M E T U Department of Mathematics Math 260 Basic Linear Algebra Sprine 2O]5 Exam Date Time :Apri.I62015 Last Name : 17:10 Name Duration : 90 m'i'nutes Department : : : Signature : I KEY $tudent No. Section 5 QUESTTONS ON 4 PAGES TOTAL 60 POINTS SHOW YOUR WORK IN EVERY PROBLEM :4 x-2A*z-t 2s-3a*22-3t :-1 a 3r-59*32-4t z-L)l :5 &tv -aLa'- Question 1 (10pts) Consider the system a) Find the fundamental solutions of the corresponding homogeneous system. / | -2 I n -L' I in 'Z i 3 -i,$li^ -'2- i / \-- ,t - -> > ^7 ') ! n :- ,l=t /t.\ i:, \2r 1 ' (,/ l) b) Write down the general soiution of the 4 _.) 2. -! it -L ,a -C , -a .n, r -+- !(,1 + i-t z- / .li *- f--. 4 l I r-'. t ^ / ..\ I +?.1- -J I j(-l' 'r- i, ?t,n/ J, ) t z, a€ f.cc , ii vrcr'(9V,j J i ; -.otr-'.' /: ir uX ll 7h '\. 1 > -7 t_v -1_tJ l-\-', 11 -Ji. ' ,tit,.; :) q ,1 iA ttl l.L i \/ lt,'+li+ 2l tt -Ll1 * , ' - l<.nL '^ c) / - c 1i:f, C--.f ct J (')z+(i LetK:l 2., -r3 L-I 4 l.) \L/ ),11. 5ir!, in terms of the fundarnental solutions found in part (a). 4./ -L : + tL. t; '' : .-'i tl .ta Tl* y*"{ i;1,':o. i Question2 (bpts) sy stem *.-------) nt'i ''rrt4r, (? ),'\a {, i,, ,,,du: (1 -! i L \ -t1.t/ . ''.; - 11 r, t:_L/ ,i-l : -qJ' Ii llnt t c, ii-+ -t t -./ lA'. '' i/'17 ,' - l'r''" , 3 ,-l? - { :'4,, l i )' {r) wn"thecofactorsof Kandtheadjointmatrix adi(K). r\ Li l- r 1 1 ol Question3(15pts)l,et,a: 3 S l. | -r 0 [r I 1 r.]is row equivalent to ,4 and an invertible matrix P such that a) Find a row reduced echelon matrix fi' which R: PA. } ITJ 8=# jllj=lt 4 t ol ( c o\' (3Qt l,t L L ol t ,t D\ i-' e 3 5 o { t^, l-----+ /; L+5l4 I\J V t 1_ I O (i l-t?iil, c o ''\-l! Ut/ L 1_ o iL0 0 \ -i/.t k, I 5 --7 {: -5 -*l 4_/l '\ l-t_ t, ( t-;l ! + o Ie '( -)-t\ / I J ( -i\,q ----) In ',,J Dr \c c o Z l-t o L / ! -{ .-' r / I ^tl\l I I I nt1 I '{ i,-) tz// I p_, -..r I b) Determine the va^rues of o and b such that the sysrem t; ^lil: I is consistent. L;]1,] 12 r^u/ ror/;'rrdi $r,, c,l: {ht *ef {,r, rn{ h4 f c Z'a/6 n' Ull *[ ,j */ , c) Sotve the system il i-/n i -' \1 i', /i .ra.. ,,-i t fawS ..(i.,.o/o,-c '-., ,-(,,. t J €i< l: IL ; !_ I o ,1 (, lJ ) L ! 4 { /^) I J j ; --__-_---__\ +-,/ ='i ,l Tt" \,F) c e {> IJ )- -/ sho''al {r{r'i,;"' 4 L'", /\ .'\ rl \-!7 / x-:z:7 ! +*z = -3 i(o-3c 'nl/,J ',. (_ /v t tui IttlJiz- l,- -/ -7 t/ , 4 -A. cf,^r_'... f' \_/ i'l rrr olt, LtI ) ,,n6{,,.* I a) / -f YI -1-z-- -?) // ! .3\ t+ {-+\= +(4 t i- ' \''1o /I \\.art \ ) Question a (L5pts) a) Find the inverse ','; ,jlL 11 nl4 1I -------=s 4 nt t, Vt?4^t'iO ? \.,/- ltJ- *Vt t.a in J" ., ) 4(: L/ | }- -t /-)f ! il \a -) 1l without using the determinant of B. -1 3 t o _j o {10 ,fi O g----i s; _i_l 7 o -L/ ,t n t-p, I Le' h{ "oi -/s 4. \)L T ,,t^ C |. 3 Ir OOI Li)N.rl2,l I \JI I -q')t 1-I.r .f E : ()t L /)\ ,/l /'1 c z-- / / -V i - i --)4r't 3'e tJ- i \ /t U 4_t ^Lo /) /__ -,b i3 "z: \-{ o Z/ ( lz o 1l["] :l?l-il b)Giventr,uryrtu* l6 ; --t I I ; I l,noasbyapplyingtheCramer'sruie' o 1lL,J l-r LtJ rule.) ionswlthouttheuramersrule.,l soiutions without the eramer's i l,nl a trl = ', I ,t t I -r o 7 o 5 sl c) l,"t C: | ? 2 28 1 1 +l lo o o o l rl l,-l-: r -f t3 o0la r.L4 r/ St tvl r II w I !_ \J r r-n't, , t-7 rt2oi ( = 2('\'/l*rirl-: t) ,t.l -,-,"r1 - 't:ii (c / t./-F )- ,.' -: \; li- lt )_!- i !( t! l*1 r-./ tntn tz_{\J t--t .t ,, -t". --4 l! I l-. LJ I t -L= i 4 ''a lul 1 i-\ I I 11 t- .,1 ial,g r I rlJ {]- /{ i,,A !. \> l Calculate det(C). lo o o o 3 s.l I ll=: lc! = ltr{lHl tH!= l)> _ a jJ I /:t \-/ (Nocred'itsfor ,,=\i t'l I o 3 tl Is 6r 2r 21 1 1 2l t:'i- ). l- ;? :!lI -,.? '-' ,/ I _4 J --4 -= 1 : -L P I I I euestion b (lbpis) a) Shorv rhar an lorver triangular niatrlx is inrertibie if and only if ail eniries on its diagonal are nonzero. Aa+ h k uv,,l --lt tauSu!<t ,t',.q+ 2rx Qr"+0+> A Lb rh/rrr+ rkn <+ i Il= fi,,O zL . J,ogcutl eu*trc.g Q*o* o e> . "Il b) Given a matrix A, show that Ar A is symmetric- i 4=A)r= r nf ( A')T= { l.r'= {n c) Given a matrix A, show that trace(ArA) > 0' l:ic,(e- (nrn) r-\I4e'\^yz a;;;),= f, i,o*A.r= Z 1.,A.,=27 ta zo =Z J K.-l J=t d) :f Assume that A-'= <) E=l A is inveriible. Prove that adl@) is invertible. a4(4) tr thl lU^ ):l a"\(*) , A: T m i'AI = +, )!+l ^'l:(l) /+-*r. 5-.-t lAl ' ,j ou,l -'J*';*f = -L lAl ^4e\ ^oU e) Assume that .4 is aa invet'cible n x n matrix. Calcuiate ladj(A)l in terrns of ir{1. A) =) lt-' l= lfotiA)l = -r h. __Lr o\(tA)l g-+ a(sa 1=lrl =lA A A-\4= ndS(, tR\n t -r'flAl'/ il t^l -r lA I' / 6L /t'l : n, I,Al)(A)l I {lzuu- a*/ 1,4(t)l= lAl\-1
© Copyright 2025