, 3 1(2001) Korean Journal of Agricultural and Forest Meteorology, Vol. 3, No. 1, (2001), pp. 5~15 Landsat TM 112 13 , 2, 3 (2000 11 6 ) 1 Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area Suk-Young Hong1, Sang-Kyu Rim1, Kyu-Sung Lee2, In-Sang Jo1 and Kil-Ung Kim3 National Institute of Agricultural Science and Technology (NIAST) Inha University, Kyungpook National University (Manuscript received 16 November 2000) ABSTRACT For estimating paddy field area with Landsat TM images, two dates, May 31, 1991 (transplanting stage) and August 19, 1991 (heading stage) were selected by the data analysis of digital numbers considering rice cropping calendar. Four different estimating methods (1) rule-based classification method, (2) supervised classification(maximum likelihood), (3) unsupervised classification (ISODATA, No. of class:15), (4) unsupervised classification (ISODATA, No. of class:20) were examined. Paddy field area was estimated to 7291.19 ha by non-classification method. In comparison with topographical map (1:25,000), accuracy for paddy field area was 92%. A new image stacked by 10 layers, Landsat TM band 3, 4, 5, RVI, and wetness in May 31, 1991 and August 19, 1991 was made to estimate paddy field area by both supervised and unsupervised classification method. Paddy field was classified to 9100.98 ha by supervised classification. Error matrix showed 97.2% overall accuracy for training samples. Accuracy compared with topographical map was 95%. Unsupervised classifications by ISODATA using principal axis. Paddy field area by two different classification number of criteria were 6663.60 ha and 5704.56 ha and accuracy compared with topographical map was 87% and 82%. Irrespective of the estimating methods, paddy fields were discriminated very well by using two-date Landsat TM images in May 31, 1991 (transplanting stage) and August 19, 1991 (heading stage). Among estimation methods, rule-based classification method was the easiest to analyze and fast to process. Key words : Landsat TM imagery, estimation of rice-planted area, rule-based classification, supervised classification, unsupervised classification I. PQ L"#* 60.6% R#3. J; 56S T 78. , FG UV W$X YZ[, #. , , , ! "#$ %& ' () * +, -./ 012 3. 4 , 56 * 78 -9 01. :; < \], (U^_ `UV, "ab, c]de f#. #. gh "i j k; lmBS nUV o& '3(p j, 1994). q "#AB N> Lr78* UsS c#t = >?@ AB >?.C DE FG.3. * -au , 78>? v, ]6=>? EHI* JAB; 1,157,306 ha(98K LMN>)O v j* Lrw x$ yG Uz {l.U Corresponding Author : Suk-Young Hong(syhong@rda.go.kr) 6 Korean Journal of Agricultural and Forest Meteorology, Vol. 3, No. 1 .| Qv L8 t$ DK Z}.& ' nA, Ü8 S5A, ¾,A, X&A ÙÇ +\% 3(www.naqs.go.kr). ~, PQ* "# q# - 1:25,000 #áX UâO ÊßXã(NJ52-13-04- S , A O S # 2 ha 3)$ Ý. ä; ; 2# (Ý2)O UO 1,015* 5O × .&, × Uª å |ºU* S O .| d} : l ¤ 'æ©O Á# O ¾ 10O ` , .| .Ï3. PÆAB; 15,534.7 ha&, pixel u 37 .| q# eZ}.& '3. line __ 373@ 4643. t} U; ; # ¡¢£¤ '& × AB J* 3FU «çs} }¥ e.| Z}. :$ ¦ ¦§B 5 Zè<$ * éêUs«»(rule-based ?¨¤ '©O, !¦O L"# 01 classification) .Ï& ¹ Ã@ t} Á .& <7* lª«+ .U f¬O k; $ ÙsBO }%& ' ië«»¬(supervised , '3. J; #®¯`u °.| ±²@ classification) ìië«»¬(unsupervised classifi- 8`²³u ´; ®eµ* (source)@ !,(sink) cation)* Ã@u ¦§.Ï3. * ]¶O .©O ®eµ* l=@ ³¦ >8.U .| t} U ·¸/ %& 2.1. '3. ¹ºH, q %& ' «»¬; «»¼ JAB íî$ } Landsat-5 TM ½* ¾ ¿°(training data) À f¬@ path 116, row 34O ÁX 3ï# ×* Á$ ÂI 3³ ) Ã@ HÄÅ3. 4, Uª F$ ðñò :O Ñ 6U3(Table ()Æ* ">Ç$ È. `³ ~, ÉÊ`³(mixed 1). Landsat 5ó 1984K 3ô 1Ù õ}%æ&, &X pixel; mixel) «».U Ë3. 705 km, sö5U 16Ù, lª)V 30 m, 7* Tennakoon j(1992); Landsat TM ÌÍ 1, 3, 4, 5 ÷ø ùQ* 3. Î(EX¬(maximum likelihood)O 90% * -XO J «».Ï3. Raou Rao(1987); 2.2. ÐUu Î(7,U Ñ>[ J «.C !, northing@ eastingOÇ¢ #)Uâ* #X .Ï3. Panigrahy and Panihar(1992); FªBW ú(û±ïücï¬) >8.Ï&(image to map ¾(S Landsat TM ÌÍ 5u 7 J \$ ' registration), 3î$ `)(image)$ #)Uâ* «»-X ÒS3& .Ï3. Okamoto u È >8.Ï3(image to image registration). #X Fukuhara(1996) Landsat TM * _ ÉÊ`³ ú(Xi, Yi, i=1,n)u `)ú(Pi, Li, i=1,n) (mixel)$ n J* Ó$ ( AB¦ .| affine ýþ<(< 1)* >(aÚf) >8.Ï3. .| J .Ï3. Y(1998); ÐUu U, ÑU Landsat TM .| J .| J* >[ #A ®Xu c] ÔÕaÖ3. Á$ ×* 7Ø .| × P = a b X + c L d e Y f (1) <$ > #)Uâ* #Xúu ýþ %& ' J «.&, ¹ Ã@ t} Á$ ÙsBO }%& ' «»U¬@ ¦§. : ½BO .& '3. Table 1. Satellite data used Satellite/Sensor Path-Row Date Landsat/TM 116-34 May 31, 1991 Landsat/TM 116-34 Jun. 2, 1992 Landsat/TM 116-34 Aug. 19, 1991 52' 30''(177424.0 mÚ Landsat/TM 116-34 Sep. 1, 1996 188584.0 m), Û 36 45' 00''Ú36 52' 30''$ È Landsat/TM 116-34 Sep. 12, 1994 Ü8 ÙtO Ý EÞA, Êß, àA, Landsat/TM 116-34 Sep. 27, 1988 II. " 126 o 45' 00''Ú126 o o o Hong et al.: Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area 7 * #Xúu* gRÿÊ(RMS:root mean square) C¢ &, 3î SAS N>#O «8« * $º γ # Ã% γÿ¬$ (ANOVA).Ï3(p, 1994). ¹ Ã@, × AB * #C, ¹ gR 0.5 `³(15 m) $ BÊ a »u U Ã.Ï3. Ð %X .| Î(nearest neighborhood)¬O S 5ô(1991K)@ US 8ô(1991K) Ñ U$ .Ï3. ÐU$ )O Æ()* HÄ Landsat TM ÌÍ 5, U$ ì * 2.3. GPS HÄ RVI, 4 Ñ U* X R .| __* Ó@ âR , >Ó Ý Êß EÞA Ùt* J(29y#)* AB .U 8XO HÄæ3. , Á# ; Ù GPS }.| &Q@ Q * 5ô@ 8ô Ñ Uª ý` ÔÕaU .| Ñ #* #ú $ , &Q* tasseled cap transformation .| UÓ(brightness), Èu e{* #ú ¦§.| gRÈ 8. X(greenness), X(wetness) .| Ñ `) &, }.| Q* È a. trans- ¦§.Ï3(ERDAS, 1997). location positioning f<O )(.| í a ÐS 5ô 31Ù Landsat TM ÌÍ 5* J# .Ï3. ú û±ïücï¬O ýþ.Ï& Î Ó* ( +2 âR) >ÓO a Ã@ 0Ù; dxfO 7.| * `)$ 3 &, US 8ô 19Ù* RVI (!2 â F .| U J* «çs} Z}.C R) a3 ", Ñ Uª X* R Uâ .Ï3. , GPS .| ò J $ O ( -2 âR) a3 # Zè $ Ý% # * Landsat TM Ó(data file value)* ä JO .Ï3. 3î$ %3# Æ() & Ó$ (.| «8«¬(method in analysis of µ.| × AB #X æ3(Fig. 1). variance; ANOVA) .| U (6U) «çs } .Ï3. 2.4. 2.4.1. (rulebased classification) GPS .| ¨ 29y#* J# AB feature 6U* Landsat TM `)$ F .| __ Ó Z}.Ï&, 4 Ù #* RVI (ratio vegetation index)u X(wetness) .Ï 3(Table 2). J* U «çs} R Z} .U , ! J# * Landsat TM ÌÍ 1, 2, 3, 4, 5, 6, 7 * Ó, RVI, XO Fig. 1. Flow chart for extracting paddy field area with the spectral characteristics of biseasonal Landsat TM data. Table 2. Vegetation indicies used in this study Vegetation Index Formula Ratio Vegetation Index RVI TM band 4TM band 3 Tasseled Cap Transformation (Kauth and Thomas, 1976;ERDAS, 1997) Brightness0.3037TM10.2793TM20.4743TM3 0.5585TM40.5082TM50.1863TM7 Greenness-0.2848TM10.2435TM20.5436TM3 0.7243TM40.0840TM50.1800TM7 Wetness0.1509TM10.1973TM20.3279TM3 0.3406TM40.7112TM50.4572TM7 8 Korean Journal of Agricultural and Forest Meteorology, Vol. 3, No. 1 2.4.2. 8ô 19Ù 0.231, 1996K 9ô 1Ù 0.396, 1994K 9 t} Á$ ÙsBO }%& ' `) ô 12Ù 0.239, 1988K 9ô 27Ù 0.249Ï3. u «»¬$ 1991K 5ô 31Ù(ÐU)@ 8ô 19Ù( ´ U.aò `) J* «çs} «, A U)* Landsat TM ÌÍ(band) 3, 4, 5, RVI, B O .Ï3. X __ F .| 7 10 'O ò `) %æ&, «»¼½; J, 2, , 3.2. #$ %& '() X, (½ ), &, SlZ jO .Ï3. JAB $ BÊ ÌÍ ¾.U .| ië«» ù#* `³ «»¤ «»¼½ « Landsat TM P ÌÍ* Ó(data file value) çs} ** «8@ l«8 Ñ BO @ RVI X(wetness)O HÄÅ J # * . - «»f¬S Î(EX¬ .Ï&, « U «çs} ÔÕaÖ3(Table 3). ç¾ »¼½ Ã.U .| Ó* «+* $ U (* TM ÌÍ 1, 2, 3* J# Ó; ã z.| ¦+ ,* ¹-O H. ³u üO56Íu ´; < ³$ * ç7 ¦§} «» ISODATA¬ .| «»¼½ _ u ° 8 á Î(S 8ô 19Ù@ 9ô _ 20u 15O .| /ºµ¢£.Ï3. , «» 1Ù$ , 9Ü:3 j;US 9ô F.n$ 3 0; ý , # 5«0(principal axis) ÒÜ:3. Fª BW¾(* TM ÌÍ 5u 7; «$ .Ï&, âR 2.0, Î( sö 251, 2 <iC, )O Æ(:open water body)* >Ó(threshold); 0.95O .Ï3. ñ= >? 5ô 31Ù@ 6ô 2Ù* Ó , 9/ HÄ@&, ÎU$ ;UO A III. < Æ «\ A Ó ÒÜ: 3. 4 BW¾(* TM ÌÍ 4 < Æ 7Ø 3.1. ; !" $ B .# C 0,ñ O ì 8 U.a; #)Uâ(ground control point) ô 19Ù@ 9ô 1Ù* Ó , ÒÖ3. , .| affine ýþ .ÏC, EHI$ } RVI(ratio vegetation index ; TM4/TM3) .& ' Aú Æ>S û±ïücï¬* FÇt `US 8ô 19Ù@ 9ô 1Ù$ , ÒÖ& X }.Ï3. (wetness) ×* 7Ø zU$ ;UO D > !, 1:50,000 #áX )$ Î 19* #)Uâ ¾3 1992K 6ô 2Ù ð E 9Ü:3. Ã@ c(O E¾ )O 3F ñ Landsat TM* Ù # . #X ( #A ()Æu ¦§B GH «% ÐUS 5 `) j.| RMS(root mean square) $º 1 ô 31Ù@ á , Ñͺ U 8ô `³ $ X .Ï3. H4# `); Uâ 19Ù, Ñ U ¾3I3. 4 «$ <i ÐU O `) ( `) j.| RMS $º 0.5 `³ * TM 5, * J B sñ. U* RVI, $ X .Ï3. 1992K 6ô 2Ù * RMS 4 ÌÍ +\ò ÐUu U* $º 0.692Ï&, 1991K 5ô 31Ù 0.211, 1991K X JAB aO .UO .Ï3. Table 3. Spectral characteristics on Landsat TM bands, RVI, and wetness at paddy fields in different dates Date TM1 TM2 May 31 112.23 a1) 51.86 Jun. 2 103.98 Aug. 19 77.52 Sep. 1 Sep. 12 Sep. 27 1) TM3 a 58.89 TM4 TM5 TM6 TM7 RVI Wetness a 48.18 d 30.11 d 157.87 b 14.85 d 0.818 d 34.28 a b 48.40 b 55.20 b 48.17 d 30.53 d 165.15 a 14.75 d 0.872 d 30.89 b 146.70 c 19.39 c 4.080 a 10.31 c 12.20 c d 33.66 e 28.21 f 114.00 b 64.61 c 69.86 f 31.59 f 32.07 e 128.41 a 70.35 b 129.05 d 18.31 c 4.064 a 72.46 e 35.02 d 35.04 d 101.03 c 68.88 e 125.78 e 22.22 b 2.937 b 5.07 d 80.47 c 43.73 c 75.95 f 25.63 f 26.50 a 2.269 c 4.83 d c 45.71 c 102.61 Duncan's multiple range test, ***=p<0.001 Hong et al.: Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area 9 Fig. 2. Relations between data file values of wetness, TM 5, and RVI (TM4/TM3) in each paddy field taken as polygon features by GPS in May 31 and August 19, 1991. Fig. 3. Applications of tasseled cap algorithm for change detected area between May 31 and August 19, 1991, in terms of brightness, greenness, and wetness. u ´ J* U «çs}$ Uz.| # highlight ò Ç« ý`ò Ç«3. N; JAB $ BÊ Uu ÌÍ ¾. @ O Ç« 5ô 31Ù* Þ Ç«& $ GPS .| À; 29 y#* J# $ P(cyan)O a Ç« 8ô 19Ù* Ý. 5ô 31Ù@ 8ô 19Ù* TM 5, RVI, Þ Ç«3. 2 # ; 5ô$ Q &, J # X __ 8XO HÄæ3(Fig. 2). 1991K ; 8ô Q / HÄ@3. X 8ô ôj9 5ô 31Ù* X 22Ú43 KO 34.27æ ÞC 2 ÙÇ$ 5ô* Q Ò/ HÄ@ &, TM 5 19Ú44 KO 30.10æ" 3. 5ô$ ·O RÜH Sã «+. RVI 1 .Ï3. 8ô 19Ù* X 5Ú13 K # O 7_ò3. X J 6% 5 O 10.62 Ï&, RVI 3.7Ú4.8 KO ô O Töò 8ô$ ¦ ÑÍ 4.08æ3. º : U 'æ3. , X, 5V# ý` 5ô@ 8ô* Landsat TM `)* J ÔÕaU V* M :O HÄ@3. W X# F __ UÓ(brightness), X(green- X ÑUª J# * ý` , «Y./ ness), X(wetness) ()O ý` i# :S HÄZ©O JAB [\'O ¾3 C(Fig. 3), L/ Hį Ç«; ý` M& .Ï3. 10 Korean Journal of Agricultural and Forest Meteorology, Vol. 3, No. 1 Fig. 4. Paddy field area extracted by biseasonal Landsat TM image. 3.3. * ! 3.3.1. (rule-based classification) Table 4. Paddy field area in study site and accuracy assessed by topomap ]* Ã@u ´ J* U «çs}$ Uz Extraction Methods .| ÐU$ × # Æ()O HÄH& * ÎU* RVI Ò; Zè $. (Fig. 1)$ ÂI × # .& Fig. 4u ´ JAB .Ï3. 1991K 5ô 31Ù Landsat TM t ^_@ « 1) Ã@O À JAB #X HÄÅ3. U* 2) Paddy field Accuracy area (ha) (%) a) Rule-based classification 7291.19 92 b) Supervised classification 9100.98 95 c) Unsupervised classification 11) 6663.60 87 d) Unsupervised classification 22) 5704.56 82 No. of class = 15 No. of class = 20 Landsat TM .| xI? Î(EX¬$ * ië«» Ã@u ¦§ U ( J`$ -S.Ï3. ¹ Ã@ 92# JO, 8# J {.# Cî), LO* ¾Z ab GHI& Ün :O HÄH 92%* -X aÏ3(Table XOX ¾Y./ ͺ@3. LO Ou ´ c 4). ¹ºH, LoÃ@ J Ün # O Hį # ù¢ d$ %# C :; e{ ^e U 30 X ¹ R V* 1`³ S "E kÖ&, m 30 mS "E$ .U f3. ; (ÆO 2u S J# X V* 01% :O HÄ@3. J@ gS ÉÊ`³(mixel; mixed pixel)O H u ´; éêUs«»$ * J# * 01; ¦ ÄH «» -X 9 U* Î(E §B -.& q '©O, >Ó$ ( | X¬O «» "E, ( # XO ¾ZO H º «2$* 3_BS Lc , p&q` Ä@3. sA, Ñ U* J* «çs}$ Uz ` r$ (.| {&¤ yG '3& 7_3. Zè< .A JAB $ I? Ó * >Ó h.| ÎB* AB ¤ '3 , ' :O 7_ò3. 3.3.2. (supervised classification) §} ¦§} «»$ * JAB J* «çs}$ * ¾3ò 1991K 5ô 31 éêUs«»$ * × AB f¬$ ( Ù@ 8ô 19Ù Ñ U* Landsat TM ÌÍ 3, 4, -X L .| i#Ä!(digitizer) . 5, RVI X __ drÌÍO ¾.| F | Á# Xã(1992K {))$ J # E s 10* ÌÍ ·Ot `) 7.| (jkl)O m& 100C .| ò × «»$ .Ï3. # $ F .| JO -./ %æ# Î(EX¬$ * ië«» J +\ 7 Hong et al.: Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area 11 Table 5. Mean and standard deviation of training samples for supervised classification Training samples Paddy Forest Water 59.13 38.71 55.73 City Bush+ upland Village 74.43 44.98 63.82 Bands Band* 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 Band 10 Mean Manmade 90.33 Std 7.1 1.7 4.2 11.7 8.8 4.6 20.9 Mean 51.60 70.49 25.03 81.71 110.68 67.41 100.83 Std 8.9 4.8 2.1 9.5 10.4 5.2 12.1 Mean 22.60 61.25 10.05 91.96 92.85 153.98 Std 6.0 4.1 1.2 15.0 13.3 34.7 Mean 0.86 1.81 0.45 1.10 2.56 1.07 1.11 Std 0.1 0.1 0.06 0.2 0.6 0.09 0.2 Mean 42.12 4.07 43.60 0.03 2.72 0.26 0.02 Std 5.2 2.7 2.5 0.3 3.3 1.2 0.1 Mean 28.07 33.75 34.29 55.48 30.64 45.82 55.58 116.60 18.3 Std 1.0 10.0 1.9 12.8 3.8 6.9 15.8 Mean 119.23 73.12 27.75 84.88 95.88 92.00 90.35 Std 4.2 10.14 1.16 13.4 10.3 8.5 7.89 Mean 66.55 55.77 9.67 100.06 78.49 93.48 116.15 Std 3.1 14.0 1.3 20.6 10.0 10.3 28.5 Mean 4.25 2.21 0.81 1.59 3.10 2.26 1.75 Std 0.2 0.2 0.04 0.5 0.5 0.7 0.7 Mean 12.10 7.97 32.08 0.10 0.39 0.26 0.29 Std 2.1 4.3 2.0 0.5 1.1 1.3 1.2 *Band 1=Band 3 of May 31, 1991, Band 2=Band 4 of May 31, 1991, Band 3=Band 5 of May 31, 1991, Band 4=RVI of May 31, 1991, Band 5=Wetness of May 31, 1991, Band 6=Band 3 of August 19, 1991, Band 7=Band 4 of August 19, 1991, Band 8=Band 5 of August 19, 1991, Band 9=RVI of August 19, 1991, Band 10=Wetness of August 19, 1991. * «»¼½$ ( ÌÍ Ó@ âR @ ½# X &y#O Ìͪ [(Ó* R ' Table 5$ HÄæ3. J; 1991K 5ô 31Ù Land- % "=; V* ´ÖH, 1991K 8ô 19Ù* X sat TM ÌÍ 5(band 3)u X(band 5)$ (band 10) Ó; R / HÄ@3. {W 3F «»¼½@ GH %æ&, 1991K u ´ ¾ò «»¼½ c(O Î(EX¬ 8ô 19Ù * TM ÌÍ 4(band 7)u RVI(band 9) $ * «» x %(Fig. 5) ¹ Ã@$ ( $ , Ò; Ó HÄ J «$ # ¤ -X L error matrixO HÄæ3(Table 6). .Ï :O 7_ò3. 2 PsBO J* « Á# AB ¦§B # C& #á@ #½ çs}@ ¦+ "= aH 5ô 31Ù* n O «»-X Ò/ HÄ@3. 9 RVI(band 4)Ó@ X(band 5) Ó$ B ò3. «»-X J, 2, ; 100%Ï&, Xu# ; 5ô 31Ù* "E J@ ¦+ #H 91.8%, x#* ) ½# 97.4%, v 8ô 19Ù* TM ÌÍ 4(band 8), RVI(band 9), 85.2%, SlZ 92.3%O HÄ@3. -X X(band 10)$ GH «ò3. Xu#u v ¦§B 9/ Hį v; `³* 15% X SlZ * «çs}; [(Ó* R Xu#O «»%æ3. PÆ* «»-X 97.2% ' w ´; "= aS3. 2# @ x#* ) Ï3. 12 Korean Journal of Agricultural and Forest Meteorology, Vol. 3, No. 1 Fig. 5. Paddy field area extracted by four different methods. 3.3.3. (unsupervisedclassification) Ï&, 20O "E 6¼½, 5704.56 ha JO Clustering «»0O ý , # 5 ¾.Ï3. «0(principal axis)O ISODATA¬ .| 3.3.4. !"# "# «»¼½ __ 20¼½, 15¼½O ¦§} «». éêUs«», §} ¦§} «»¬O ò Ï3(Fig. 5). «»ò ¼½ F J k +\. × # ; Fig. 5u ´&, AB@ #áX)* ¼½ ¾.& H4# ù#* ¼½$ (X BÊ J# -X Table 4u ´3. Î(EX .3& 7_% ¼½ Ç|.Ï3. «»¼½ 15 ¬$ * ië«» Ã@ × # 9100.98 ha O "E 3 ¼½, 6663.60 ha JO ¾. O , / %æ&, 3î éêUs«», «»¼ Hong et al.: Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area (Unit:Pixel) Table 6. Error matrix resulting from classifying training set pixels Paddy Paddy Forest 92 (100) 0 (0) 13 Forest Water 0 (0) 0 (0) 0 (0) City Bush+Upland 0 (0) 0 Village (0) Man-made 0 (0) 69(100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) Water 0 (0) 0 (0) 260(100) 0 (0) 0 (0) 0 (0) 0 (0) City 0 (0) 0 (0) 0 (0) 111(91.8) 3 (2.6) 4 (14.8) 3 (5.8) Bush+Upland 0 (0) 0 (0) 0 (0) 4 (3.3) 114 (97.4) 0 1 (1.9) Village 0 (0) 0 (0) 0 (0) 1 (0.8) 0 (0) Man-made 0 (0) 0 0 (0) 5 (4.1) 0 (0) 260 (100) 121 (100) 117 (100) Total 92 (100) (0) 69 (100) (0) 23 (85.2) 0 0 (0) (0) 48 (92.3) 27 (100) 52 (100) Overall accuracy = (92 + 69 + 260 + 111 + 114 + 23 + 48)/738 = 97.2% Table 7. Paddy field area extracted by four different methods in Woogang-myeon Methods for paddy area extraction 1) 2) 3) Paddy field area extracted (ha) Difference from statistical data of Woogang-myeon (ha) Rule-based classification 1967.31( 87.73)) -275.38 Supervised classification 2522.97(112.5) +280.28 Unsupervised classification 11) 1638.72( 73.1) -603.97 Unsupervised classification 22) 1865.61( 83.2) -377.08 No. of class = 15 No. of class = 20 Per cent to total study area ½ 15S ISODATA¬, «»¼½ 20S AB(2242.69 ha)$ , |/ ò Ã@ éê ISODATA¬* nO HÄ@3. Us«»æ3. éêUs«»$ * × AB* Lo$u ´ Á$ }O ò J~; +\.A #áX)* J# UâO 100# -S H ܵO J* ">, Ou LO {W Ã@, J# * «»-X AB Uu ´ # JO ª5.Ï3. J* 3tB UV ; nO HÄ@3. ~, × AB / ` . A$ J~ {W n J -XX Ò/ % "=æ3. c# . : Lr7 Á$ yG¤ :O 7_I #½«» XãO >ò M©O zQ U `3. .#, ÙsBO N>Áa)$ Hį {BS -X ¦§ ## CÖ3. u J* AB; LO, O J~* AB +\. ´; `{ Ã.U .| Á# F EÞA$ :O p '©O ië«»$ * ò J (, 1991K Ý N>Áa )* c# #½ * AB / Hį :; J~ k ò à )* JAB UâO × AB .& N> @O 7_ò3. Áau* ABR 8.Ï3(Table 7). EÞA* × # ; f¬$ >M ÐUu × AB; ië«»$ * 2522.97 haO , U, Ñ U* "E -./ «%æ / %æ&, 3î éêUs«»u «»¼½ 3. × AB f¬ F §} ¦§} «»¬ 20O ìië«»¬O __ 1967.31 hau ; «»r x. }¥(supervisor)$ ÂI «» 1865.61 haO %æ3. «»¼½ 15O ì Ã@u -X hI '3. * Ó$ U ië«»$ * × AB 1638.72 haO , éêUs«»(rule-based classification); DE / %æ3. ò EÞA* × # ; &, Ù >Ó #A ; # $ (X Fig. 6@ ´3. , N>Áa )* EÞA* J àE r V¤ :O 7_ò3. 14 Korean Journal of Agricultural and Forest Meteorology, Vol. 3, No. 1 Fig. 6. Comparisons of estimating methods for paddy field area in Woogang-myeon, Dangjin-gun, Chungnam Province. IV. ´; # U$ ì <7* J a ä × # O .| × AB #X J* U 0, «çs} Z}.U , .Ï3. × AB; 7291.19 haO %æ&, # Landsat TM ÌÍ, RVI, X* «8« áX 100#* -X Lo Ã@ 92%O Ã@, ç¾ ñ * TM ÌÍ 1, 2, 3* J# HÄ@3. 1991K 5ô 31Ù@ 8ô 19Ù Ñ U* Ó; < ³$ * ç7u ° kÜ Landsat TM ÌÍ 3, 4, 5, RVI X __ á Î(S 8ô 19Ù@ 9ô 1Ù$ , 9Ü drÌÍO ¾.| F s 10* ÌÍ :3 j;US 9ô F.n$ 3 ÒÜ:3. Fª `) 7.| Ub* «»¬$ .Ï3. Î(E BW¾ ñ S TM ÌÍ 5u 7; «$ <i.|, X¬$ * ië«» Ã@ × AB; 9100.98 )O Æ* ñ= >? 5ô 31Ù@ 6ô 2Ù haÏ3. Error matrix$ * «»-X 97.2%O * Ó , 9Ö&, * ÎU$ ;U HÄ@&, #áX -X 95%O HÄ@3. O A < Æ* «\ A Ó «»¼½ 15u 20O ISODATA¬$ * ÒÜ:3. , RVI `US 8ô ¦§} «»Ã@ × AB __ 6663.60 hau 19Ù@ 9ô 1Ù$ , ÒÖ&, X ×* 7Øz 5704.56 haO %æ&, #áX$ * «»-X U$ ;UO D >E 9Ü:3. ÐUS 5ô __ 87%u 82%O HÄ@3. N>Áa UâO 31Ù, US 8ô 19Ù ÑU $ «$ < .| «»f¬ª ¦§ .| Ý EÞA$ (.| i TM ÌÍ 5, <7* J ͺH RVI, 4 × AB ¦§ % ië«»$ * 2522.97 ÌÍ* +\ò X × AB haO , / %æ&, 3î éêUs«»u aO .|, ÐU$ )& «»¼½ 20O ìië«»¬O __ Hong et al.: Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area 1967.31 hau 1865.61 haO %æ3. «»¼½ 15O ìië«»$ * × AB 1638.72 haO , / %æ3. , N>Áa )* EÞA* JAB(2242.69 ha)$ , |/ ò Ã@ éêUs«»æ3. × # ; f¬ $ >M ÐUu U, Ñ U* "E 3³ R 'H -./ «%æ3. * «çs} éêUs«» DE &, q '", ; # $ ( àE r V.3. . 1994: SAS . . , , , , , 1994: !" #$%. &'()*. +,, 1998: -./* 01 234 5678 9, :;<= >7. ?@ABC D*BE . ERDAS, 1997: Field Guide 4th Edition, ERDAS Inc. p. 158~159. 15 http://www.naqs.go.kr (FG HIJKLM-) Kauth, R. J. and G. S. Thomas. 1976: The tasseled cap-A graphic description of the spectral-temporal development of agrucultural crops as seen by Landsat. Proceedings, Symposium on Machine Processing of Remotely Sensed Data. West Lafayette, IN:Laboratory for Applications of Remote Sensing, pp. 41~51. Okamoto, K. and M. Fukuhara. 1996: Estimation of paddy field area using the area ratio of categories in each mixel of Landsat TM. Int. J. Remote Sensing, 17(9), 1735~ 1749. Panigrahy, S. and J. S. Parihar. 1992: Role of middle infrared bands Landsat thematic mapper in determining the classification accuracy of rice. Int. J. of Remote Sensing, 13(15), 2943~2949. Rao, P. P. N. and V. R. Rao. 1987: Rice crop identification and area estimation using remotely sensed data from Indian cropping patterns. Int. J. of Remote Sensing, 8, 639~650. Tennakoon, S. B., V. V. N. Murty, and A. Eiumnoh. 1992: Estimation of cropped area and grain yield of rice using remote sensing data. Int. J. of Remote Sensing, 13(3), 427~439.
© Copyright 2024