Lattice Thermal Conductivity for Bismuth Telluride Dr. HoSung Lee April 23, 2015 1 Satterthwaite and Ure (1957) – Westinghouse Research Laboratory, Pittsburg, Pennsylvania 2 Satterthwaite and Ure (1957) – Westinghouse Research Laboratory, Pittsburg, Pennsylvania 3 Wagner et al. (1978) – Physics Institute of University of Würzburg 4 Wagner et al. (1978) – Physics Institute of University of Würzburg 5 Rauh et al. (1981) – Physics Institute of University of Würzburg 6 Kullmann et al. (1990) - Physics Institute of University of Würzburg 7 Kullmann et al. (1990) - Physics Institute of University of Würzburg 8 Kullmann et al. (1990) - Physics Institute of University of Würzburg 9 Huang and Kaviany (2008) – University of Michigan 10 Huang and Kaviany (2008) – University of Michigan 11 Huang and Kaviany (2008) – University of Michigan 12 Qiu and Ruan (2009) – School of Mechanical Engineering, Purdue University 13 Qiu and Ruan (2009) – School of Mechanical Engineering, Purdue University 14 Chi et al. (2013) – Uhre’s group - Dept. of Physics, University of Michigan 15 Chi et al. (2013) – Uhre’s group - Dept. of Physics, University of Michigan 16 Chi et al. (2013) – Uhre’s group - Dept. of Physics, University of Michigan 17 Electronic Thermal Conductivity kB Le( T n ) ec This Work 2 F e 2 1 T n 2 3 Fe 0 2 1 T n kB Lh ( T n) ec 3 2 F h 2 1 T n 3 2 3 Fh 0 2 1 T n F 1 3 1 T n e 2 Fe 0 3 1 T n 2 2 F 1 3 1 T n h 2 3 Fh 0 1 T n 2 ke( T n ) Le( T n) e( T n) T Lh ( T n ) h ( T n ) T 2 e( T n ) h ( T n ) ( T n ) Lattice Thermal Conductivity 2 Drabble and Goldsmid (1961) Melting point TM 848K s 39 T h ( T n ) e( T n) Strain parameter for point defects, Abeles (1963) used 39 for SiGe. M MBi MTe Vo a 3 Mean atomic volume 18 This Work a aBi aTe M a s y ( 1 y) s MBiTe a 2 1.79 2 Disorder parameter or mass-fluctuation-scattering parameter Abeles (1963) s 0.064 Gruneisen parameter, Madelung (1983) γ = 2 is often used to describe the anharmonisity effects on the thermal conductivity. 2 The ratio of Normal to Umklapp processes, β = 2 is used for SiGe by Steigmeier and Abeles (1964) 1 3 1 5 20 2 2 3 6 9 T 2 U( xT) NA hp x 2 D 4 1 M 3 BiTe a T1 300K 1 Phonon relaxation time for Umklapp process, Klemens (1958), Steigmeier and Abeles (1964), and Vining (1991) N( xT) U( xT) 4 kB T 4 Vo s h x p PD( xT) 3 4 v s x1 2 11 U x1 T1 10 3 9.587 10 s 1 Point defects ,Klemens (1955), Vining (1991) and Klemens (1958) 11 PD x1T1 10 5 8.786 10 s 19 This Work 1 md_h v s Erc ( T) 2 kB T 2 Reduced carrier energy 2 x x 1 exp Erc( T) 2 3 16 Erc( T) 2 o md_h vs EP( xT) x ln 4 2 4 hp d Erc( T) x x 1 exp Erc( T) 16 E ( T) 2 rc latt( xT) N( xT) 1 U( xT) 1 PD( xT) 1 EP( xT) 1 1 Electron-phonon scattering, Zieman (1956) and Vining (1991) 1 Combined phonon relaxation time D kB T klatt( T) 2 h 2 v s p kB 3 T 4 x latt ( xT) x e ex 1 2 dx x h kB T Debye-Callaway formula 0 k ( T n ) klatt ( T) ke( T n ) 150 200 Data_k_Goldsmid 250 300 2.7 2.2 2.1 2.3 20 This Work Prediction, this work Experiments, Rauh (1981) Debye cut-off freq. 0.8 1012 Hz 1 0.6 P_DOS t2 i gph i 1 max 1012 Hz 1 0.4 0.2 0 0 1 2 i 10 12 Hz t2 i 3 0 12 max 10 4 5 Hz 150 U xi T 2 f xi EP n1 T 2 xi T 2 f xi latt n1 T 2 xi T 2 f xi PD xi T 2 f xi 110 110 8 Cv (J/mol.K) 110 10 12 110 14 110 16 0.01 0.1 1 i 10 10 12 Hz 100 50 Prediction, this work Experiment, Bessas et al. (2012) 100 0 0 100 200 T (K) 300 21 22
© Copyright 2025