Generalized Löb`s Theorem. Strong Reflection Principles and Large

 Generalized Löb's Theorem. Strong Reflection Principles and Large Cardinal Axioms. Consistency Results in Topology and Homotopy Theory. J. Foukzon Israel Institute of Technology, Haifa, Israel jaykovfoukzon@list.ru Abstract. In this article we proved so‐called strong reflection principles corresponding to formal theories which has ‐models. An possible generalization of the Löb's theorem is considered. Main results are: (1) let be an inaccessible cardinal and is a set of all sets having hereditary size less , (2) there is a Lindelöf ₃ indestructible space of pseudo then , then character ₁ and size ₂ in . Keywords: Löb's theorem, second incompleteness Gödel theorem, consistency, formal system, uniform reflection principles, ‐model of , standard model of ,inaccessible cardinal, weakly compact cardinal, Lindelöf space. MSC:03E55,54A25 References [1] J.Foukzon, GeneralizeLöb'sTheorem. http://arxiv.org/abs/1301.5340 [2] J.Foukzon, An posible generalization of the Löb's theorem. AMS Sectional Meeting AMS Special Session.Spring Western Sectional Meeting University of Colorado Boulder, Boulder, CO April 13‐14, 2013. Meeting #1089 http://www.ams.org/meetings/sectional/2208_program_saturday.html [3] F.D. Tall, On the cardinality of Lindelöf spaces with points G_{δ}, Topology and its Applications 63 (1995), 21‐38. [4] ] J.Foukzon, Consistency Results in Topology and Homotopy Theory, Pure and Applied Mathematics Journal. Special Issue: Modern Combinatorial Set Theory and Large Cardinal Properties. Vol. 4, No. 1‐1, 2015, pp. 1‐5. doi: 10.11648/j.pamj.s.2015040101.11