THE SUPERIORITY OF RELATIVE CRITERIA IN PARTIAL MATCHING AND GENERALIZATION Paul J. Kline Center f o r C o g n i t i v e Science The U n i v e r s i t y o f Texas a t A u s t i n ABSTRACT r e p r e s e n t a t i o n could only account f o r a s t u d e n t ' s a b i l i t y t o remember t h e s o l u t i o n s t o p r o b l e m s t h a t have been s o l v e d p r e v i o u s l y . However, i f i n s t e a d o f m e r e l y l o o k i n g f o r a f u l l match w e a r e a b l e t o find a rule whose left-hand side "closely approximates" the description of the exercise problem, then we may be able to provide a computational account of what happens when a s t u d e n t recognizes the s i m i l a r i t y of an e x e r c i s e p r o b l e m to a p r e v i o u s e x a m p l e . Some familiar justifications for concluding t h a t a d a t a e l e m e n t D is an u n a c c e p t a b l e match to a pattern element P are examined for their s u i t a b i l i t y for partial-matching applications. All of these absolute criteria are found to be u n a c c e p t a b l e i n t h a t t h e y r u l e o u t some p l a u s i b l e partial matches. A p a r t i a l matching program, REIAX, i s d e s c r i b e d w h i c h j u s t i f i e s t h e c o n c l u s i o n t h a t a data element D i s a n u n a c c e p t a b l e match t o a p a t t e r n e l e m e n t P on t h e g r o u n d s t h a t some o t h e r d a t a e l e m e n t D b is a b e t t e r match to P. The use of s u c h r e l a t i v e c r i t e r i a makes i t p o s s i b l e t o compute a l l o f t h e k i n d s o f mappings t h a t K l i n g [ 9 ] has claimed are required to account for intuitions about similarity. The ability to form u n r e s t r i c t i v e mappings a l l o w s RELAX t o c o n s t r u c t g e n e r a l i z a t i o n s t h a t have e l u d e d o t h e r a p p r o a c h e s Even i f t h i s can b e d o n e , h o w e v e r , t h e s u c c e s s is achieved at the cost of a considerable complication in the notion of executing the right-hand side of a r u l e . I n t h o s e cases where i t t u r n s o u t t h a t a f u l l match i s a c h i e v e d t o a r u l e ' s left-hand side, executing the right-hand side amounts o n l y t o a s t r a i g h t f o r w a r d e x e c u t i o n o f a f u l l y i n s t a n t i a t e d procedure. However, i n cases where o n l y a p a r t i a l match has been a c h i e v e d , t h e r i g h t - h a n d s i d e a c t i o n s w i l l need t o b e m o d i f i e d t o r e f l e c t the d e p a r t u r e s from a f u l l match. This paper w i l l o n l y b e concerned w i t h the q u e s t i o n o f how t o p a r t i a l - m a t c h p r o b l e m d e s c r i p t i o n s i n a way t h a t p r o p e r l y models s t u d e n t s ' a b i l i t i e s t o d e t e c t s i m i l a r i t i e s between p r o b l e m s . [5, 6 ] . I INTRODUCTION The work d e s c r i b e d i n t h i s p a p e r grows o u t o f an attempt to s i m u l a t e the b e h a v i o r of j u n i o r - h i g h school students l e a r n i n g geometry. An examination o f t h e g e o m e t r y t e x t b o o k t h e y were u s i n g [ 8 ] made i t c l e a r t h a t s t u d e n t s were e x p e c t e d t o a p p r e c i a t e the s i m i l a r i t y o f t h e i r e x e r c i s e problems t o the examples p r o v i d e d i n t h e t e x t , and t o use t h o s e examples a s a g u i d e i n f i n d i n g s o l u t i o n s . Protocol analyses o f students using t h i s t e x t suggests t h a t s t u d e n t s do o f t e n ( b u t not always) a p p r e c i a t e the s i m i l a r i t i e s t h a t are intended [3]. II SOME ABSOLUTE CRITERIA An a p p r o a c h w h i c h m i g h t be e x p e c t e d to y i e l d a s a t i s f a c t o r y p a r t i a l m a t c h e r would b e t o examine the o p e r a t i n g p r i n c i p l e s of a f u l l matcher f o r a p r o d u c t i o n system and t o d e t e r m i n e w h i c h p r i n c i p l e s c o u l d b e r e t a i n e d and w h i c h p r i n c i p l e s w o u l d have to be discarded. Each c o n d i t i o n i n t h e l e f t - h a n d s i d e of a p r o d u c t i o n r u l e is a p r o p o s i t i o n which can c o n s i s t o f c o n s t a n t s , v a r i a b l e s ( e x i s t e n t i a l l y q u a n t i f i e d ) , or other p r o p o s i t i o n s . A s a n example w e have ( b e l i e v e s V s u b j e c t ( f l a t e a r t h ) ) , where ( f l a t e a r t h ) i s a n embedded p r o p o s i t i o n . The V p r e f i x i n d i c a t e s t h a t Vsubject is a v a r i a b l e . We m i g h t choose t o i n t e r p r e t t h e c o n s t a n t s b e l i e v e and f l a t a s p r e d i c a t e s and t h e c o n s t a n t e a r t h a s a n argument o f t h e p r e d i c a t e f l a t , b u t t h e r e i s n o need f o r t h e m a t c h e r t o b e c o n c e r n e d w i t h t h e s e semantic i s s u e s . As the term p r o p o s i t i o n s u g g e s t s , ( b e l i e v e s V s u b j e c t ( f l a t e a r t h ) ; can b e t r u e o r f a l s e , b u t what i s more i m p o r t a n t f r o m t h e p o i n t o f view of the matcher is whether there is some p r o p o s i t i o n i n t h e d a t a base l i k e ( b e l i e v e s B i l l ( f l a t e a r t h ) ) w h i c h can s e r v e a s i t s i n s t a n t i a t i o n . One way t o model such b e h a v i o r i s t o r e p r e s e n t the worked-out examples as <condition 1 ,.........> => <action1,...> rules, where the left-hand side d e s c r i b e s t h e example p r o b l e m and t h e r i g h t - h a n d side i n d i c a t e s the steps required f o r i t s s o l u t i o n . The d e s c r i p t i o n o f a n e x e r c i s e p r o b l e m can t h e n b e compared against the left-hand sides of these rules. I n t e r p r e t i n g these r u l e s a s p r o d u c t i o n s would i m p l y t h a t t h e d e s c r i p t i o n o f t h e e x e r c i s e problem would have to completely satisfy all c o n d i t i o n s o f one o f t h e r u l e s b e f o r e any a c t i o n could be taken towards f o r m u l a t i n g i t s s o l u t i o n . In o t h e r words, a f u l l - m a t c h comparison using t h i s This work was sponsored by NSF grant no. IST-7918474 to Jane P e r l r a u t t e r and by ONR c o n t r a c t n o . N00014-78-C-0725 t o John R . A n d e r s o n . A f u l l m a t c h e r uses t h e f o l l o w i n g c r i t e r i a t o decide whether a set of i n s t a n t i a t i o n s c o n s t i t u t e s 296 a s a t i s f a c t o r y match production r u l e : to the left-hand side of a 2. Constants Students f i n d problems i n v o l v i n g the a l g e b r a i c r e l a t i o n " < " very r e m i n i s c e n t o f the " > " v e r s i o n s of those problems. In such cases p a r t i a l matches between these problems would have to v i o l a t e the f u l l - m a t c h c r i t e r i o n t h a t a c o n d i t i o n and its i n s t a n t i a t i o n c o n t a i n the same c o n s t a n t s . The u n s u i t a b i l i t y of f u l l - m a t c h c r i t e r i a (1 ) and (2) f o r p a r t i a l matching i s not c o n t r o v e r s i a l . All f o u r a l g o r i t h i m s reviewed i n [ 4 ] f o r inducing a general d e s c r i p t i o n of a concept from examples can deal w i t h these kinds of d e p a r t u r e s from a f u l l match. 1. There must be an i n s t a n t i a t i o n of each condition proposition. 2. The constants contained in a c o n d i t i o n p r o p o s i t i o n must a l s o be contained in its instantiation. 3. There should be a one-one f u n c t i o n t h a t a s s o c i a t e s each v a r i a b l e w i t h a unique binding so that all condition propositions containing that variable have instantiations containing its binding. 3. V a r i a b l e Binding Requires 1-1 Functions Imagine a person who has seen many N a t i o n a l League b a s e b a l l games, but is watching American League b a s e b a l l f o r the f i r s t t i m e . In the N a t i o n a l League, besides p l a y i n g in the f i e l d , a p i t c h e r takes h i s t u r n a t b a t ; i n the American League, however, the p i t c h e r is replaced in the b a t t i n g l i n e u p b y the designated h i t t e r . I f the b a s e b a l l fan t r i e s t o i n s t a n t i a t e h i s p a t t e r n f o r N a t i o n a l League b a s e b a l l using the l i n e u p s f o r t h i s game should he bind the v a r i a b l e V - N L p l t c h e r to the p i t c h e r or to the designated h i t t e r ? The c o r r e c t answer seems to be b o t h ; to the p i t c h e r if he is i n s t a n t i a t i n g p r o p o s i t i o n s d e s c r i b i n g the N a t i o n a l League p i t c h e r ' s r o l e i n the f i e l d , but t o the designated h i t t e r when i n s t a n t i a t i n g p r o p o s i t i o n s about the N a t i o n a l League p i t c h e r ' s r o l e as a batter. On the o t h e r hand, an American League fan watching N a t i o n a l League b a s e b a l l f o r the f i r s t time has the problem of too few p l a y e r s r a t h e r than too many. He is in the p o s i t i o n of having the same constant, NLpitcher, as the binding of two different variables, V-ALpitcher and V-ALdesighitter. 4. Each c o n d i t i o n p r o p o s i t i o n should have the "same" structure as its instantiation. In the simplest case they should have the same number of terms and corresponding terms should be in the same o r d e r . In some p r o d u c t i o n systems allowances are made f o r unequal numbers of arguments or symmetric p r e d i c a t e s ; however, the important p o i n t i s t h a t t h e r e i s never any ambiguity about whether an i n s t a n t i a t i o n has the proper s t r u c t u r a l requirements and those t h a t d o n ' t are simply unacceptable. A . F a i l u r e o f the Absolute C r i t e r i a We now examine each of these c r i t e r i a in t u r n to determine their suitability for partial m a t c h i n g . We w i l l f i n d t h a t w h i l e each c o n s t i t u t e s a w o r t h w h i l e goal f o r a p a r t i a l matcher to attempt t o achieve (so t h a t a f u l l match w i l l b e found i f one is a v a i l a b l e ) , none of these c r i t e r i a can be an a b s o l u t e requirement if we want to be able to d e t e c t the same s i m i l a r i t i e s t h a t students can detect. 1 . Every c o n d i t i o n has an i n s t a n t i a t i o n Textbooks sometimes provide more i n f o r m a t i o n in the statement of example problems than is s t r i c t l y required f o r t h e i r s o l u t i o n . This e x t r a i n f o r m a t i o n would prevent the examples from being seen as r e l e v a n t to the s o l u t i o n of e x e r c i s e problems not s h a r i n g those i n e s s e n t i a l f e a t u r e s i f w e were t o r e t a i n the f u l l - m a t c h c r i t e r i o n t h a t a l l p r o p o s i t i o n s in a problem d e s c r i p t i o n must r e c e i v e an i n s t a n t i a t i o n . 1 _b F i g . 1: &) Prove RN * OY. b) Prove R'XN' - O'XY'. Marked o b j e c t s are known to be congruent. F i g . 1 shows two problems t h a t some students can see as q u i t e s i m i l a r — F i g . 1b being j u s t an angle v e r s i o n o f the problem i n F i g . 1a. This a p p a r e n t l y r e q u i r e s t h a t a p a r t i a l matcher accept the proposition (angle VR' VX VO') as an i n s t a n t i a t i o n of the p r o p o s i t i o n (segment VR VO). That segment can be matched by angle is j u s t another example of matching one constant to another. What is more i n t e r e s t i n g is t h a t the second argument, VO, of segment must be bound to the t h i r d argument, VO/, of angle r a t h e r than to the second argument, VX. Many f u l l matchers w i l l a l l o w two v a r i a b l e s t o be bound to the same c o n s t a n t ; however, a d d i t i o n a l mechanisms are then r e q u i r e d to deal w i t h the inevitable cases where this is inappropriate. These a d d i t i o n a l mechanisms play no r o l e in p a r t i a l m a t c h i n g , so it s i m p l i f i e s the d i s c u s s i o n to make the one-one assumption. 297 DP p r e d i c a t e s . A l s o , when a v a r i a b l e such as V - N L p l t c h e r r e c e i v e s a second b i n d i n g , a l l of the p r o p o s i t i o n s mentioning t h a t v a r i a b l e , whether they a l r e a d y have a n i n s t a n t i a t i o n using the f i r s t b i n d i n g or n o t , are checked to see if they have an i n s t a n t i a t i o n using t h i s new b i n d i n g . Thus RELAX computes a l l o f the k i n d s o f mappings t h a t K l i n g claims are necessary for capturing the correspondences between s i m i l a r problems and does so using "best use" criteria which express p r e f e r e n c e s t h a t are meaningful only to a program t h a t i s aware t h a t i t has these o p t i o n s r e g a r d i n g the form o f i t s mappings. A. Best Use of the C o n d i t i o n When p a r t i a l matching the d e s c r i p t i o n of Example 1 u s i n g the d e s c r i p t i o n of Example 2 as d a t a , the v a r i a b l e V s q r 1 r e q u i r e s two b i n d i n g s so t h a t we can have both of the i n s t a n t i a t i o n s One use f o r the output from p a r t i a l matching a s e t o f c o n d i t i o n s t o a set o f data i s i n computing a g e n e r a l i z a t i o n , i . e . , a new s e t of c o n d i t i o n s which r e c e i v e s a f u l l match when i n s t a n t i a t e d by e i t h e r the o r i g i n a l c o n d i t i o n s o r the o r i g i n a l data* Since the o r i g i n a l c o n d i t i o n s and the o r i g i n a l data p l a y e n t i r e l y p a r a l l e l r o l e s i n the d e f i n i t i o n o f g e n e r a l i z a t i o n , one i s led r a t h e r n a t u r a l l y (though not Inescapably) t o the idea t h a t the output of the p a r t i a l match should not depend in any e s s e n t i a l way on which set of p r o p o s i t i o n s we c a l l data and which set we c a l l c o n d i t i o n s . In f a c t , in implementing RELAX we found t h a t t h e r e are c o m p u t a t i o n a l advantages to v i e w i n g the matching process a s searching f o r c o n d i t i o n s t o i n s t a n t i a t e data at the same time as it is searching f o r data to i n s t a n t i a t e conditions. For example, this viewpoint suggests that in addition to the requirement t h a t each i n s t a n t i a t i o n be the best a v a i l a b l e use o f i t s data p r o p o s i t i o n , t h e r e should a l s o be a complementary requirement t h a t each i n s t a n t i a t i o n b e the best a v a i l a b l e use o f i t s condition proposition. I n t h i s t h i r d (and l a s t ) o f RELAX's r e l a t i v e c r i t e r i a f o r p a r t i a l m a t c h i n g , cost is again measured i n terms o f m u l t i p l e assignments; but since i n t h i s c o n t e x t c o n d i t i o n s are thought of as instantiations of data p r o p o s i t i o n s , a m u l t i p l e assignment means t h a t a constant i n the data i s the b i n d i n g f o r more than one c o n d i t i o n v a r i a b l e . The two i n s t a n t i a t i o n s mentioned above f o r (male V - N L p l t c h e r ) are e q u a l l y good in t h i s respect s i n c e both A L p i t c h e r and A L d e s i g h i t t e r are b i n d i n g s of o n l y one v a r i a b l e ; thus both i n s t a n t i a t i o n s are p e r m i t t e d i n the p a r t i a l match. However, any attempt to get a second i n s t a n t i a t i o n f o r (male V-KLcatcher) would be ruled out by t h i s new c r i t e r i o n . These two i n s t a n t i a t i o n s are taken from Table 1 which shows the f u l l set found by RELAX. The 15 i n s t a n t i a t i o n s in Table 1 are the s u r v i v o r s of the 185 instantiations that RELAX considered in computing t h i s match. Of these 185 p a i r i n g s , 100, or 54% were r e j e c t e d by the "best use" c r i t e r i a w i t h o u t the need f o r any search at a l l . In 21 cases, p a i r i n g s which s a t i s f i e d these c r i t e r i a when f i r s t made subsequently were r e j e c t e d by them as the match proceeded and b e t t e r uses were found f o r t h e i r conditions or t h e i r data. Table 1: The set of i n s t a n t i a t i o n s found as the p a r t i a l match o f the examples i n F i g . 2 . IV SOME EXAMPLES A. A G e n e r a l i z a t i o n Example F i g . 2 shows the g e n e r a l i z a t i o n problem t h a t l e d Hayes-Roth & McDermott to be concerned w i t h multiple assignments for variables. The g e n e r a l i z a t i o n t h a t Hayes-Roth A McDerraott wanted but were unable to get SPROUTER to produce was: The demonstration t h a t t h i s p a r t i a l match w i l l lead to the c o r r e c t g e n e r a l i z a t i o n w i l l have to be postponed u n t i l a l a t e r s e c t i o n which g i v e s the d e t a i l s o f the approach taken toward d i s j u n c t i o n s . However, t h e r e are a number of t h i n g s we can say at t h i s p o i n t t o defend the view t h a t t h i s i s the There is a small square above a small c i r c l e and one of these s m a l l f i g u r e s is inside a large t r i a n g l e . 300 c o r r e c t p a r t i a l match f o r these examples. The f a c t t h a t e x a c t l y the same correspondences are obtained when Example 2 is t r e a t e d as the set of c o n d i t i o n s and Example 1 is t r e a t e d as the data provides a demonstration t h a t RELAX at l e a s t f u n c t i o n s as I n t e n d e d . However, how can correspondences such as be defended? The answer to t h i s is t h a t there is an obvious a l t e r n a t i v e to viewing F i g . 2 as two examples in need of a g e n e r a l i z a t i o n . That a l t e r n a t i v e is to see Example 1 as the s i t u a t i o n at time _t1 and Example 2 as the s i t u a t i o n at a l a t e r time t2, where the task is to c h a r a c t e r i z e the transformation that has occurred. One c h a r a c t e r i z a t i o n of the t r a n s f o r m a t i o n t h a t changes Example 1 i n t o Example 2 i s : The t r i a n g l e t h a t o r i g i n a l l y c o n t a i n s the square moves down to c o n t a i n the c i r c l e . The q u e s t i o n a b l e correspondences mentioned above have an obvious relevance f o r c h a r a c t e r i z i n g t h i s transformation. F i g . 3 : The p a r t i a l match obtained f o r the l i s t s in Table 2. Lowercase e n t r i e s are from POWERSET (COME BACK); uppercase from POWERSET (YALL COME BACK). B. A T r a n s f o r m a t i o n Example The next example comes from observations of two s u b j e c t s l e a r n i n g to program in LISP made by John R. Anderson and h i s collegues at CMU. As an e x e r c i s e in t h e i r textbook [10] these s u b j e c t s had to w r i t e a LISP f u n c t i o n to compute the powerset ( i . e . , the set o f a l l subsets) o f the set (YALL COME BACK). This problem is q u i t e d i f f i c u l t f o r novices and both s u b j e c t s had l i t t l e success u n t i l they h i t upon the r e p r e s e n t a t i o n f o r the problem shown in Table 2. Once in t h i s form, it appeared t h a t both s u b j e c t s simply d i d some p a t t e r n matching to a r r i v e at the f o l l o w i n g s o l u t i o n : POWERSET(YALL COME BACK) r e q u i r e s two copies of P0WERSET(C0ME BACK) and the second copy must have YALL CONSed onto the f r o n t o f a l l o f i t s s u b l i s t s . was given to RELAX the r e s u l t s were as shown in F i g . 3. Here each s u b l i s t was s u c c e s s f u l l y matched s t a r t i n g from the l e f t end up u n t i l the p o i n t where the YALL was encountered and also was s u c c e s s f u l l y matched s t a r t i n g from the r i g h t end u n t i l the YALL was encountered. Extending the match from the l e f t end any farther was ruled out by the b e s t - u s e - o f - t h e - d a t a and b e s t - u s e - o f - t h e - c o n d i t i o n criteria. I f the r e s u l t s o f t h i s p a r t i a l match could b e used as data by o t h e r r u l e s , then we could c o n s t r u c t a r u l e t h a t would recognize t h a t an atom had been CONSed onto each s u b l i s t because the c h a r a c t e r i s t i c t r a n s f o r m a t i o n produced by CONS is found in each case. In g e n e r a l , however, w i t h o u t some n o t i o n of a c o n s t i t u e n t , REIAX would not be able to d e t e c t o t h e r cases where a l i s t ( r a t h e r than an atom) has been CONSed onto each s u b l i s t . Thus, w h i l e REIAX f a l l s s h o r t o f accounting f o r a l l o f the p a t t e r n matching t h a t s u b j e c t s can d i s p l a y in an e x e r c i s e l i k e t h i s , it does appear to be a promising b e g i n n i n g . Table 2: The r e s u l t s of successive c a l l s to the f u n c t i o n POWERSET(L). E x c l u s i v e d i s j u n c t i o n s a r i s e i n two d i f f e r e n t ways in the process of forming g e n e r a l i z a t i o n s . What we might c a l l e x t e r n a l d i s j u n c t i o n s have t h e i r source in the f a c t t h a t f o r any set of examples e^ , . . . , _e_ there i s the logically correct, but unillumlnating, generalization or or . • . The goal of g e n e r a l i z a t i o n programs t h a t attempt to account f o r e x t e r n a l d i s j u n c t i o n s [ 7 , 11 ] is to merge as many of the as possible into c o n j u n c t i v e g e n e r a l i z a t i o n s so as to minimize the number o f d i s j u n c t s i n the r e s u l t i n g d i s j u n c t i v e normal form g e n e r a l i z a t i o n . In p a t t e r n matching terms, the need f o r one copy i s t r i v i a l — i t r e s u l t s from a f u l l match o f the sets in P0WERSET(C0ME BACK) using the sets in POWERSET(YALL COME BACK) as d a t a . The need f o r the second copy, however, r e q u i r e s a p a r t i a l match of P0WERSET(C0ME BACK) to the remaining sets in POVERSET(YALL COME BACK). When the problem of f i n d i n g t h i s p a r t i a l match 301 I n t e r n a l d i s j u n c t i o n s , by c o n t r a s t , do not emerge u n t i l a p a r t i a l match has been computed between two examples e i and ej. Then each i n s t a n t i a t i o n i n the p a r t i a l match yields the again logically unillumlnating, generalization correct, Example 1 from F i g . 2 producea a f u l l match to t h i s g e n e r a l i z a t i o n by matching the f l r a t member of every d i s j u n c t i o n , w h i l e Example 2 produces a f u l l match by matching the second member of every disjunction. In f a c t , t h e r e is a new f u l l - m a t c h c r i t e r i o n r e q u i r i n g t h a t the same p o s i t i o n be matched i n a l l d i s j u n c t i o n s i n a r u l e . Now i t should come as no s u p r i s e t h a t when p a r t i a l matching we w i l l want to v i o l a t e t h i s c r i t e r i o n and match d i f f e r e n t p o s i t i o n s or even both p o s i t i o n s of some d i s j u n c t i o n s . However, t h i s a n t i c i p a t e s an approach t o p a r t i a l matching d i s j u n c t i o n s t h a t there is i n s u f f i c i e n t space to e l a b o r a t e on h e r e . but Just as in the case of e x t e r n a l d i s j u n c t i o n s , the way to produce p l e a s i n g g e n e r a l i z a t i o n s seems to be to remove as many d i s j u n c t i o n s as p o s s i b l e . The s i m p l e s t case o f t h i s i s the r e d u c t i o n o f a l l d i s j u n c t i o n s of the form (c or c) to the s i n g l e constant £. Less obvious cases where d i s j u n c t i o n s can be removed are best understood by reference to F i g . 4a which shows a p o r t i o n of the f u l l network of b i n d i n g s t h a t can be e x t r a c t e d from Table 1. Although the natural way of viewing the p a r t i a l match found in the POWERSET example presented above is as a c h a r a c t e r i z a t i o n of the t r a n a f o r m a t i o n s r e q u i r e d to go from POWERSET(COME BACK) to POWERSET(YALL COME BACK), it is also i n f o r m a t i v e to look at the g e n e r a l i z a t i o n t h a t would r e s u l t from t h i s p a r t i a l match. F i g . 4b shows the p a t t e r n of b i n d i n g s found f o r the p a r t i a l match of the s u b l i s t (COME) to the s u b l i s t (YALL COME) and i n d i c a t e d convergences t h a t should lead to d i s j u n c t i o n s . The g e n e r a l i z a t i o n obtained f o r t h i s s u b l i s t ( i g n o r i n g the need f o r t y p e - t o k e n distinctions) is: ( b e f o r e Lparen (Come or Y a l l ) ) ( b e f o r e (Lparen or Y a l l ) Come) ( b e f o r e Come Rparen) F i g . 4: A summary of s e l e c t e d v a r i a b l e b i n d i n g s ja) from Table 1 and b) from F i g . 3. This generalization provides a disjunctive r e p r e s e n t a t i o n of the f a c t t h a t YALL ia an o p t i o n a l f i r a t element o f these l i s t s . I n the case where the YALL's are p r e s e n t , the second p o s i t i o n of every d i s j u n c t i o n is matched and the f i r a t two propositions of this generalization are i n a t a n t i a t e d by ( b e f o r e Lparen Y a l l ) and ( b e f o r e Y a l l Come), r e s p e c t i v e l y . On the o t h e r hand, when the YALL's are absent, the f i r s t p o s i t i o n o f every d i s j u n c t i o n is matched so in t h i s case these two p r o p o s i t i o n s are both i n s t a n t i a t e d by the s i n g l e p r o p o s i t i o n ( b e f o r e Lparen Come). REIAX operates on this network in order to determine a way of r e a l i z i n g each of these b i n d i n g s in a g e n e r a l i s a t i o n . The goal is to choose a d i f f e r e n t l a b e l f o r each l i n k i n t h i s network, where p o s s i b l e l a b e l s are the terms at e i t h e r end of a l i n k or the d i s j u n c t i o n of those terms. Link x in F i g . 4a receives the l a b e l Vsqr 1 because three "conditions are s a t i s f i e d : 1) Vaq2 has only one connection to the network, 2) Vaqr 1 can have the b i n d i n g Vsqr 2 in a f u l l match, and 3) the l a b e l Vsqr 1 is not a l r e a d y used as the l a b e l f o r some other l i n k . Link z r e c e i v e s the l a b e l V e r l g because these c o n d i t i o n s are a l s o s a t i s f i e d t h e r e . Link y is then forced to have the l a b e l (Vsqr 1 or V c j J 2 ) because both of i t s endpoints have a l r e a d y been used as l a b e l s . A• I m p l i c a t i o n s f o r Semantic Approaches ,f Obtaining a sensible generalization f o r t h i s problem i s important because i t helps b o l s t e r our confidence in the unorthodox correspondences made b y REIAX i n p a r t i a l matching these l i s t s . If a l e f t p a r e n t h e s i s must be matched to the atom YALL to get the c o r r e c t g e n e r a l i z a t i o n , then what about p a r t i a l - m a t c h i n g programs t h a t compare the semantic c a t e g o r i z a t i o n of terms before making assignments? Surely these two terms are s u f f i c i e n t l y d i f f e r e n t s e m a n t i c a l l y t h a t such programs should be r e l u c t a n t to see them aa c o r r e s p o n d i n g . Table 3: The g e n e r a l i z a t i o n r e s u l t i n g from the p a r t i a l match i n Table 1 . How s e r i o u s a problem t h i s poses depends l a r g e l y on whether these p a r t i a l matchers use semantic relatedness as an abeolute c r i t e r i o n or aa a r e l a t i v e one. Programs such as K l i n g ' s ZORBA [ 9 ] which make semantic relatedness an absolute c r i t e r i o n w i l l e i t h e r r e j e c t the assignement o f LPAREN to YALL or w i l l have to decrease the amount of semantic relatedneas r e q u i r e d to the p o i n t where this criterion has little ability left to d i s c r i m i n a t e u s e f u l from useless matches. On the o t h e r hand, in Winston's program [ 1 2 ] the c l o s e r REIAX produces the g e n e r a l i z a t i o n in Table 3 from the i n s t a n t i a t i o n s in Table 1. It can be seen t h a t Table 3 c o n t a i n s p r o p o s i t i o n s expressing the g e n e r a l i z a t i o n t h a t Hayes-Roth & NcDermott wanted f o r the examples o f F i g . 2 . 302 two terms are s e m a n t i c a l l y the more " p o i n t s " t h a t assignment c o n t r i b u t e s to an o v e r a l l match score which determines the best p a r t i a l match. By making semantic relatedness a r e l a t i v e c r i t e r i o n i n t h i s manner, Winston allows f o r the p o s s i b i l i t y t h a t o t h e r f a c t o r s can compensate f o r the semantic divergence of two terms. (Winston's partial matcher r e l i e s t o t a l l y on one-one mappings, so presumably there is no way f o r h i s program to produce the correct generalization for this p a r t i c u l a r example, however.) ACKNOWLEDGEMENTS The author would l i k e to acknowledge the hundreds of hours of d i s c u s s i o n t h a t he has had w i t h John R. Anderson about these t o p i c s . The l a c k of a shared consensus on these issues has, if anything, only made these discussions more v a l u a b l e . H e l p f u l comments on a previous d r a f t of this paper were also provided by G. I b a , J. P e r l m u t t e r , M. Schustack, and the IJCAI reviewers. VI THE LAST ABSOLUTE CRITERION REFERENCES Now RELAX does obey one absolute c r i t e r i o n , namely, t h a t a p r o p o s i t i o n and i t s i n s t a n t i a t i o n must have the same s t r u c t u r e . However, as was discussed above, the problem in F i g . 1]3 may be seen as a v e r s i o n of the problem in F i g . 1a using angles instead of segments. Detecting the s i m i l a r i t y of these problems r e q u i r e s t h a t the c o n d i t i o n (segment VR VO) have the i n s t a n t i a t i o n (angle VR' VX V O ' ) . To enable RELAX to f i n d the c o r r e c t p a r t i a l match f o r t h i s example we followed the lead of Hayes-Roth & McDermott ( c f . t h e i r use of SCR's) and switched to a more f i n e - g r a i n e d representation. Finer g r a i n was obtained by " e x p l o d i n g " each p r o p o s i t i o n in the d e s c r i p t i o n of these problems in such a way t h a t every l i n k in the semantic network r e p r e s e n t a t i o n of t h a t p r o p o s i t i o n i t s e l f becomes a f u l l p r o p o s i t i o n i n the exploded version. Thus (segment VR VO) becomes the set of propositions [2] [3] [4] [5] (Rel segment VsegRO) (Arg1 VR VsegRO) (Arg2 VO VsegRO). For these c o n d i t i o n p r o p o s i t i o n s , instantiations RELAX f i n d s the [6] (Rel segment VsegRO) -> (Rel angle VangR'XO') (Arg1 VR VsegRO) -> (Arg1 VR' VangR'XO') (Arg2 VO VsegRO) -> (Arg3 VO' VangR'XO'). No use is made of the data VangR'XO'). [I] [7] p r o p o s i t i o n (Arg2 VX [8] RELAX was able to c a l c u l a t e the c o r r e c t p a r t i a l match f o r the two problems in F i g . 1 when they were described i n t h i s d e t a i l . In the process, Arg2 was matched to Arg3 f i v e times and to Arg2 t h r e e t i m e s . This success suggests t h a t the r e l a t i v e c r i t e r i a o u t l i n e d i n t h i s paper are also adequate, at least in p r i n c i p l e , f o r matching different structures. However, f i n d i n g the 36 i n s t a n t i a t i o n s i n the f i n a l match required searches to evaluate 230 candidate i n s t a n t i a t i o n s . Thus it was c l e a r t h a t by recoding whole problems i n t o t h i s f i n e - g r a i n e d r e p r e s e n t a t i o n we had placed a l a r g e computational burden on REIAX. Work is in progress on d e f i n i n g p r i n c i p l e s t h a t would permit the program to switch dynamically to the more f i n e - g r a i n e d r e p r e s e n t a t i o n f o r j u s t those p o r t i o n s o f the problem d e s c r i p t i o n where i t i s r e q u i r e d . This c a p a b i l i t y would e f f e c t i v e l y f r e e RELAX from the need to rely on any absolute criteria whatsoever. [9] [10] [II] [12] 303 Anderson, J.R. Language, memory, and t h o u g h t . Lawrence Erlbaum A s s o c i a t e s , H i l l s d a l e , N . J . , 1976. Anderson, J.R. and K l i n e , P . J . A Learning System and i t s P s y c h o l o g i c a l Implications. P r o c . of 6 t h IJCAI : 1 6 - 2 1 , 1979. Anderson, J . R . , Greeno, J . G . , K l i n e , P . J . , and Neves, D.M. A c q u i s i t i o n o f Problem S o l v i n g S k i l l . I n Anderson, J . R . , e d i t o r , C o g n i t i v e S k i l l s and t h e i r A c q u i s i t i o n . Lawrence Erlbaum A s s o c , H i l l s d a l e , N . J . , 1981. D i e t t e r i c h , T.G. and M i c h a l s k i , R.S. Learning and G e n e r a l i s a t i o n of C h a r a c t e r i s t i c D e s c r i p t i o n s : E v a l u a t i o n C r i t e r i a and Comparative Review of Selected Methods. Proc. of 6 t h IJCAI : 2 2 3 - 2 3 1 , 1979. Hayes-Roth, F. and McDermott, J. Knowledge A c q u i s i t i o n from S t r u c t u r a l Descriptions. Proc. of 5 t h IJCAI :356-362, 1977. Hayes-Roth, F. and McDermott, J. An I n t e r f e r e n c e Matching Technique f o r Inducing Abstractions. CACM 2 1 ( 5 ) : 4 0 1 - 4 1 0 , 1978. I b a , G.A. Learning D i s j u n c t i v e Concepts from Examples. A . I . Memo 548, M . I . T . , S e p t . , 1979. Jurgenson, R.C., Donnelly, A . J . , Maier, J . E . , and R i s i n g , G.R. Geometry* H o u g h t o n - M i f f l i n , Boston, 1975. K l i n g , R.E. A Paradigm f o r Reasoning by Analogy. A r t i f i c i a l I n t e l l i g e n c e 2:147-178, 1971. S i k l o s s y , L. L e t ' s t a l k LISP. P r e n t i c e - H a l l , Ehglewood C l i f f s , N . J . , 1976. Vere, S.A. I n d u c t i v e Learning o f R e l a t i o n a l P r o d u c t i o n s . In Waterman, D.A. & Hayes-Roth, F., e d i t o r , P a t t e r n - D i r e c t e d I n f e r e n c e Systems. Academic Press, 1978. Winston, P.H. Learning and Reasoning by Analogy. Communications of the ACM 23(12):689-703, 1980.
© Copyright 2024