our brochure

L.G.M is a company turns into service, quality and innovation.
Improve quality of our service, make known or recognize the efficiency of our organization on the
national and international market are targets that LGM renewed regularly since more than one half
century.
Our professionalism, our know-how and our reactivity enable us to extend our range regularly and
to improve our service. Without distinction of quantity we take the greatest care to all our
productions.
Quality is the business of all. It concerns the management and the employees of the company
whatever their functions. Our handbook of quality, at the disposal of our customers, summarizes the
procedures formalizing the organization of work, the control of the processes, the self-checking, the
manufacture and the follow-up of the orders, the maintenance of the materials.
Our team, always at the listening of the customers, regularly develops new products and studies at
the customer request special cables answering specific requirements. Moreover, datasheets resulting
from our laboratories attest qualities of our products subjected to particular constraints.
All these tests are based on our 67 years’ experience in the field of wires and cables for electronics
and electrical engineering.
Page 1 of 28
PRESENTATION OF THE COMPANY
ACCESS PLAN
LGM Company is located at the following address:
LE GUIPAGE MODERNE
5, rue de Bicêtre
94247 L’HAY LES ROSES CEDEX
You can also join us by phone or by fax:
FRANCE
Tél.
: 01.46.75.96.96
Fax : 01.46.75.34.84
INTERNATIONAL
Tél. : 33.1.46.75.96.96
Fax : 33.1.46.75.34.84
E-mail : lgmfrance@wanadoo.fr
Page 2 of 28
UNIT WIRES
On base of our covered or stranded wires, we use following materials:
AVAILABLE CONDUCTORS
- Bare copper:
This annealed copper forms part of the main productions which do not require specific features. It is
suitable with the standard NFC 31010.
Description of wire: Cu R
- Oxygen-Free-High conductivity copper (OFHC):
It is used for his high conductivity. It is suitable with the standard NFC 31010.
Description of wire: Cu OF
- Aluminium:
Used in aeronautics because of his low density in comparison with copper: 2,7 instead of 8,9 (69 % less
in weight).
His electrical resistance (2,65 µΩ.c.m) is 50% more than copper.
His thermal conductivity (237W.m-1.K-1) is 40% less than copper.
- Constantan:
Used in the production of thermoelectric couple sets of type TN after insulation by a double natural silk
layer.
Description of wire: Cu Ni 44
- Nickel, stainless steel, iron, etc.
Used in varied applications, after insulation by covering with: Cotton, Silk, Nylon, Kevlar, Kermel,
Kapton, Teflon, etc.
- Silver plated copper wire or pure silver wire:
Especially used in the Hi-fi field after insulation with natural silk or cotton.
THE DIFFERENT COATINGS OF COPPER
- Tin reference RE
Description of wire: Cu RE
- Enamel reference SF
Class: F
Temperature index: 155°C
Solderability: good at 375°C
Standard: IEC 317-20 / NFC 31670
Description of wire: Cu SF
- Enamel reference TA
Class: F with low temperature self-bonding layer
Temperature index: 155°C
Solderability: good at 375°C
Standard: IEC 317-35 / NFC 1685
Description of wire: Cu TA
- Enamel reference SH
Class: H Solderable
Temperature index: 180°C
Solderability: good at 390°C
Standard: IEC 317-51
Description of wire: Cu SH
- Enamel reference HP
Class: H200
Temperature index: 200°C
Solderability: bad. Impossible with tin
Class: IEC 317-13 / NFC 31663
Description of wire: Cu HP
- Silver reference Ag
Description of wire: Cu Ag
Page 3 of 28
- Enamel reference TD
Class: H+ with high temperature self-bonding layer
Temperature index: 200°C
Solderability: bad
Standard: IEC 317-38 / NFC 31688
Description of wire: Cu TD
THICKNESS OF ENAMEL’S LAYER
Grade 1 or 2
BASIC CONDUCTORS DIMENSIONS
Nominal diameters of conductors are given without coatings. They measure from 0,032 mm to 3 mm
The space factor of wires must be calculated with the biggest enamel layer that is possible.
Overall diameter, copper cross section or constructions are available on request.
Page 4 of 28
INTERESTS OF LITZWIRES
TECHNICAL ADVANTAGES
LITZ, this generic term designates the various cables realised with unit conductors in enamelled,
solderable or tinned stranded copper wires and possibly insulated by textile covering.
The use of those varnished wires and cables reduces the losses due to the skin effect, in order to improve
the electrical efficiency of the windings working in high frequencies or in low frequencies with high
harmonic rates.
APPLICATIONS
1 – INDUCTIVE SENSORS:
Litz wires, thanks to their low resistance to high frequencies, improve the quality factor.
This result increases with an insulation by a double silk layer covering. This is due to the low tan δ
implied by the natural silk. Consequently, the Q factor increases.
2 – POWER ELECTRONICS:
In the production of transformers and coils for high frequencies, or high harmonic rates, Litz wires allow
to get a better ratio between power and volume, with a higher reliability due to the output improvement.
Losses decrease thanks to a reduction of the HF resistance, by skin effect, using stranded wires.
Moreover, in many transformers with ferrite-based magnetic circuit, it is necessary to create a small air
gap which unfortunately increases leaks of the magnetic field. Those leaks cause overheatings in the
windings by E.M.F. current.
The use of stranded wires is an excellent remedy to overcome those parasitic overheatings.On the whole,
Litz wires remove the drawback of slow carbonization of the central turns in a HF winding while
allowing to create air gaps in order to avoid the magnetic circuit saturation.
3 – MICROELECTRONICS:
For the high frequency, order of the Mega Hertz, we recommend Litzwires of very small cross sections.
The compositions carried out starting from enamelled wires ranging between 32 microns and 50 microns
give good results.
Page 5 of 28
For the problems of coupling in H.F., twisted wires composed by 2 or 3 strands and of diameters located
enter 100 microns and 200 microns are interesting. But the pitch must short.
LGM Company has a machine stock for the stranding of extra thin enamelled wires, for very small
windings.
The pitch of twisting can be adjusted between 1 mm and 25 mm.
We can accept several tolerances of pitch: ± 5%, ± 10% and ± 20 %.
Tolerance and pitch’s length have an important effect on price.
Enamelled wires used are: wires with low temperature self bonding layer, F Class, grade 1B with
different colours or thermosolderable F Class, grade 1.
For examples:
4 x 0,032 – CU TA 1 – NG
5 x 0,050 – CU SF1 – NG
2 x 0,100 – CU SF2 – NG
On request we elaborate technic specification on wire asked:
-
Number of units wires
Number of strands
Sort of enamelled copper
Diameter of strand
Pitch’s strength
Strand’s resistance
CALCULATION FORMULA
The skin EFFECT, or KELVIN EFFECT, is characteristic of the currents spreading in the conductors. It
causes the resistance increase in comparison with its value in direct current. As the alternating current
goes only through one part of the conductor, it tends to spread only on the wire periphery, all the more so
since the frequency is higher.
The “conducting layer” depth can be calculated with the following formula:
δo =
ρ
and δo = 564
πµf
ρ
µf
with
δo = penetration depth in mm
ρ = conductor resistivity (for copper: ρ =1,75.10-8Ω.m at 20°C)
µ = magnetic permeability = µ 0 µ r
µ 0 = 4.x.10-7
And µ r = relative permeability of conductor material ( µ r = 1 for copper and other non-magnetic materials)
f = frequency of the inducing current in hertz
Page 6 of 28
For a copper conductor:
δ o=
74
F
at 70°C, δo in mm
BUNCH
STRAND’S STRUCTURE
For bunches of Litzwires, dimensions are between 0,064 mm and 25 mm of diameter.
Cables’ cross sections are located enters 0,004 mm² and 200 mm².
We can shape it by rolling the wire in square or rectangular section.
Rolling is possible on cables from 2,5 mm² to 150 mm².
Number of strands can be between 2 and 56 000.
UNILAY-FREE
Bunches are an assembly of several enamelled copper wires. For large cables, several stranded wires are
bunched together. In this type of cable, the wires do not have a definite place in the conductor. In the
majority of cases the assembly step direction is the same for all wires.
Litzwires are stranded on UNILAY-FREE, (bunches not tight or free). The winding’s direction of the layer
is the same.
ASSEMBLY STEP DIRECTION
Our standard model direction is left hand lay S or Z on request, but we can also respect following
structures.
UNILAY
WIRING’S DIRECTION
Page 7 of 28
Wiring in alternative
direction or wiring –S/-Z
Câblage S (on left)
Câblage Z (on right)
CALCULATION OF NOMINAL OVERALL DIAMETER OF WIRES CONSTITUTED BY
ASSEMBLING ELEMENTARY ENAMELLED WIRES UNDER TEXTILE LAYER
– ACCORDING TO NFC STANDARD 31010The nominal overall diameter is determined by the following formula:
D = ρ . n .d + thickness of covering
With:
D = nominal diameter of wire (on textile layer),
p = space factor,
n = number of elementary enamelled wires,
d = overall diameter of an elementary enamelled wire
Number of
elementary wires
Space factor
3 to 6
7
8 to 12
16
20
25 to 400
1,25
1,15
1,25
1,26
1,27
1,28
STRANDING PITCH
Short pitch: LITZ flex, good holding of each strand, better roundness.
Long pitch: LITZ stiffer, less good holding, better spreading for filling.
Pitch can be adjusted between 1 and 500 mm. We can accept tolerances of ± 5%, ± 10% and ± 20%
knowing that our standard one is ± 20% with a minimum of ± 1mm.
Page 8 of 28
ME DE FABRICATION
U.S. CROSS SECTIONS (AWG)
AWG n°
Unit wire diameter mm
Section mm²
Diameter inch
Round section mils
5/0
4/0
3/0
2/0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
13,12
11,68
10,40
9,27
8,25
7,35
6,54
5,83
5,19
4,62
4,11
3,67
3,26
2,91
2,59
2,30
2,05
1,83
1,63
1,45
1,29
1,15
1,024
0,912
0,812
0,723
0,644
0,573
0,511
0,455
0,405
0,361
0,321
0,286
0,255
0,227
0,202
0,180
0,160
1,143
0,127
0,113
0,101
0,0897
135,1
107,2
85,0
67,5
53,4
42,4
33,6
26,7
21,2
16,8
13,3
10,6
8,35
6,62
5,27
4,15
3,31
2,63
2,08
1,65
1,31
1,04
0,823
0,653
0,512
0,412
0,325
0,259
0,205
0,163
0,128
0,102
0,0804
0,0646
0,0503
0,0400
0,0320
0,0252
0,0200
0,0161
0,0123
0,0100
0,00795
0,00632
.5165
.4600
.4096
.3648
.3249
.2893
.2576
.2294
.2043
.1819
.1620
.1443
.1285
.1144
.1019
.0907
.0808
.0720
.0641
.0571
.0508
.04526
.04030
.03589
.03196
.02846
.02535
.02257
.02010
.01790
.01594
.01420
.01264
.01126
.01003
.00893
.00795
.00708
.00630
.00561
.00500
.00445
.00397
.00353
266.8 M
211.6 M
167.8 M
133.1 M
105.5 M
83.69 M
66.37 M
52.63 M
41.74 M
33.10 M
26.25 M
20.82 M
16.51 M
13.09 M
10,38 M
8.234 M
6.530 M
5.178 M
4.107 M
3.257 M
2.583 M
2.048 M
1.624 M
1.288 M
1.022 M
810.1
642.4
509.5
404.0
320.4
254.1
201.5
159.8
126.7
100.5
79.70
63.21
50.13
39.75
31.52
25.00
19.83
15.72
12.47
Page 9 of 28
GENERAL CHARACTERICS OF COVERED WIRES
- ISULATORS :
The preferential insulators used are:
- Natural silk (1, 2 layers or more)
- Nylon (1, 2 layers or more)
- Cotton (1, 2 layers or more)
MECHANICAL, THERMAL AND ELECTRICAL CHARACTERISTICS
- NATURAL SILK: High flexibility
Low space factor: 4/100 mm for 1 layer, 8/100 mm for 2 layers (diametrical reinforcement).
Low resistance to abrasion.
Recommended for thin wires: Ø < à 0,14 mm
To be used at a maximum temperature of 80°C
Dielectric strength: on request following the structure
Colours: white, red, green, blue
- NYLON: 66 Polyamide-based fiber
Higher space factor than silk: 5/100 mm for 1 layer – 10/100 mm for 2 layers
Better resistance to abrasion (50% higher than silk)
Recommended for wires with Ø ≥ 0,15 mm
To be used at a maximum temperature of 160°C, F Class
Dielectric strength: on request following the structure
Colour: white
- COTTON:
Colours: white or red. Other colours on request
- POLYESTER:
Colours: blue, yellow or white
- ARTIFICAL SILK
- ACETATE
Page 10 of 28
STRANDED WIRES (LITZ)
- LITZ WIRES: High frequency from 250 KHz to 5MHz
- SILK INSULATED for low space factor windings, high insulation and high coefficient of overvoltage
- HALF-COVERED WIRES (garland) 1 or 2 layers of white natural silk (it can be an other colour).
White nylon.
- NYLON INSULATED for windings working at high temperature.
CHARACTERISTICS
- Elementary strand diameter: 0,032 – 0,040 – 0,050 – 0,063 – 0,071 – 0,080 mm
- Copper cross section: 0,003 to 200 mm²
- Overall diameter: 0,08 to 30 mm
- STRAND WIRES (LITZ): From 100 kHz or 250 kHz.
- COVERED OR NOT-COVERED WIRES: for windings on magnetic circuits, ferrites, working in
rectangular or sinusoidal currents (decreasing of the overheatings caused by skin effect and, above all, by
E.M.F. current).
CHARACTERISTICS
- Unit strand diameter: 0,10 – 0,14 – 0,20 – 0,28 (other diameters on request). Annealed copper. Grade 1
solderable enamel.
F Class (155°C) solderable at 375°C or H class (180°C) solderable at 390°C.
- Assembling: it depends of the copper cross section which defines the number of strands. On request
constructions that give an optimal permutation to conductors are available.
- Copper cross section: 5 to160 mm²
- Overall diameter: 0,6 to 25 mm.
-Overall wrapping: Polyamide fiber (Nylon) allowing the impregnation of the winding with F Class
varnish – Glass fiber tape (CETAVER)
Page 11 of 28
STRANDED CABLES (LITZ)
- STRANDED CABLES (LITZ) Frequency ≥ 10 KHz to≤ 100 KHz
- COVERED OR NOT COVERED: for windings which require to minimize losses by skin effect and
E.M.F. current.
CHARACTERISTICS
- - Unit wire diameter: 0,28 – 0,40 – 0,63 (other diameters on request). Annealed copper, Grade 1
solderable enamel
- F Class (155°C) solderable at 375°C or H Class (180°C) solderable at 390°C
- - Assembling: it depends of the copper cross section which defines the number of strands. On request
constructions that give an optimal permutation to conductors are available.
- Copper cross section: 5 to 120 mm²
- Overall diameter: 3 to 25 mm
- Overall covering: F Class polyester felt tape allowing impregnation by varnish. H Class Polyamide
paper tape – Fiber Glass Tape (CETAVER).
Page 12 of 28
SELF-BONDING LITZWIRES
WINDINGS OF INDUCTIVE SENSORS
TINNING - WELDING
Direct, without striping, by soldering iron or tin bath. The fusion welding temperature advised is about
390 °C.
WINDING
Respect the admissible tensile strength.
Page 13 of 28
BONDING
The necessary temperature to bond is contained between 140°C and 170°C. The time required to stick
depends on the cable size and on the energy source.
METHODS OF BONDING
•
•
•
By heat supplying during the winding.
In the oven, after winding.
By short electric impulse.
1 – Polymerization with heat
By blowing heat, the layer of thermoplastic is softening and that dragging a bonding of the wires.
Heat draught temperature depends of the enamel’s type, diameter of the wire and grade of enamel. It
is also in function of the speed, shape of winding and distance between the blow and the wire.
Usual temperatures of this blow are from 190 °C to 230°C.
2 – Polymerization in the oven
As the reel is finished, it is warmed in oven. This drags a polymerization of the wire’s mass. The time
of warming depends of the size and shape of coil. It must be measured in order to obtain a heating
well-shared.
This process is relatively long.
It is recommended for wires with diameters higher than 0,10 mm.
3 – Polymerization by short electric impulses
The winding is warmed by using of a constant pulling strength that dragging a bonding of the wires.
The process of polymerization is regulated by electrical power and timing. It should be great to obtain
by the period of polymerization a homogeneous sharing of temperature in the winding.
It is recommended for wires with diameters higher than 0,10 mm.
4 – Polymerization with solvents
During the winding, wire receives a solvent that dissolves the layer of low temperature self-bonding.
In drying the solvent, wires are bonding together.
As solvent, we use several alcohols like methanol and ethanol. Acetone is not appropriate because it
attacks enamel on base. To drain off the solvent, it is recommended to heat the reel in an oven after
winding.
Using limited to windings with low numbers of turn. Recommanded for diameters until 0,10 mm.
Page 14 of 28
SPECIAL WRAPPED WIRES
KAPTON, NOMEX, POLYESTER, MICA, GLASS BRAID
These wires can be unitaries or twisted. Usually, they are realized with round enamelled copper wires,
and they can be rolled. For bare copper wire or enamelled strip, we can study your specific request.
Table of standard productions – L.G.M.
*
INSULATION: The insulation is realized by wrapping
Covering: 30% or more
(1) Thickness: see table above (other thicknesses on request).
LOSS FACTOR (2) : KAPTON
NOMEX
POLYESTER
0,0025
0,010
0,005
R.H.: 50%. Frequency: 103 HZ
(2) The figures indicated below are averages: they must not be considered as specification.
Page 15 of 28
LITZWIRES COVERED KAPTON
FOR COILS AND TRANSFORMER WINDINGS
In new technical designs
meant to extreme conditions of temperature (-273°C to +220°C)
GENERAL POINTS:
Kapton, F Type used for insulation of coil, guarantee thermic class 220°C.
It has a good resistance to the flame (the best in the standard UL 94). Kapton does not maintain or
propagate the flame. It does not melt and it does not weaken.
KAPTON:
It can assure his function after a short exposure to + 260°C, It is still supple at 273 °C with no detriment
of his properties. Moreover it conserves its dielectric strength at high temperatures.
It is compatible with high temperature varnishes, including Polyamide, Extrémides, Epoxy, Silicone,
Amides-Imides and Organo-Silicones.
PRODUCTION RANGE OF WINDING WIRES (CHARACTERISTICS AT 25°C)
BRINS ELEMENTAIRES
NAME
ROUNDS WIRES
LITZ WIRES
stranded wires
DIAMETRE DES FILS OU
SECTION CUIVRE
CABLES
ISOLATION KAPTON
MIN.
MAX.
MIN.
MAX.
MIN.
MAX.
mm
mm
mm
mm
mm²
mm²
-
-
0,80
2,5
0,50
4,9
25-50-75 microns
0,10
1,2
0,80
18
0,50
160
25-50-75 microns
USUAL INSULATION:
It is realised by “Kapton” wrapping. Minimum 30 % covering.
DIELECTRIC STRENGTH (FREQUENCY 50HZ):
5 000 Volta (25 microns)
8 000 Volta (50 microns)
11 000 Volta (75 microns)
We have in stock Kapton tape with a thickness of 25 microns.
DISSIPATION FACTOR:
Tan δ< à 50.10-4, the favourable value of the dielectric constant and of the dissipation factor combine to
reduce the weakening of the high frequency signals to minimum.
NOTA:
Our technical services are at your disposal for all studies you would like to entrust them. Calculations of diameter
and of main characteristics, on phone call or fax
We use the following description:
250 x 0,200 – CU SH1 – 1Kp Rb 15 – Rc 30%
This product is realized with 250 strands of 0,20 mm, in solderable enamel copper, H Class, grade 1, and wrapped
with one layer of KAPTON (width : 15 mm ; covering : 30%).
Page 16 of 28
LITZCABLES OF HIGH POWER
STRUCTURES
From enamelled wires Grade 1 or 2
Unit wires diameter: 0,20 mm
Frequency: 0 to 250 KHz
ENAMELLED WIRES CLASS (must be precised on the order)
F Class
H Class
H Class
H Class
C Class
155°C solderable at 375°C (IEC 317-20)
180°C solderable at 390°C (IEC 317-21)
180°C not solderable (IEC 317-22)
200°C not solderable (IEC 317-13)
220°C not solderable (IEC 317-7)
STANDARD RANGE
(See table below)
(enamelled copper wire H Class 180°C solderable at 390°C 317-21)
NOMINAL
CROSS
SECTION
NUMBER
OVERALL DIAMETER.
RESISTIVITY AT 20 °C
STRANDS
IN MM (GR.1)
(OHM/KM)
Cu mm²
Nb
Mini
Maxi
Mini
Maxi
20 (19,79)
40 (39,60)
60 (60,30)
80 (79,10)
100 (98,90)
120 (118,70)
630
1260
1920
2520
3150
3780
6,97
9,72
12,00
13,75
15,37
16,84
7,26
10,27
12,68
14,52
16,24
17,79
0,831
0,415
0,273
0,208
0,166
0,138
0,914
0,456
0,299
0,229
0,184
0,153
LENGTH
PER KG
SOLDERING
TIME (1)
Sec.
5,37
2,69
1,75
1,33
1,07
0,89
25
30
40
60
80
100
(1) Soldering time is given only for information. It concerns a end of a cable submerged in a soldering
bath at 390 °C. It is necessary to ensure that decomposition of enamel is total in the middle of the strand.
Copper wire must be tinned and be brilliant neither enamel residue, nor waste of carbonization (see page
22).
The range above can be realized from unit wires of different nominal cross sections. However, we
recommend you to choose preferably in the list below:
Diameters: 0,20 – 0,28 – 0,40 – 0,56 – 0,63 mm
For bare copper wires, diameters on request.
SORT OF WRAPPING
Désignation
Nomex tape 50 μ
Kapton tape 25μ
Polyester tape 23μ
Mica tape
Fiber glass tape thickness 200 μ
(CETA VER)
Classe de température
Tension de claquage
180°C
220°C
130°C
250°C
300°C
> 1 000 V eff.
> 4 000 V eff.
> 3 000 V eff.
> 1 000 V eff.
Suivant composition
Standard covering: 30% mini, 50 % and more on request.
Page 17 of 28
STRANDED WIRES ROLLED
The shape of cross section into rectangular form reduces bulk of the cable.
In case of power transformers the flat Litzwires enhance a lot the filling factor.
For example, we realize a flat stranded wire:
300 x 0,200 – Cu SF1 – 5,6 x 3,5 – 2N
This wire is manufacturing with 300 strands of 0,200 mm of diameter, in solderable enamelled
copper, F Class, grade 1, rectangular section 5,6 mm x 3,5 mm and covered by 2 layers of nylon.
We are at your disposal for every calculation of shaping.
PRODUCTION’S PROGRAM
LITZWIRES OR LITZCABLES
ROUND OR RECTANGULAR
RANGE OF PRODUCTION
Unit wires: from 2 to 50 000 (or more).
Insulation:
• Enamelled copper wires grade 1 or grade 2 :
F Class
155°C solderable
F/H Class
175°C solderable
H Class
180°C Brasable
H+ Class
200°C Brasable
• Bare copper wires
• Tinned copper wires
Constructions: strand, bunch or rope
Cross sections:
• Round: 0,080 to 200 mm²
• Square or rectangular: 2,5 to 160 mm².
Coverings:
• Textile coverings: Silk, Nylon, Cotton, Tergal, Fiberglass and Polyester.
• Wrapping: Nomex, Kapton, Polyester, Mica.
Other solutions on request.
Page 18 of 28
LITZWIRES INSULATED BY EXTRA SUPPLE EXTRUSION
STRANDED WIRES INSULATED WITH TEFLON
We produce Litzwires according to customer’s specifications, covered by white FEP extrusion (other
colours on request).
This FEP jacked is known as a thin wall due to his fine thickness (about 0,3 mm).
These Litzwires work at a high temperature, they can be submerged on oil and it stays well supple.
Possible range: diameter 0,65 mm to 20 mm maximum.
To define this cable, we ask you for precising characteristics below:
Cross section of copper in mm²
Insulation’s voltage
Breakdown voltage test (dielectric strength)
Frequency
Maxima overall diameter
For example :
2600 x 0,100 CU SH1 – 1FEP
Construction:
It is a litzwire of 2600 strands from 0,100 mm of nominal diameter, in enamelled copper.
Solderable H Class Grade 1, covered with one layer of FEP.
Copper cross section: 17,5 mm²
Maximal overall diameter: 8,5 mm
Wall thickness: 0,5 mm
Dielectric strength: 3KV
Insulation: good resistance to mineral oils
Using temperature: from -90°C to +205°C.
STRANDED WIRES INSULATED WITH SILICONE
This high-temperatured elastomer, with a thick layer, presents good electrical properties.
Page 19 of 28
LITZWIRES INSULATED WITH POLYETHYLENE
As they are covered, these strands present a good resistance to abrasion and are used for followings:
Waterproof cables
These wires can be submerged or buried to realize sensors.
Temperature: from -10°C to +70 °C
Possible range: diameter from 1mm to 10 mm maximum.
Polyethylene insulation for Litzwires generates an important bulk but is still more economical than FEP.
Our reference for this sort of cables is:
648 x 0,280 – Cu SF2 – 1PE
This bunch is composed of 648 strands in diameter 0,280 mm, in solderable copper, F Class, grade 2,
covered with one layer of extruded polyethylene.
Page 20 of 28
TECHNICAL NOTE FOR THE TINING OF SOLDERABLE ENAMELLED COPPER STRANDED WIRES GRADE 1 OR
2 TEMPERATURE 155 °C OR 180 °C
SOLDERING BATH:
The tinning bath is prepared at a temperature of approximatly 400°C.
Soldering temperature:
Solderable wire F Class: 375°C ± 5%
Solderable wire H Class: 390°C ± 5%
At this temperature, the cable conductors for high frequency are tinned and soldered together (aubelow 370 °C, the enamel does not remove totally, and above 425°C,the enamel carbonizes on the wire).
It is important to own a regulated enamel bath adjustable at 400 °C.
To respect the new ROHS conformance, the bath has to be clean without lead, (even lead dust).
The solder has to be mainly composed of tin (with eventually silver balance) but without lead.
METHOD:
1) Wet the tinning part in a soldering flux.
2) Before the dip soldering, it is not necessary to remove the enamel nor the silk or nylon covering.
3) To stop the wick effect, surround two or three times the cable with a not-solderable twisted wire
where the rising of the soldering is not wanted.
4) The time of tinning depends on the cross diameter, as noted in the table below, or on
specifications edited by Le Guipage Moderne (LGM).
TABLE OF IMMERSION TIME IN THE SOLDERING BATH:
NOMINAL CROSS SECTION OF THE HIGH FREQUENCY
STRANDED WIRE (mm²)
From
To
0,003
0,080
0,080
0,125
0,125
0,200
0,200
0,300
0,300
0,500
0,500
0,800
0,800
1,600
IMMERSION TIME
Seconds
3
4
5
6
8
10
> 10*
* to be determined by tests
Page 21 of 28
TAKING OUT A COVERING FROM A TERMINAL CONDUCTOR:
The welding of the wire or cable of Litz, in the barrel of a thimble, is carried out in the following way:
After the enamel bath, insert quickly the tinned part (still hot) in a terminal conductor before hand put in
the tool which will allow hot crimping.
For each wire and according to the tinning equipment, the immersion should be as short as possible since
a high temperature of the enamel bath surface, and an increase of copper are the most harmless effects.
What is really to be avoided is the danger of the cross section decrease and the wire hammering, during a
too long immersion in the bath.
PREPARATION PROCEDURE BEFORE TINNING NOT-SOLDERABLE LITZ WIRES
TEMPERATURE INDEX ≥ 180°C
Enamel –H 200 °C
For a wrapping with additional insulation as Kapton, Nomex, mineral fibers, first remove this
insulation by a mechanical method.
To take the enamel off:
SEVERAL METHODS EXIST:
1) Mechanical action like scraping
2) With an acid solution. The problem of this process is the risk of oxidation if the operation is not
properly done.
3) The enamel burning with a soft fire (gas stove or alcohol).
When the enamel is burned and the wires are still red, dip quickly in an alcohol bath in order to
remove oxidation.
Page 22 of 28
WINDING INSTALLATION OF LITZ WIRE
The Litz wire winding must be put on a reel with rotating a braking spindle in order to support o
continuous traction on wire. This is essential to avoid the formation of loops and knots.
BRAKING
STATIC
REEL
TENSIOMETER
REEL
The static reel is inadvisable for
Litzwire: it causes a formation
of loops and knots. It is
necessary to avoid braking by
friction on wire.
Nota: The Litzwire is twisted: it cannot withstand further twistings or detwistings.
Page 23 of 28
TABLE OF AVAILABLE REELS
We propose following reels but they can be modified on request.
Reels
type
DIN 100
DIN 125
DIN JP3
DIN 160
DIN 200
DIN 250
DIN 355
DIN 500
d1
d2
d3
a mini.
mm
mm
mm
mm
mm
100
125
130
160
200
250
355
500
63
80
80
100
125
160
224
315
16
16
20
22
36
36
36
36
0
0
0
0
0
0
0
0
100
125
110
160
200
200
200
250
Angle
deg
30
30
30
30
30
30
L1
L2
m
m
80
100
90
128
160
160
160
180
Weig
ht
g
90
200
215
350
600
1050
1850
7650
Average
capacity
in copper
wire
1,00 kg
2,00 kg
3,00 kg
6,00 kg
10,00 kg
20,00 kg
48,00 kg
Average
capacity in
Litz
0,50 kg
1,50 kg
4,50 kg
8,00 kg
14,00 kg
25,00 kg
This table is given only for information, it has no contractual dimension.
Page 24 of 28
STRUCTURE
CROSS
SECTION
OVERALL DIAMETER
G1
RESISTANCE
Ohm/m
Number
Covering
CU mm²
Mini.
Nomin.
Maxi.
Mini.
0,032
10
12
16
20
25
32
40
50
60
80
100
120
160
200
250
320
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
2. S
2. S
2. S
2. S
0,0082
0,0096
0,0129
0,0161
0,0201
0,0257
0,0322
0,0402
0,0483
0,0643
0,0804
0,0965
0,1287
0,1608
0,2011
0,2573
0,155
0,166
0,186
0,204
0,224
0,251
0,275
0,303
0,329
0,384
0,415
0,451
0,566
0,573
0,636
0,768
0,182
0,195
0,219
0,240
0,264
0,290
0,323
0,357
0,387
0,435
0,488
0,531
0,638
0,674
0,748
0,870
0,209
0,224
0,252
0,276
0,304
0,330
0,371
0,410
0,445
0,486
0,561
0,611
0,711
0,775
0,860
0,972
1,913
1,594
1,196
0,956
0,765
0,595
0,477
0,382
0,318
0,239
0,191
0,158
0,118
0,094
0,076
0,059
6
8
10
12
16
20
25
32
40
50
60
80
100
120
160
200
250
320
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
2. S
2. S
2. S
2. S
2. S
0,0075
0,0101
0,0126
0,0151
0,0201
0,0251
0,0314
0,0402
0,0503
0,0629
0,0754
0,1006
0,1257
0,1508
0,2011
0,2514
0,3142
0,4022
0,154
0,173
0,189
0,204
0,230
0,253
0,279
0,311
0,343
0,382
0,413
0,472
0,524
0,610
0,670
0,764
0,845
0,910
0,170
0,186
0,200
0,240
0,255
0,286
0,318
0,345
0,385
0,420
0,440
0,520
0,590
0,670
0,750
0,850
0,960
1,070
0,180
0,199
0,220
0,263
0,280
0,320
0,360
0,380
0,427
0,455
0,470
0,580
0,650
0,740
0,840
0,950
1,080
1,231
5
6
8
10
12
16
20
25
32
40
50
60
80
100
120
160
200
250
320
420
840
960
1020
3060
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
0,0098
0,0118
0,0157
0,0196
0,0236
0,0314
0,0393
0,0491
0,0628
0,0785
0,0982
0,1178
0,157
0,1963
0,2356
0,3141
0,3926
0,4908
0,6282
0,8047
1,6094
1,8393
1,9543
5,8629
0,150
0,180
0,210
0,224
0,268
0,304
0,310
0,350
0,392
0,440
0,490
0,497
0,621
0,710
0,780
0,880
0,990
1,100
1,210
1,390
1,910
2,050
2,147
3,690
0,170
0,190
0,228
0,250
0,282
0,313
0,330
0,370
0,430
0,480
0,530
0,540
0,680
0,745
0,830
0,940
1,075
1,180
1,310
1,490
2,210
2,300
2,420
4,010
0,187
0,201
0,246
0,270
0,297
0,322
0,361
0,398
0,460
0,510
0,569
0,620
0,740
0,840
0,890
0,970
1,160
1,265
1,390
1,620
2,265
2,469
2,543
4,328
LENGTH
m/Kg
TRACTION
STRENGTH
TINNING
TIME
Number
Covering
CU mm²
Mini.
2,571
2,143
1,607
1,286
1,029
0,804
0,643
0,515
0,429
0,321
0,257
0,215
0,161
0,129
0,103
0,081
11059
9383
7199
5848
4720
3738
3018
2435
2040
1542
1241
1039
753
608
490
385
53
63
84
105
131
167
210
262
314
418
523
628
837
1045
1307
1673
3
3
3
3
3
3
3
3
3
3
4
4
5
5
6
6
2,735
2,052
1,641
1,368
1,026
0,821
0,656
0,513
0,410
0,328
0,274
0,205
0,164
0,137
0,103
0,082
0,066
0,052
11552
8907
7173
6054
4624
3743
3014
2379
1917
1618
1289
972
782
634
479
385
309
243
49
66
82
98
131
163
204
261
327
409
490
654
817
980
1307
1634
2042
2614
3
3
3
3
3
3
3
3
3
3
3
4
5
5
6
6
8
8
2,0880
1,7390
1,3050
1,0450
0,8700
0,6520
0,5220
0,4170
0,3260
0,2610
0,2090
0,1740
0,1310
0,1040
0,0870
0,0650
0,0520
0,0420
0,0330
0,0250
0,0120
0,0110
0,0100
0,035
9207
7753
5946
4778
4022
3061
2474
1989
1565
1259
1011
845
616
498
417
315
253
203
159
117,5
58,7
51,4
48,6
16,3
64
77
102
127
153
204
255
319
408
510
638
766
1020
1276
1531
2042
2552
3190
4083
5110
10210
11700
12400
37200
3
3
3
3
3
3
3
3
3
3
4
5
5
5
6
8
8
8
10
11
19
21
23
60
0,040
2,046
1,535
1,228
1,023
0,767
0,614
0,492
0384
0,307
0,246
0,205
0,154
0,123
0,103
0,077
0,061
0,049
0,038
0,050
1,5840
1,3210
0,9900
0,7920
0,6600
0,4950
0,3960
0,3170
0,2470
0,1980
0,1580
0,1320
0,0990
0,0790
0,0660
0,0490
0,0390
0,0320
0,0250
0,0190
0,0094
0,0083
0,0078
0,0026
Page 25 of 28
STRUCTURE
Number
Covering
CROSS
SECTION
CU mm²
OVERALL DIAMETER
G1
RESISTANCE
Ohm/m
LENGTH
m/Kg
TRACTION
STRENGTH
TINNING
TIME
Mini.
Mini.
Number
Covering
CU mm²
Mini.
1,6285
1,3028
1,0857
08145
0,6514
0,5428
0,4071
0,3257
0,2606
0,2036
0,1628
0,1303
0,1086
0,0814
0,0652
0,0528
0,0543
0,0326
0,0261
0,0204
0,0116
7454
6044
5082
3875
3112
2614
1983
1597
1281
1008
779
628
526
398
321
269
202
162
130
102
59
81
101
122
162
203
243
324
405
506
648
811
1013
1216
1621
2026
2431
3242
4052
5065
6481
11340
3
3
3
3
3
3
3
3
3
4
5
5
5
6
8
8
10
10
10
10
11
1,6547
1,241
0,9928
0,8273
0,6205
0,4964
0,4137
0,3103
0,2482
0,1986
0,1551
0,1241
0,0993
0,0827
0,0621
0,0496
0,0414
0,031
0,0248
0,0199
0,0155
0,012
0,0077
0,0067
0,0099
0,0136
0,0313
7768,6
5967,8
4826,2
4051,3
2982,5
2478,4
2080,9
1573,6
1266,4
1015
768,8
619,6
499,4
418,1
316
254
212,3
160
128,3
103
80,5
61,6
39,6
34,9
24,8
17,7
7,7
77
103
129
155
206
257
309
411
515
644
824
1030
1287
1544
2059
2573
3088
4118
5147
6434
8235
8350
12970
14820
21818
30010
69159
3
3
3
3
3
3
3
3
3
4
5
5
5
6
8
8
8
10
10
12
12
19
28
31
31
32
32
Nomin.
4
5
6
8
10
12
16
20
25
32
40
50
60
80
100
120
160
200
250
320
560
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
0,0125
0,0156
0,0187
0,0249
0,0312
0,0374
0,0499
0,0623
0,0779
0,0997
0,1247
0,1558
0,187
0,2494
0,3117
0,374
0,4987
0,6234
0,7793
0,9974
1,7469
0,180
0,220
0,240
0,260
0,290
0,310
0,350
0,390
0,430
0,500
0,560
0,063
0,690
0,079
0,870
0,960
1,100
1,240
1,370
1,550
2,170
0,222
0,242
0,270
0,295
0,325
0,351
0,398
0,440
0,487
0,545
0,649
0,715
0,774
0,880
0,973
1,057
1,250
1,400
1,550
1,730
2,290
3
4
5
6
8
10
12
16
20
25
32
40
50
60
80
100
120
160
200
250
320
405
630
720
1060
1458
3360
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
1. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
2. S
0,0119
0,0158
0,0198
0,0238
0,0317
0,0396
0,0475
0,0633
0,0792
0,099
0,1267
0,1584
0,198
0,2376
0,3167
0,3959
0,4751
0,6335
0,7918
0,9898
1,2669
0,6033
2,2942
2,8505
4,1958
5,7723
6,5691
0,188
0,210
0,230
0,240
0,280
0,310
0,335
0,375
0,420
0,460
0,510
0,600
0,670
0,740
0,840
0,930
0,980
1,100
1,290
1,400
1,480
1,800
2,200
2,300
2,800
3,350
4,800
0,220
0,240
0,265
0,285
0,32
0,360
0,385
0,440
0,485
0,540
0,630
0,700
0,770
0,840
0,96
1,060
1,160
1,320
1,470
1,660
1,880
2,097
2,460
2,630
3,490
4,000
5,330
Maxi.
0,063
0,240
1,2612
0,263
1,0090
0,283
0,8408
0,320
0,6306
0,353
0,5045
0,382
0,4204
0,434
0,3153
0,480
0,2523
0,532
0,2018
0,597
0,1576
0,705
0,1261
0,778
0,1009
0,844
0,0841
0,960
0,0631
1,063
0,0505
1,156
0,0420
1,321
0,0315
1,466
0,0252
1,630
0,0202
1,830
0,0157
2,392
0,0090
0,071
0,240
1,3283
0,260
0,9962
0,290
0,797
0,315
0,6642
0,355
0,4981
0,380
0,3985
0,425
0,3321
0,480
0,2491
0,530
0,1192
0,590
0,1594
0,690
0,1245
0,760
0,0996
0,845
0,0797
0,920
0,0664
1,050
0,0498
1,160
0,0398
1,260
0,0332
1,440
0,0249
1,600
0,0199
1,800
0,0159
2,040
0,0124
2,250
0,0099
2,640
0,0063
2,810
0,0055
3,580
0,0081
4,110
0,0111
5,860
0,0256
Page 26 of 28
STRUCTURE
CROSS
SECTION
OVERALL DIAMETER
G1
RESISTANCE
Ohm/m
LENGTH
m/Kg
TRACTION
STRENGTH
TINNING
TIME
Mini.
Number
Covering
CU mm²
Mini.
0,100
204,1
170,1
127,6
102,1
81,64
63,78
51,02
40,82
34,017
25,512
20,41
15,945
12,756
10,205
8,164
6,378
5,669
5,315
5,103
3,908
3,136
2,377
1,594
239,6
199,7
149,7
119,8
95,81
77,12
61,7
49,36
41,131
30,848
24,679
19,28
15,424
12,339
9,871
7,712
6,855
6,427
6,17
4,725
3,791
2,873
1,927
1274
1066
805,6
647
519
407,4
319,2
256,6
214,4
161,4
129,5
101,6
81,5
65,39
52,5
41,06
36,51
34,26
32,89
25,2
20,3
15,4
10,3
0,51
0,612
0,817
1,021
1,277
1,633
2,042
2,552
3,063
4,084
5,105
6,532
8,168
10,21
12,763
16,336
18,378
19,603
20,42
26,55
33,1
43,65
65,1
3
4
5
5
5
6
7
8
8
9
10
11
12
14
15
17
18
18
19
23
26
32
45
0,200
176,07
132,05
105,64
88,03
75,457
66,025
52,82
44,017
35,213
33,013
29,344
26,41
21,128
16,506
13,205
10,564
8,803
6,603
5,869
5,282
0,953
194
145,5
116,4
97
83,14
72,75
58,2
48,5
38,8
36,38
32,33
29,1
23,28
18,73
14,99
11,99
9,99
7,49
6,66
5,99
1,028
1089,3
823,2
661,2
551,5
473,6
416,4
326,2
273,1
219,1
205,6
182,9
165
132,4
103,8
83,3
66,8
55,8
42
37,3
33,6
6,04
0,613
0,817
1,021
1,225
1,43
1,634
2,042
2,45
3,063
3,267
3,676
4,084
5,105
6,534
8,168
10,21
12,252
16,336
18,378
20,42
135,85
4
5
5
5
6
6
7
8
8
8
9
9
10
11
12
14
15
17
18
19
30
Number
Covering
CU mm²
Mini.
Nomin.
Maxi.
10
12
16
20
25
32
40
50
60
80
100
128
160
200
250
320
360
384
400
520
648
855
1275
3360
1. N
1. N
1. N
1. N
1. N
1. N
1. N
1. N
1. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
0,0785
0,0942
0,1257
0,1571
0,1964
0,2513
0,3142
0,3927
0,4712
0,6283
0,7854
1,0053
1,2566
1,5708
1,9635
2,5133
2,8274
3,0159
3,1416
4,084
5,0893
6,7151
10,0138
0,380
0,430
0,480
0,560
0,600
0,710
0,780
0,880
0,960
1,100
1,260
1,400
1,580
1,700
1,950
2,200
2,300
2,400
2,450
2,700
3,100
3,550
4,320
6,800
0,500
0,550
0,620
0,690
0,760
0,850
0,940
1,050
1,150
1,300
1,470
1,670
1,900
2,150
2,370
2,700
2,900
3,000
3,070
3,200
3,470
4,010
5,300
7,900
0,550
0,590
0,670
0,740
0,820
0,920
1,020
1,140
1,250
1,420
1,580
1,790
2,020
2,280
2,530
2,880
3,080
3,200
3,280
3,400
3,710
4,220
5,600
8,100
3
4
5
6
7
8
10
12
15
16
18
20
25
32
40
50
60
80
90
100
550
1. N
1. N
1. N
1. N
1. N
1. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
0,0942
0,1257
0,1571
0,1885
0,2199
0,2513
0,3142
0,377
0,4712
0,5027
0,5655
0,6283
0,7854
1,0053
1,2566
1,5708
1,885
2,5133
2,8274
3,1416
17,292
0,430
0,500
0,560
0,610
0,650
0,700
0,780
0,850
0,950
0,980
1,030
1,090
1,250
1,400
1,500
1,700
1,900
2,180
2,310
2,400
5,600
0,470
0,600
0,700
0,780
0,850
0,900
1,000
1,100
1,200
1,220
1,230
1,240
1,450
1,610
1,700
1,940
2,180
2,480
2,60
2,740
6,400
0,510
0,650
0,760
0,840
0,920
0,980
1,090
1,200
1,340
1,400
1,420
1,450
1,660
1,820
2,040
2,180
2,460
2,780
2,930
3,080
7,210
Page 27 of 28
STRUCTURE
Number
Covering
CROSS
SECTION
CU mm²
OVERALL DIAMETER
G1
Mini.
Nomin.
Maxi.
RESISTANCE
Ohm/m
LENGTH
m/Kg
TRACTION
STRENGTH
TINNING
TIME
Mini.
Number
Covering
CU mm²
Mini.
36,338
29,07
24,229
19,38
18,169
14,535
11,628
9,084
8,075
7,268
5,814
4,845
4,038
3,589
2,907
2,422
2,307
2,019
1,794
1,615
1,604
1,268
0,855
0,76
0,57
0,326
0,228
214,6
171,7
143
114,5
107,3
85,8
68,67
53,65
47,69
42,92
34,34
28,61
28,85
21,2
17,17
14,31
13,63
11,92
10,6
9,54
8,9
7,1
4,75
4,22
3,17
1,82
1,28
3,2
4
4,8
6
6,4
8
10
12,8
14,4
16
20
24
28,8
32,4
40
48
50,4
57,6
64,8
72
62,2
78,8
116,6
131,2
175
306,2
437,4
8
9
9
10
10
11
12
13
13
14
15
16
17
19
20
22
23
24
25
26
28
30
60
60
80
100
120
4,45
2,80
2,10
1,58
26,65
16,8
12,6
9,5
31,76
50,45
67,27
89,7
16
20
23
26
28,14
14,07
7,04
3,52
1,83
0,56
167,00
83,50
41,75
20,87
10,85
3,34
4,73
9,46
18,92
37,84
72,84
236,50
9
11
14
19
24
75
3,12
17,15
37,22
18
0,280
8
10
12
15
16
20
25
32
36
40
50
60
72
81
100
120
126
144
162
180
192
243
360
405
540
945
1350
1. N
1. N
1. N
1. N
1. N
1. N
1. N
1. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2. N
2 NM
2 NM
2 NM
2 NM
2 NM
2 NM
0,493
0,616
0,739
0,924
0,985
1,232
1,54
1,97
2,217
2,463
3,079
3,695
4,433
4,988
6,158
7,389
7,758
8,867
9,975
11,084
11,8224
14,9627
22,167
24,9378
33,2505
58,18883
83,1262
0,900
1,000
1,100
1,250
1,310
1,480
1,610
1,820
2,040
2,110
2,380
2,580
2,810
3,030
3,280
3,670
3,750
4,010
4,250
4,600
4,800
5,500
6,700
7,570
8,730
11,530
13,760
1,21
1,33
1,45
1,645
1,71
1,9
2,14
2,4
2,55
2,7
3
3,2
3,5
3,75
4,2
4,58
4,7
5
5,3
5,6
5,58
6,36
7,65
8,43
10
13,4
14,54
1,3
1,42
1,56
1,77
1,83
2,02
2,27
2,55
2,71
2,86
3,18
3,4
3,71
3,98
4,46
4,86
4,99
5,3
5,62
5,94
5,71
6,51
7,82
8,63
10,3
13,7
16,35
51
81
108
144
2. N
2. N
2. N
2. N
3,9745
6,3124
8,4165
11,222
3,060
3,700
4,200
4,900
3,28
4,07
4,75
5,47
3,35
4,17
4,9
5,6
5
10
20
40
77
250
2. N
2. N
2. N
2. N
2. N
2. N
0,6288
1,2576
2,5152
5,0304
9,6835
31,44
1,100
1,510
2,150
2,900
4,140
7,900
1,33
1,84
2,56
3,58
4,93
8,80
1,36
1,88
2,62
3,66
5,10
8,99
23
2. N
5,6649
3,120
3,72
3,8
33,725
26,98
22,483
17,987
16,863
13,49
10,792
8,431
7,494
6,745
5,396
4,497
3,747
3,331
2,698
2,248
2,141
1,874
1,665
1,499
1,427
1,127
0,761
0,676
0,507
0,289
0,202
0,315
4,15
2,61
1,96
1,47
0,400
26,32
13,16
6,58
3,29
1,71
0,53
0,560
2,92
Page 28 of 28