 20mag 21mag 1 GRACES vs HIRES 900 0 500 700 900 Wavelength (nm) Wavelength (nm) Figure 13. S/N reached for a flat spectrum of different magnitudes after a 1h exposure in the two- (left) and the four-slice mode (right). Wavelength (nm) Wavelength (nm) Figure 13. S/N reached for a flat spectrum of different magnitudes after a 1h exposure in the two- (left) and the four-slice mode (right). Desempeño Figure 14. Up: Total flux of the Feige66 extracted spectrum in the two- (left) and the four-slice modeet(right) after a 1h exposure Source: A-N Chene al. SPIE 2014 paper OPORTUNIDAD CIENTÍFICA Espectroscopía de alta resolución • Abundancia química de alta precisión. • Atmosferas estelares y planetarias. • Parámetros estelares: rotación, turbulencia, temperatura, gravedad de la superficie, etc. • Actividad magnética en la fotosfera. • Velocidades radiales - asociaciones, sistemas binarios, dinámica. • Líneas de emisión - nebulosas, galaxias, discos, etc. •… GRACES 15 años de ciência con Gemini - La Plata, 02 de Junio de 2015. EJEMPLO 1: SISTEMA 16 CYG VELOCIDAD RADIAL Y ABUNDANCIA Señales de la formación de planetas gigantes Tucci Maia, M., Meléndez, J. & Ramírez, I. ApJL, v. 790, i. 2 COCHRAN W., HATZES A., BUTLER P. & MARCY G. GRACES Apj., 483, 457 15 años de ciência con Gemini - La Plata, 02 de Junio de 2015. EJEMPLO 2: AB DORADUS VELOCIDAD RADIAL ABSOLUTA BANYAN: Bayesian Analysis for Nearby Young AssociatioNs Cálculo de la probabilidad de miembros de asociaciones de estrellas (sin información fotometría) GRACES Malo et al. (2013) 15 años de ciência con Gemini - La Plata, 02 de Junio de 2015. EJEMPLO 3: VENUS Variaciones en la velocidad de los vientos (z ~70km) PI: Thomas Widemann Método: desplazamiento Doppler de las líneas solares a la luz dispersada por partículas de las nubes en movimiento - los datos utilizados para restringir los modelos de circulación global Primera evidencia de un flujo meridional en nubes altas en Venus. Variaciones rápidas de la velocidad del viento reflejan fuerte dependencia con la latitud y la hora local EJEMPLO 4: NGC 1624-2 OF?CP TYPE STAR (Wade, G.A. et al.) Mon.Not.Roy.Astron.Soc. 425 (2012) SED análisis: NGC 1624-2 es una estrella de secuencia principal de masa M=30 Ms, temperatura efectiva de 35000 K y log g = 4.0 +- 0.2 ULTIMAS NOTICIAS Instalación de la fase 2 de GRACES acaba de terminar y el comisionamiento está a punto de comenzar en junio MUCHAS GRACIAS! GRACES 15 años de ciência con Gemini - La Plata, 02 de Junio de 2015.
© Copyright 2025