Planet disk interaction Wilhelm Kley Institut fur ¨ Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tubingen ¨ March 2015 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 2 4.1 Introduction: Planet Formation Problems Not possible to form hot Jupiters in situ - disk too hot for material to condense - not enough material Difficult to form massive planets - gap formation Eccentric and inclined orbits - planets form in flat disks (on circular orbits) But planets grow and evolve in disks: ⇒ Have a closer look at planet-disk interaction Consider Late Phase of Planet Formation: Assume protoplanets (embryos) have already been formed Investigate subsequent evolution in disk, consider gravitational interaction with star and disk W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 3 4.1 Introduction: Two main contributions 1) Spiral arms (Lindblad Torques) 2) Horseshoe region (Corotation Torques) (Kley & Nelson, ARAA, 50, 2012) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 4 4.1 Introduction: Evidence for migration many multi-planet extrasolar planetary systems high fraction in or close to a low-order mean-motion resonance (MMR) In Solar System: 3:2 between Neptune and Pluto (plutinos) Resonant capture through convergent migration process dissipative forces due to disk-planet interaction Existence of resonant systems - Clear evidence for planetary migration Hot Jupiters (Neptunes) & Kepler systems - Clear evidence for planetary migration The main Problem: Migration Speed (for Type-I and Type-II) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 5 4.1 Introduction: Torque calculation 2 approaches: a) Linearization: for low mass planets only basic state: axisymmetric disk, in Keplerian rotation, and given Σ(r ) add planet potential as a small disturbance of planet linearize equations calculate new (perturbed) disk structure calculate torque acting on planet b) Non-linear: for all planet masses full non-linear hydrodynamical evolution of embedded planets in disks Will not go into details of these methods but just quote the main results W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 6 4.1 Introduction: Torques and migration Angular momentum of planet (z-direction) Jp = (mruϕ )|p = mp rp2 Ωp (1) change in time by torques (z-component) acting on the planet J˙ p = Γp (2) Γp is calculated over the whole disk Z Z Z ~ ) df = Γp = − Σ(~rp × F Σ(~rp × ∇ψp ) df = disk disk disk Σ ∂ψp df (3) ∂ϕ ⇒ Migration Timescale τM Γp 1 drP 1 = = 2 rP dt τM JP (4) Compare τm to evolution of disk W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 7 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 8 4.2 Type I: Γtot = 2π R Lindblad torque: radial torque density dΓ (r ) Σ(r ) rdr dm 0.08 isothermal adiabatic: γ = 1.40 adiabatic: γ = 1.01 0.06 0.04 dΓ/dm / (dΓ/dm)0 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 W. Kley -4 Planet Formation, -3 -2 -1 0 (r-ap)/H 1 Planet-disk interaction, 45th Saas-Fee Lectures, 2015 2 3 4 9 4.2 Type I: The linear Torque Results for a locally isothermal disk. Fixed T (r )). Torque on the planet: (for lower mass planets, a few M⊕ ) 3D analytical (Tanaka et al. 2002) and numerical (D’Angelo & Lubow, 2010) Γtot = −(1.36 + 0.62βΣ + 0.43βT ) Γ0 . (5) where Σ(r ) = Σ0 r −βΣ and T (r ) = T0 r −βT (6) Σp rp2 rp2 Ω2p , (7) and normalisation Γ0 = mp M∗ ⇒ Migration 2 H rp −2 J˙ p = Γtot ⇒ a˙ p Γtot =2 ap Jp (8) Classic Type I migration: Inward and fast Too fast to be in agreement with observations (see lecture 5) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 10 4.2 Type I: Torque Saturation 2D hydro-simulations: - small mass - inviscid Total torque vs. time - isothermal - adiabatic Result: Torques are positive initially and then diminish with time and settle to the Lindblad torques (from spirals) That means: Corotation torques decline = saturate How to maintain the full corotation torques ? W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 11 4.2 Type I: Torque Saturation How to prevent corotation-torque saturation ? From linear analysis: Corotation torque depends on the radial gradients of the entropy, S, and vortensity ω ˜ where the vortensity is defined as: ω ˜ = ωz (∇ × ~u )|z = Σ Σ (9) Now: For inviscid and barotropic (p = p(ρ)) flows: d ωz =0 dt Σ and dS =0 dt (10) These quantities are constant along streamlines. Initial gradients (in S and ω ˜ ) are wiped out in the corotation region =⇒ Need mechanism to maintain gradients These are viscosity and radiative diffusion (or cooling) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 12 4.2 Type I: Saturation - Origin Red and Blue Orbits have different periods ⇒ Phase mixing (F. Masset) (Balmforth & Korycanski) W. Kley Planet Formation, 3D radiative disk (B. Bitsch) Planet-disk interaction, 45th Saas-Fee Lectures, 2015 13 4.2 Type I: Disk physics dΣcv T ~ + ∇ · (Σcv T u) = −p∇ · u +D − Q −2H∇ · F dt Adiabatic: Pressure Work, Viscous heating (D), radiative cooling (Q) radiative Diffusion: in disk plane (realistic opacities) 4e-05 local cool/heat Mp = 20Mearth (Kley&Crida ’08) Specific Torque [(a2 Ω2)Jup] 3e-05 2e-05 fully radiative Disk Physics determines Direction of motion 1e-05 0 adiabatic -1e-05 see also: ( Paardekooper&Mellema ’06 Baruteau&Masset ’08 Paardekooper&Papaloizou ’08) -2e-05 isothermal -3e-05 -4e-05 0 100 200 300 Time [Orbits] W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 14 4.2 Type I: Role of viscosity Total torque vs. viscosity: in viscous α-disk 2D radiative model - in equilibrium Efficiency depends of ratio of timescales τvisc /τlibrat τrad /τlibrat Local disk properties matter (Kley & Nelson 2012) ⇒ Need viscosity to prevent saturation ! W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 15 4.2 Type I: Mass dependence Isothermal and radiative models. Outward migration for Mp ≤ 40 MEarth Vary Mp (Kley & Crida 2008) In full 3D (Kley ea 2009) With irradition: (Bitsch ea. 2012) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 16 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 17 4.3 Type II: Gap formation: Type I ⇒ Type II Mp Mp Mp Mp Mp = 0.01 MJup = 0.03 MJup = 0.1 MJup = 0.3 MJup = 1.0 MJup Depth depends on: - Mp - Viscosity - Temperature Torques reduced : Migration slows Type I ⇒ Type II linear ⇒ non-linear W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 18 4.3 Type II: Gap opening criteria Thermal condition Hill sphere RH = rp (q/3)1/3 comparable/larger than disk scale height H with q = mp /M∗ q≥3 H r 3 = 3hp3 (11) p with a disk aspect ratio h = 0.05: q ≥ 1.25 · 10−4 , or mp ≥ 0.13mJup Viscous condition Viscosity tends to close gap against gap opening torques. From impulse approximation (Lecture 3) we find q ≥ 30παh2 (12) with h = 0.05 and α = 10−2 : q ≥ 2.4 · 10−3 , or mp ≥ 2.5mJup W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 19 4.3 Type II: A combined gap opening criterion Using 2D hydrodynamical viscous disk simulations, (Crida ea. 2006) find gap opening (minimum density within gap smaller 1/10 ambient density) for P= 3 H 50 + ≤1 4 RH qRe (13) with the Reynoldsnumber Re = Ωp rp2 /ν. In type II regime the planet remains in the middle of the gap which moves with the disk. The disk evolves on a viscous timescale and the planet will move with the same timescale τmig,II = τvisc = rp2 rp2 1 = = ν αcs H αh2 Ωp (14) Question: How well is this assumption really satisfied? W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 20 4.3 Type II: New simulations 2D hydro simulations, with net mass flow through the disk. Planet migrates ˙ disk . Black dot: planet at r = 0.7r0 . in disk. Different colours ≡ different M Compare migration rate to the viscous speed. Can be smaller/larger than ˙ = 10−7 M⊕ /yr. viscous speed. ΣS : reference density for M 20.0 10.0 aP uvisc r 5.0 0.02SS 0.05SS 0.10SS 0.20SS 0.50SS 1.00SS 2.00SS 2.0 1.0 0.5 0.2 0.1 (Durmann & Kley, 2015) ¨ W. Kley Planet Formation, 0.2 0.5 SP a2P MJ 1.0 Planet-disk interaction, 45th Saas-Fee Lectures, 2015 2.0 5.0 21 4.3 Type II: The migration process Result implies that during the migration process material can cross the gap and is transferred from one side to the other W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 22 4.3 Type II: Evidence gap formation Moon (S/2005 S1) in Keeler Gap, Cassini (1. May 2005) Gap width ≈ 40 km, Moon-diameter ≈ 7 km) Here: very clean gap, no pressure, no viscosity W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 23 4.4 Type III: Type-III migration principle Stationary Planet Migrating Planet (F. Masset, 2002) Inner material crosses horseshoe region: gains ang.mom. Planet looses ang.mom. −→ Runaway Need massive disk and large radii (Masset & Papaloizou, 2003; P. Artymowicz) Here inward, but outward same argument. W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 24 4.4 Type III: Regime (Masset & Papaloizou, 2003) Need massive disk and large radii. W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 25 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 26 Turbulent disks 4.5 Stochastic: self-gravitating disk MRI turbulent disk (M. Flock) (G. Lodato) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 27 4.5 Stochastic: Planets in turbulent disks Disks are MHD turbulent and embedded planets will feel random (stochastic) perturbations due to the density fluctuations. Analyze impact on migration planet with mp = 10Mearth in unstratified turbulent disk with H/r = 0.05 ~ and toroidal B-field plasma-β = pgas /pmag = 50 with effective α = 0.01 (R. Nelson) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 28 4.5 Stochastic: Planets in turbulent disks evolution of semi-major axis smooth lines show migration in equivalent laminar disks On very long time scales similar to laminar cases (R. Nelson) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 29 Organisation 4. Planet-Disk: Lecture overview: 4.1 Introduction 4.2 Type I 4.3 Type II 4.4 Type III 4.5 Stochastic 4.6 Elements (ESO April 2010: Turning Planetary Theory Upside Down) W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 30 Planets on eccentric Orbits 4.6 Elements: Torque on planet due to disk Z Tdisk = − disk Power: Energy loss of planet Z ~ df ~r˙p · F Pdisk = ~ ) df (~r × F 1 z disk e0 = 0.00 e0 = 0.02 e0 = 0.05 e0 = 0.10 e0 = 0.15 e0 = 0.20 e0 = 0.30 0.8 0.6 0.4 Torque 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 10 10.5 Lp = mp 11 Time [Orbits] p GM∗ a 11.5 p 1 − e2 12 Ep = − L˙ p 1 a˙ e2 e˙ Tdisk = − = Lp 2a 1 − e2 e Lp W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 1 GM∗ mp 2 a E˙ p a˙ Pdisk = = Ep a Ep 31 4.6 Elements: Eccentric planets in 3D radiative disks Vary Planet Mass 10 − 200MEarth - Fixed e0 = 0.40 Planet mass Mp = 20MEarth - Vary Eccentricity 10 0.45 0.45 e0=0.0 e0=0.05 e0=0.10 e0=0.15 e0=0.20 e0=0.25 e0=0.30 e0=0.35 e0=0.40 eccentricity 0.35 0.3 0.25 0.2 20 MEarth 30 MEarth 50 MEarth 80 MEarth 100 MEarth 200 MEarth 0.4 0.35 eccentricity 0.4 0.15 0.3 0.25 0.2 0.15 0.1 0.1 0.05 0.05 0 0 0 50 100 150 200 250 0 Time [Orbits] 50 100 150 200 time [Orbits] (Bitsch & Kley 2010) • e-damping for all planet masses. Small e: exponential damping, large e: e˙ ∝ e−2 • Damping timescale: ≈ (H/r )2 shorter than migration time W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 32 4.6 Elements: Inlined planets in 3D radiative disks Vary Planet Mass 20 − 100MEarth - Same i0 = 4deg Fix planet mass Mp = 20MEarth - Vary initial Inclination 4.5 i(t) for a 20 Earth-mass planet 10 3.5 Inclination i (degrees) 8 20 MEarth 25 MEarth 30 MEarth 35 MEarth 40 MEarth 50 MEarth 80 MEarth 100 MEarth 4 i0 = 2o i0 = 5o i0 = 10o i2 di/dt = C 6 4 3 2.5 2 1.5 1 2 0.5 0 0 0 100 200 300 t (orbits) 400 500 0 50 100 150 200 Time [Orbits] (Cresswell ea 2007; Bitsch&Kley 2011) • i-damping for all planet masses. Small i: exponential damping, large i: i˙ ∝ i −2 • Damping timescale: ≈ (H/r )2 shorter than migration time Planets are confined to the disk midplane and are on circular orbits W. Kley Planet Formation, Planet-disk interaction, 45th Saas-Fee Lectures, 2015 33
© Copyright 2025