&OLPDWH 6PDUW $JULFXOWXUH &RQIHUHQFH 0RQWSHOOLHU)UDQFH0DUFK , 2UDOSUHVHQWDWLRQ 0RGHOLQWHUFRPSDULVRQRQDJULFXOWXUDO*+*HPLVVLRQV dŚĞŝŶƚĞƌͲĐŽŵƉĂƌŝƐŽŶĞdžĞƌĐŝƐĞŚĂƐďĞĞŶƉƌĞƐĞŶƚĞĚĂƚƚŚĞůŝŵĂƚĞ^ŵĂƌƚŐƌŝĐƵůƚƵƌĞŽŶĨĞƌĞŶĐĞ͕ŚĞůĚ ŝŶ DŽŶƚƉĞůůŝĞƌ ĨƌŽŵ ϭϲͲϭϴ DĂƌĐŚ ϮϬϭϱ͕ ŝŶ ƚŚĞ ĨƌĂŵĞ ŽĨ ƚŚĞ ^ĞƐƐŝŽŶ >ϯ͘ϭ͗ ůŝŵĂƚĞ ĂĚĂƉƚĂƚŝŽŶ ĂŶĚ ŵŝƚŝŐĂƚŝŽŶ ƐĞƌǀŝĐĞƐ͘ dŚĞ ĂďƐƚƌĂĐƚ ǁŝƚŚ ƚŚĞ ĂƐƐŽĐŝĂƚĞĚ W& ǀĞƌƐŝŽŶ ŽĨ ƚŚĞ WŽǁĞƌWŽŝŶƚ ĂƌĞ ĂǀĂŝůĂďůĞ ďĞůŽǁ͘ EŽƚĞ ƚŚĂƚ ƚŚĞ ŽďƐĞƌǀĞĚ ǀĂůƵĞƐ ĨŽƌ EϮK ŚĂǀĞ ďĞĞŶ ŚŝĚĚĞŶ ĨŽƌ ƚŚŝƐ ǀĞƌƐŝŽŶ ĂŶĚ ƚŚĂƚ ƚŚĞ ĨŝŐƵƌĞƐ ĨŽƌ ƉƌŽĚƵĐƚŝŽŶ ;ŐƌĂŝŶ LJŝĞůĚ ĨŽƌ ĐƌŽƉƐ ĂŶĚ ŐƌĂƐƐůĂŶĚ ƉƌŽĚƵĐƚŝŽŶͿ ĂƌĞ ŶŽƚ ƚŚĞ ĚĞĨŝŶŝƚŝǀĞ ŽŶĞƐ ;ƌĞƐƵůƚƐ ĞdžƚƌĂĐƚĞĚŽŶϭϯ͘Ϭϯ͘ϭϱͿƐŝŶĐĞŵŽĚĞůůŝŶŐƚĞĂŵƐŚĂǀĞƵƉĚĂƚĞĚƚŚĞŝƌƌĞƐƵůƚƐŝŶďĞƚǁĞĞŶ͕ĨŽůůŽǁŝŶŐƚŚĞ ƐƚĞĞƌŝŶŐĐŽŵŵŝƚƚĞĞƌĞƋƵĞƐƚ͘ ZĞĨĞƌĞŶĐĞ ŚƌŚĂƌĚƚ &͕ ^ŽƵƐƐĂŶĂ :Ͳ&͕ 'ƌĂĐĞ W͕ ZĞĐŽƵƐ ^͕ ^ŶŽǁ s͕ ĞůůŽĐĐŚŝ '͕ ĞĂƵƚƌĂŝƐ :͕ ĂƐƚĞƌ D͕ >ŝĞďŝŐ D͕ ^ŵŝƚŚW͕ĞůƐŽ͕ŚĂƚŝĂ͕ƌŝůůŝ>͕ŽŶĂŶƚZ͕ĞůŝŐŝŽƐW͕ŽůƚƌĂ:͕&ĂƌŝŶĂZ͕&ŝƚƚŽŶE͕'ƌĂŶƚ͕,ĂƌƌŝƐŽŶ D͕ <ŝƌƐĐŚďĂƵŵ D͕ <ůƵŵƉƉ <͕ >ĠŽŶĂƌĚ :͕ >ŝĞĨĨĞƌŝŶŐ D͕ DĂƌƚŝŶ Z͕ DĂƐƐĂĚ Z^͕ DĞŝĞƌ ͕ DĞƌďŽůĚ >͕ DŽŽƌĞ͕DƵůĂ>͕EĞǁƚŽŶW͕WĂƚƚĞLJ͕ZĞĞƐ͕^ŚĂƌƉ:͕^ŚĐŚĞƌďĂĐŬ/͕^ŵŝƚŚt͕dŽƉƉ<͕tƵ>͕ŚĂŶŐ t͘ϮϬϭϱ͘ŶŝŶƚĞƌŶĂƚŝŽŶĂůŝŶƚĞƌĐŽŵƉĂƌŝƐŽŶΘďĞŶĐŚŵĂƌŬŝŶŐŽĨĐƌŽƉĂŶĚƉĂƐƚƵƌĞŵŽĚĞůƐƐŝŵƵůĂƚŝŶŐ ',' ĞŵŝƐƐŝŽŶƐ ĂŶĚ ƐĞƋƵĞƐƚƌĂƚŝŽŶ͘ /Ŷ͗ dŽǁĂƌĚƐ ůŝŵĂƚĞͲ^ŵĂƌƚ ^ŽůƵƚŝŽŶƐ >ϯ͘ϭ ůŝŵĂƚĞ͕ ĂĚĂƉƚĂƚŝŽŶ ĂŶĚŵŝƚŝŐĂƚŝŽŶƐĞƌǀŝĐĞƐ͕ůŝŵĂƚĞͲ^ŵĂƌƚŐƌŝĐƵůƚƵƌĞ͕ϭϲͲϭϴDĂƌĐŚϮϬϭϱ͗DŽŶƚƉĞůůŝĞƌ͕Ɖ͘ϰϭ͘ ,, 3RVWHUVHVVLRQ *UDVVODQGVVHQVLWLYLW\DQDO\VLVWRFOLPDWHFKDQJH dŚĞ 'ƌĂƐƐůĂŶĚ ƐƵďŐƌŽƵƉ ŽĨ ƚŚĞ ŐD/W 'ƌĂƐƐůĂŶĚ Θ >ŝǀĞƐƚŽĐŬ ŐƌŽƵƉ ŚĂƐ ƐƚĂƌƚĞĚ ƚŽ ĂŶĂůLJnjĞ ƚŚĞ ŐƌĂƐƐůĂŶĚ ƐĞŶƐŝƚŝǀŝƚLJ ƚŽ ĐůŝŵĂƚĞ ĐŚĂŶŐĞ ďLJ ĂĚĂƉƚŝŶŐ ƚŚĞ ϯDW ƉƌŽƚŽĐŽů ;ƐĞĞ ŚƚƚƉ͗ͬͬǁǁǁ͘ĂŐŵŝƉ͘ŽƌŐͬĐϯŵƉͬͿ͘ ƉŽƐƚĞƌ ŚĂƐ ďĞĞŶ ƉƌĞƐĞŶƚĞĚ Ăƚ ƚŚĞ ^ ϭϱ ;ƐĞƐƐŝŽŶ͗ >ϯ͘ϭ ůŝŵĂƚĞ ĂĚĂƉƚĂƚŝŽŶĂŶĚŵŝƚŝŐĂƚŝŽŶƐĞƌǀŝĐĞƐͿ͕ƉƌĞƐĞŶƚŝŶŐƚŚĞĞŶƐĞŵďůĞŽĨŵŽĚĞůƐƚŚĂƚŚĂǀĞĐŽŶƚƌŝďƵƚĞĚƚŽƚŚĞ ƐĞŶƐŝƚŝǀŝƚLJĂŶĂůLJƐŝƐĨŽƌƚĞŵƉĞƌĂƚĞŐƌĂƐƐůĂŶĚƐLJƐƚĞŵƐ͘ ŵĞƚĂͲĞŵƵůĂƚŽƌĨŽƌƚŚĞĞƐƚŝŵĂƚŝŽŶŽĨƚŚĞƌĞůĂƚŝǀĞĐŚĂŶŐĞƐ͕ƌĞƐƉĞĐƚŝǀĞůLJŝŶŐƌĂƐƐůĂŶĚƉƌŽĚƵĐƚŝŽŶĂŶĚ EϮK ĞŵŝƐƐŝŽŶƐ͕ ŚĂƐ ďĞĞŶ ĐĂůĐƵůĂƚĞĚ ƌĞƐƵůƚŝŶŐ ŝŶ ƐƵƌĨĂĐĞ ƌĞƐƉŽŶƐĞƐ ŝŶ ƚŚĞ dĞŵƉĞƌĂƚƵƌĞ ;ΣͿ ĂŶĚ WƌĞĐŝƉŝƚĂƚŝŽŶ;ŵŵͿĚŝŵĞŶƐŝŽŶƐĂƚKϮĞdžƚƌĞŵĞůĞǀĞůƐŽĨƚŚĞϵϵƐĐĞŶĂƌŝŽƐ;ϯϴϬĂŶĚϵϬϬƉƉŵͿ͘ 'ůŽďĂů ŵĂƉƐ ƐŚŽǁŝŶŐ ƚŚĞƌĞůĂƚŝǀĞ ĐŚĂŶŐĞƐ ŝŶ ƌĞƐƉĞĐƚŝǀĞůLJ͕ ŐƌĂƐƐůĂŶĚ ƉƌŽĚƵĐƚŝŽŶ ĂŶĚ EϮK ĞŵŝƐƐŝŽŶƐ ƵŶĚĞƌĨƵƚƵƌĞĐůŝŵĂƚŝĐƐĐĞŶĂƌŝŽƐ;ϮϬϱϬƐZWϰ͘ϱ͕ϮϬϱϬƐZWϴ͘ϱͿĐŽŵƉĂƌĞĚƚŽĐƵƌƌĞŶƚĐůŝŵĂƚĞ;ϭϵϴϬͲ ϮϬϬϵͿĐĂŶďĞƉƌŽĚƵĐĞĚĨƌŽŵƚŚĞƐŝƚĞͲƐƉĞĐŝĨŝĐĞŵƵůĂƚŽƌƐ͘ ZĞĨĞƌĞŶĐĞ ĞůůŽĐĐŚŝ͕'͕͘ŚƌŚĂƌĚƚ͕&͕͘^ŽƵƐƐĂŶĂ͕:͘Ͳ&͕͘ŽŶĂŶƚ͕Z͕͘&ŝƚƚŽŶ͕E͕͘,ĂƌƌŝƐŽŶ͕D͕͘>ŝĞĨĨĞƌŝŶŐ͕D͕͘DŝŶĞƚ͕:͕͘ DĂƌƚŝŶ͕ Z͕͘ DŽŽƌĞ͕ ͕͘ DLJƌŐŝŽƚŝƐ͕ s͕͘ ZŽůŝŶƐŬŝ͕ ^͕͘ ZƵŐĞƚ͕ &͕͘ ^ŶŽǁ͕ s͕͘ tĂŶŐ͕ ,͕͘ tƵ͕ >͕͘ ϮϬϭϱ͘ ^ĞŶƐŝƚŝǀŝƚLJ ĂŶĂůLJƐŝƐ ĨŽƌ ĐůŝŵĂƚĞ ĐŚĂŶŐĞ ŝŵƉĂĐƚƐ͕ ĂĚĂƉƚĂƚŝŽŶ ĂŶĚ ŵŝƚŝŐĂƚŝŽŶ ƉƌŽũĞĐƚŝŽŶ ǁŝƚŚ ƉĂƐƚƵƌĞ ŵŽĚĞůƐ͘ /Ŷ͗ dŽǁĂƌĚƐ ůŝŵĂƚĞͲ^ŵĂƌƚ ^ŽůƵƚŝŽŶƐ >ϯ͘ϭ ůŝŵĂƚĞ͕ ĂĚĂƉƚĂƚŝŽŶ ĂŶĚ ŵŝƚŝŐĂƚŝŽŶ ƐĞƌǀŝĐĞƐ͕ ůŝŵĂƚĞͲ^ŵĂƌƚŐƌŝĐƵůƚƵƌĞ͕ϭϲͲϭϴDĂƌĐŚϮϬϭϱ͗DŽŶƚƉĞůůŝĞƌ͕Ɖ͘ϭϭϬ͘ Ƭ ͙ǡ Ǧ͙ǡ ͚ǡ ͛ǡ ͜ǡ ͝ǡ ͞ǡ ͟ǡ ͠ǡ ͡ǡ ͙͘ǡ ͙͙ǡ ͙͚ǡ ͟ǡ ͙͛ǡ͙͜ǡ͙͝ǡ͡ǡ ͙͞ǡ ͙͟ǡ ͙͠ǡ ͝ǡ ± ´͙͡ǡ ͞ǡ ´͝ǡ ͚͘ǡ ͚͙ǡ ͚͚ǡ ͚͙ǡ ͙͛ǡ ͚͙ǡ ͙͞ǡ ͚͛ǡ͚͜ǡ ͚ǡ͙͞ǡ͚͛ǡ͚͝ǡ͚͞ ͙ǡǡ ͚ ǡǡ ͛ǡǡǡ ͜ ǡ ǡ ǡ ͝ǡ ȋ͟͜͠Ȍǡǡ ͞ ǡǡ ͟ǡǡǡ ͠ ǡǡ ͡ ǡǡ ǡ ͙͘ǡǡ ͙͙ ǡǡ ͙͚ ǡǡ ǡ ͙͛ ǡǡ ͙͜ ǡǡ͙͝Ǧ ǡ Ǧǡǡ͙͞ Ǧǡǡ ͙͟ ǡǡ ͙͠ ǡǡ ͙͡ǡ͙͙͝͠ ǡǡ ͚͘ ǡǦ ͚͙ǡ ͚͚ ǡ ǡ ͚͛ǡ ǡ ͚͜Ƭ ǡ ͚͝ ǡ ǡ ͚͞ ǡ ǡǡ ǡ ǡ ȋ Ȍ ǤǦ ȋ Ȍ Ǧ ǤǦ ǡǦ Ǥ ǡ Ǥ ͚͠ ͙͙ ϰϭ ǡ Ǧ Ǥ Ǧ Ǥ Ǧ ǡ ͚ ǡ ͚ Ǥ Ǧ ǡ Ǥ ͚ Ǥ ǡ ͚ ͚ Ǥ Ǧ ǡ ǡ Ǥ (KUKDUGW)6RXVVDQD-)*UDFH35HFRXV66QRZ9%HOORFFKL*%HDXWUDLV-(DVWHU0/LHELJ06PLWK3&HOVR$ %KDWLD$%ULOOL/&RQDQW5'HOLJLRV3'ROWUD-)DULQD5)LWWRQ1*UDQW%+DUULVRQ0.LUVFKEDXP 0.OXPSS./pRQDUG-/LHIIHULQJ00DUWLQ50DVVDG560HLHU(0HUEROG/0RRUH$0XOD/ 1HZWRQ33DWWH\(5HHV%6KDUS-6KFKHUEDFN,6PLWK:7RSS.:X/=KDQJ:$Q LQWHUQDWLRQDOLQWHUFRPSDULVRQEHQFKPDUNLQJRIFURSDQGSDVWXUHPRGHOVVLPXODWLQJ*+*HPLVVLRQV DQG&VHTXHVWUDWLRQ,Q7RZDUGV&OLPDWH6PDUW6ROXWLRQV/&OLPDWHDGDSWDWLRQDQGPLWLJDWLRQ VHUYLFHVKWWSFVDFLUDGIUYDUFVDVWRUDJHIFNHGLWRUILOH/7RZDUGV&OLPDWH VPDUW6ROXWLRQVSGIDFFHVVHG0DUFK&OLPDWH6PDUW$JULFXOWXUH0DUFK 0RQWSHOOLHUS ϰϮ An international intercomparison and benchmarking of crop and pasture models simulating GHG emissions and C sequestration ŚƌŚĂƌĚƚ &ŝŽŶĂϭ͕ ^ŽƵƐƐĂŶĂ :ĞĂŶͲ&ƌĂŶĕŽŝƐϭ͕ 'ƌĂĐĞ WĞƚĞƌϮ͕ ZĞĐŽƵƐ ^LJůǀŝĞϯ͕ ^ŶŽǁ sĂůϰ͕ ĞůůŽĐĐŚŝ 'ŝĂŶŶŝϱ͕ ĞĂƵƚƌĂŝƐ :ŽƐĞĨϲ͕ ĂƐƚĞƌ DĂƌŬϳ͕ >ŝĞďŝŐ DĂƌŬϴ͕ ^ŵŝƚŚ WĞƚĞϵ͕ ĞůƐŽ ŝƚĂϭϬ͕ ŚĂƚŝĂ ƌƚŝϭϭ͕ ƌŝůůŝ >ŽƌĞŶnjŽϭϮ͕ ŽŶĂŶƚ ZŝĐŚϳ͕ ĞůŝŐŝŽƐ WĂŽůĂϭϯ͕ ŽůƚƌĂ :ŽƌĚŝϭϰ͕ &ĂƌŝŶĂ ZŽďĞƌƚĂϭϱ͕ &ŝƚƚŽŶ EƵĂůĂϵ͕ 'ƌĂŶƚ ƌŝĂŶϭϲ͕ ,ĂƌƌŝƐŽŶ DĂƚƚŚĞǁϭϳ͕ <ŝƌƐĐŚďĂƵŵ DŝŬŽϭϴ͕ <ůƵŵƉƉ <ĂƚũĂϱ͕ >ĠŽŶĂƌĚ :Žģůϭϵ͕ >ŝĞĨĨĞƌŝŶŐ DĂƌŬϲ͕ DĂƌƚŝŶ ZĂƉŚĂģůϱ͕ DĂƐƐĂĚ ZĂŝĂ ^LJůǀŝĂϮϬ͕ DĞŝĞƌ ůŝnjĂďĞƚŚϮϭ͕ DĞƌďŽůĚ >ƵƚnjϮϮ͕ DŽŽƌĞ ŶĚƌĞǁϮϭ͕DƵůĂ >ĂƵƌĂϭϯ͕ EĞǁƚŽŶ WĂƵůϮϭ͕ WĂƚƚĞLJ ůŝnjĂďĞƚŚϭϲ͕ ZĞĞƐ ŽďϮϯ͕ ^ŚĂƌƉ :ŽĂŶŶĂϮϰ͕ ^ŚĐŚĞƌďĂĐŬ /ƵƌŝŝϮ͕ ^ŵŝƚŚ tĂƌĚϭϲ͕ dŽƉƉ <ĂŝƌƐƚLJϮϯ͕ tƵ >ŝĂŶŚĂŝϮϱ͕ ŚĂŶŐ tĞŶϮϲ /ŶƐƚŝƚƵƚŝŽŶƐ ŝŶǀŽůǀĞĚ͗ /EZ͕ &ƌĂŶĐĞ͖ YƵĞĞŶƐůĂŶĚ hŶŝǀĞƌƐŝƚLJ ŽĨ dĞĐŚŶŽůŽŐLJ͕ ƵƐƚƌĂůŝĂ͖ ŐZĞƐĞĂƌĐŚ͕ EĞǁ ĞĂůĂŶĚ͖ EZ>͕ ŽůŽƌĂĚŽ ^ƚĂƚĞ hŶŝǀĞƌƐŝƚLJ͕ h^͖ h^ ŐƌŝĐƵůƚƵƌĂů ZĞƐĞĂƌĐŚ ^ĞƌǀŝĐĞ͕ h^͖ hŶŝǀĞƌƐŝƚLJ ŽĨ ďĞƌĚĞĞŶ͕ h<͖ &ĞĚĞƌĂů hŶŝǀĞƌƐŝƚLJ ŽĨ ^ĂŶƚĂ DĂƌŝĂ͕ ƌĂnjŝů͖ /ŶĚŝĂŶ ŐƌŝĐƵůƚƵƌĂů ZĞƐĞĂƌĐŚ /ŶƐƚŝƚƵƚĞ͕ /ŶĚŝĂ͖ hŶŝǀĞƌƐŝƚLJ ŽĨ &ůŽƌĞŶĐĞ͕ /ƚĂůLJ͖ hŶŝǀĞƌƐŝƚLJ ŽĨ ^ĂƐƐĂƌŝ͕ /ƚĂůLJ͖ ĂŶƚĂďƌŝĂ ŐƌŝĐƵůƚƵƌĂů ZĞƐĞĂƌĐŚ ĂŶĚ dƌĂŝŶŝŶŐ ĞŶƚƌĞ͕ ^ƉĂŝŶ͖ ZĞƐĞĂƌĐŚ ĞŶƚƌĞ ĨŽƌ ƚŚĞ ^ŽŝůͲWůĂŶƚ ^LJƐƚĞŵ͕ /ƚĂůŝĂ͖ ŐƌŝĐƵůƚƵƌĞ ĂŶĚ ŐƌŝͲ&ŽŽĚ ĂŶĂĚĂ͕ ĂŶĂĚĂ͖ dĂƐŵĂŶŝĂŶ ŝŶƐƚŝƚƵƚĞ ŽĨ ŐƌŝĐƵůƚƵƌĞ͕ ƵƐƚƌĂůŝĂ͖ >ĂŶĚĐĂƌĞ ZĞƐĞĂƌĐŚ͕ EĞǁ ĞĂůĂŶĚ͖ ^/ZK͕ ƵƐƚƌĂůŝĂ͖ d, ƵƌŝĐŚ͕ ^ǁŝƚnjĞƌůĂŶĚ͖ ^Zh ĚŝŶďƵƌŐŚ ĂŵƉƵƐ͕ h<͖ EĞǁ ĞĂůĂŶĚ /ŶƐƚŝƚƵƚĞ ĨŽƌ WůĂŶƚ Θ &ŽŽĚ ZĞƐĞĂƌĐŚ͕ EĞǁ ĞĂůĂŶĚ͖ ĞƉĂƌƚŵĞŶƚ ŽĨ ^ƵƐƚĂŝŶĂďůĞ ^Žŝů ^ĐŝĞŶĐĞ ĂŶĚ 'ƌĂƐƐůĂŶĚ ^LJƐƚĞŵ͕ ZŽƚŚĂŵƐƚĞĚ ZĞƐĞĂƌĐŚ͕ h<͖ /ŶƐƚŝƚƵƚĞ ŽĨ ƚŵŽƐƉŚĞƌŝĐ WŚLJƐŝĐƐ͕ ŚŝŶĂ͘ DŽŶƚƉĞůůŝĞƌDĂƌĐŚϭϲͲϭϴ͕ϮϬϭϱ Session L3.1 Climate adaptation and mitigation services /ŶƚĞƌŶĂƚŝŽŶĂůΘĐŽůůĂďŽƌĂƚŝǀĞǁŽƌŬ ƵŶĚĞƌƚŚĞƵŵďƌĞůůĂŽĨƚŚĞ^ŽŝůΘEĐLJĐůŝŶŐĐƌŽƐƐͲĐƵƚƚŝŶŐ ŐƌŽƵƉŽĨƚŚĞ'ůŽďĂůZĞƐĞĂƌĐŚůůŝĂŶĐĞ 1st workshop ‘Model intercomparison’ Paris, France – March 2014 • ϰ & :W/ ƉƌŽũĞĐƚƐ ͗ EͲD/W͕ DŽĚĞůƐϰWĂƐƚƵƌĞƐ͕ ŽŵĞƚͲ'ůŽďĂů͕ D''Ed • ϭϱĐŽŶƚƌŝďƵƚŝŶŐĐŽƵŶƚƌŝĞƐ • хϰϬ ƉĞŽƉůĞ ŝŶǀŽůǀĞĚ͗ ŵŽĚĞůĞƌƐ͕ ƐŝƚĞ ĚĂƚĂ ƉƌŽǀŝĚĞƌƐ͕ ĐŽŽƌĚŝŶĂƚŽƌƐ͕ ƐƚĂƚŝƐƚŝĐŝĂŶƐ͕ ƉƌŽũĞĐƚ ŚŽůĚĞƌƐ 2nd workshop ‘Model intercomparison’ Fort Collins, USA – March 2015 ϭ dŚĞĐŚĂůůĞŶŐĞŽĨďĞŶĐŚŵĂƌŬŝŶŐΘŝŶƚĞƌĐŽŵƉĂƌŝƐŽŶ :K\EHQFKPDUNDQGLQWHUFRPSDUHPRGHOV" • ǀĂůƵĂƚĞŵŽĚĞůƉĞƌĨŽƌŵĂŶĐĞĂŐĂŝŶƐƚŽƚŚĞƌƐĂŶĚĂŐĂŝŶƐƚĚĂƚĂ • džĂŵŝŶĞǁŚĞƌĞĂŵŽĚĞůĨĂŝůƐĂŶĚǁŚLJŽƚŚĞƌŵŽĚĞůƐĚŽďĞƚƚĞƌʹ ŝŵƉƌŽǀĞ ƚŚĞŵŽĚĞů͖ǁŚĞƌĞĂůůŵŽĚĞůƐĨĂŝůʹ ĚƌŝǀĞŶĞǁƐĐŝĞŶĐĞ • dĞƐƚƌŽďƵƐƚŶĞƐƐŽĨŵŽĚĞůƐŽŶǀĂƌŝŽƵƐŐĞŽŐƌĂƉŚŝĐΘƉĞĚŽĐůŝŵĂƚŝĐ ĂƌĞĂƐ +RZWRSURFHHG" • dĞƐƚŵŽĚĞůƐŝŵƵůĂƚŝŽŶĂŐĂŝŶƐƚŝŶĚĞƉĞŶĚĞŶƚĞdžƉĞƌŝŵĞŶƚĂůƐŝƚĞĚĂƚĂ – &ŝƌƐƚ͕ǁŝƚŚŽƵƚƐŝƚĞƐƉĞĐŝĨŝĐĐĂůŝďƌĂƚŝŽŶ – dŚĞŶ͕ǁŝƚŚŝŵƉƌŽǀĞĚĐĂůŝďƌĂƚŝŽŶ $QGWKHQ" • /ŵƉƌŽǀĞŵŽĚĞůƉĞƌĨŽƌŵĂŶĐĞŽŶĨƵƚƵƌĞƉƌĞĚŝĐƚŝŽŶƐ • ƐƚĂďůŝƐŚŐƵŝĚĞƵƐĞƌƐŽŶǁŚŝĐŚŵŽĚĞůƚŽƵƐĞĨŽƌǁŚŝĐŚƉƵƌƉŽƐĞ • ^ĞƚƐƚĂŶĚĂƌĚƐĨŽƌŶĞǁŵŽĚĞůƐƚŽŵĞĞƚ DĂŝŶĐƌŝƚĞƌŝĂ ĨŽƌƐŝƚĞƐĞůĞĐƚŝŽŶ Æ džƉĞƌŝŵĞŶƚĂůƐŝƚĞ;ŐƌĂƐƐůĂŶĚŽƌĐƌŽƉ ŝŶĐůƵĚŝŶŐǁŚĞĂƚͿ Æ 'ĞŶĞƌĂůƐŝƚĞĚĞƐĐƌŝƉƚŝŽŶ͕ĐůŝŵĂƚĞ͕ƐŽŝů͕ ǀĞŐĞƚĂƚŝŽŶͬƐƉĞĐŝĞƐͬĐƵůƚŝǀĂƌ͕ŵĂŶĂŐĞŵĞŶƚ ΘƐŝƚĞŚŝƐƚŽƌLJ Æ WƵďůŝƐŚĞĚƉĂƉĞƌ Æ ĂŝůLJĐůŝŵĂƚĞĚĂƚĂĐŽǀĞƌŝŶŐĂƚůĞĂƐƚϯ ĐŽŵƉůĞƚĞLJĞĂƌƐ Æ &ƌĞƋƵĞŶƚ','ŵĞĂƐƵƌĞŵĞŶƚƐ;ŝĚĞĂůůLJǁŝƚŚ ĨůƵdžƚŽǁĞƌƐͿ͕ƐŽŝůƐƚŽĐŬĐŚĂŶŐĞĂŶĚLJŝĞůĚ 4 Ϯ ϭϬƐŝƚĞƐƐĞůĞĐƚĞĚĨŽƌŵŽĚĞůŝŶƚĞƌͲĐŽŵƉĂƌŝƐŽŶ E ϭĐƌŽƉůĂŶĚ &ZE ϭŐƌĂƐƐůĂŶĚ нϭĐƌŽƉůĂŶĚ h< ϭŐƌĂƐƐůĂŶĚ ^t/dZ>E ϭŐƌĂƐƐůĂŶĚ h^dZ>/ h^ ϭĐƌŽƉůĂŶĚ ϭŐƌĂƐƐůĂŶĚ Z/> ϭĐƌŽƉůĂŶĚ Et >E ϭŐƌĂƐƐůĂŶĚ /E/ ϭĐƌŽƉůĂŶĚ 5 ϮϴŵŽĚĞůƐĨƌŽŵϭϭĐŽƵŶƚƌŝĞƐ ĨƌŽŵƉƌŽĐĞƐƐͲŽƌŝĞŶƚĞĚŵŽĚĞůƐƚŽƐŝŵƉůĞƌŵŽĚĞůƐ ĂLJĐĞŶƚ ǀϰ͘ϱ;/dͿ ĂŝůLJĂLJĐĞŶƚ ;Ϳ ƌĂďůĞĐƌŽƉƐ ŽƚŚ /ŶĨŽĐƌŽƉ ;/ŶĚŝĂͿ ĂŝůLJĂLJĐĞŶƚ ǀ͘ϮϬϭϬ;/dͿ ĂLJĐĞŶƚ ;h^Ϳ 'ƌĂƐƐůĂŶĚƐ ĐŽƐLJƐƚĞŵ ŵŽĚĞůƐ Z^Ͳ ';&ZͿ ^d/^ ǀ͘ϴ͘Ϯ;&ZͿ W/ϴϭϬ ;/dͿ ZŽƚŚϭϬ ;/dͿ >ĂŶĚƐĐĂƉĞ E;h<Ϳ ;EͿ W^/DͲ^t/D ǀ͘ϳ͘ϲ;EͿ >W:Ͳ'ƵĞƐƐϮϬϬϴ ;'Ϳ ŐƌŽͲ ǀ͘ϭ͘Ϭ ;ŚŝŶĂͿ W^/Dǀ͘ϳ͘ϲ ;EͿ ^^d ǀ͘ϰ͘ϱ;/dͿ Eϵϱ ;Ϳ ^^dϰϱͲE'^ ^^dϰϱ E'^ ;hͿ ^>h^ ;h^Ϳ W^/DͲ^ŽŝůtĂƚĞƌ WĂ^ŝŵ ;&ZͿ W^/D ǀ͘ϳ͘ϱ;hͿ &^^d ǀϮ͘ϱ ;^ƉĂŝŶͿ ĂŝƌLJDŽĚĞůͬ ĐŽŵŽĚ ǀ͘ϱ͘ϯ͘ϭ;hͿ W^/D Ͳ'ZW>E ;Ϳ ^W^z^;h<Ϳ ĞŶt ;EͿ >W:ŵ> ǀ͘ϯ͘ϱ͘ϯ ;'Ϳ 6 ϯ WƌŽƚŽĐŽů͗ŝŶƚĞƌͲĐŽŵƉĂƌĞĚǀĂƌŝĂďůĞƐ WZKhd/KE ƌĂďůĞĐƌŽƉƉƌŽĚƵĐƚŝŽŶ͗'ƌĂŝŶLJŝĞůĚ 'ƌĂƐƐůĂŶĚƉƌŽĚƵĐƚŝŽŶ͗ŝŶƚĂŬĞŽƌLJŝĞůĚ ;ŬŐDŵͲϮĐƌŽƉͲϭͿ ;ŬŐDŵͲϮĚͲϭͿ s'dd/KE >ĞĂĨƌĞĂ/ŶĚĞdž ďŽǀĞͲŐƌŽƵŶĚEĞƚWƌŝŵĂƌLJWƌŽĚƵĐƚŝŽŶ ĞůŽǁͲŐƌŽƵŶĚEĞƚWƌŝŵĂƌLJWƌŽĚƵĐƚŝŽŶ ;ŵϸ͘ŵͲϮͿ ;ŬŐDŵͲϮĚͲϭͿ ;ŬŐDŵͲϮĚͲϭͿ ZKE 'ƌŽƐƐWƌŝŵĂƌLJWƌŽĚƵĐƚŝŽŶ EĞƚWƌŝŵĂƌLJWƌŽĚƵĐƚŝŽŶ ĐŽƐLJƐƚĞŵZĞƐƉŝƌĂƚŝŽŶ ŚĂŶŐĞŝŶƚŽƚĂůƐŽŝůŽƌŐĂŶŝĐĐĂƌďŽŶƐƚŽĐŬ ;ŬŐŵͲϮĚͲϭͿ ;ŬŐŵͲϮĚͲϭͿ ;ŬŐŵͲϮĚͲϭͿ ;ŬŐŵͲϮ LJƌͲϭͿ EϮKĞŵŝƐƐŝŽŶƐ ŚĂŶŐĞŝŶƚŽƚĂůƐŽŝůŽƌŐĂŶŝĐŶŝƚƌŽŐĞŶ ;ђŐEͲEϮK ŵͲϮ ĚͲϭͿ ;ŐEŵͲϮLJƌͲϭͿ ŶƚĞƌŝĐ,ϰ ,ϰ ĞŵŝƐƐŝŽŶƐ EŝƚƌĂƚĞůĞĂĐŚŝŶŐƚŚƌŽƵŐŚƐŽŝůƉƌŽĨŝůĞ ŵŵŽŶŝĂǀŽůĂƚŝůŝnjĂƚŝŽŶĨƌŽŵƐŽŝů ;ŐͲ,ϰ ŵͲϮĚͲϭͿ ;ŐͲ,ϰ ŵͲϮĚͲϭͿ ;ђŐEͲEKϯ ŵͲϮĚͲϭͿ ;ђŐEͲE,ϯ ŵͲϮĚͲϭͿ E/dZK'E ^W/&/ &KZ W^dhZ^ 7 WƌŽƚŽĐŽů͗^ƵĐĐĞƐƐŝǀĞƚĞƐƚƐŝŶŵŽĚĞů ďĞŶĐŚŵĂƌŬŝŶŐ ĂŶĚĐĂůŝďƌĂƚŝŽŶ Reduced Uncertainty More data Required Improved calibration Reduced use for projections 8 ϰ ůŝŶĚƚĞƐƚ͗ŝŶŝƚŝĂůƐŝƚĞŝŶƉƵƚƐĚĂƚĂ • ^ŝƚĞ ĚĞƐĐƌŝƉƚŝŽŶ ĐŽƵŶƚƌLJ͕ ůĂƚŝƚƵĚĞ E͕ ĞůĞǀĂƚŝŽŶ͕ ƐůŽƉĞ͕ ĂƐƉĞĐƚ͕ ĂůďĞĚŽ͕ ĨŝĞůĚ ĂƌĞĂ • ůŝŵĂƚĞ ĚĂŝůLJ ƉƌĞĐŝƉŝƚĂƚŝŽŶ͕ ƚĞŵƉĞƌĂƚƵƌĞ͕ ƐŽůĂƌ ƌĂĚŝĂƚŝŽŶ ǁŝŶĚ ƐƉĞĞĚ͕ ǀĂƉŽƌ ƉƌĞƐƐƵƌĞ͕ E,ϯĂƚŵ͕ KϮĂƚŵ • ^Žŝů ŝŶŝƚŝĂů ĚĂƚĂ ĨŽƌ ĞĂĐŚ ůĂLJĞƌ ĚĞƉƚŚ͕ ƉŚLJƐŝĐŽĐŚĞŵŝĐĂů ĚĞƐĐƌŝƉƚŝŽŶ • DĂŶĂŐĞŵĞŶƚ ͗ ĐƌŽƉůĂŶĚ ͖ ŐƌĂƐƐůĂŶĚ ĐƵůƚŝǀĂƌ͕ ĐƌŽƉ ŚŝƐƚŽƌLJ͕ ƚŝůůĂŐĞ͕ ĐƌŽƉ ƌĞƐŝĚƵĞƐ ͖ ŐƌĂnjŝŶŐ ͬŵŽǁŝŶŐ ŵĂŶĂŐĞŵĞŶƚ • 'ƌĂƐƐůĂŶĚ ǀĞŐĞƚĂƚŝŽŶ ĚĞƐĐƌŝƉƚŝŽŶ • &ĞƌƚŝůŝnjĂƚŝŽŶ ĚĂƚĞƐ ĂŶĚ ƚLJƉĞƐ • /ƌƌŝŐĂƚŝŽŶ 9 ůŝŶĚƚĞƐƚ͗ĚĂƚĂĞdžĐŚĂŶŐĞƐLJƐƚĞŵ ^ŝƚĞĚĂƚĂ ƉƌŽǀŝĚĞƌƐ ^ŝƚĞ ĚĂƚĂ н ĞdžƉ͘ ŵĞĂƐƵƌ ĞŵĞŶƚƐ &ŝŽŶĂ͘ ͲĂƚĂĐŚĞĐŬŝŶŐ͕ƐŽƌƚŝŶŐн ĂŶŽŶLJŵŝƚLJ Ͳ/ŶƉƵƚĚĂƚĂƐƵƉƉůLJ &ŽƌƵŵĚŝƐĐƵƐƐŝŽŶ ;ŐŽŽŐůĞŐƌŽƵƉͿ :ŽƐĞĨ͘ ͲƌŽƉďŽdžΘĨŽƌƵŵĚŝƐĐƵƐƐŝŽŶ ŵĂŶĂŐĞŵĞŶƚ Ͳ ĂƚĂĂĐĐĞƐƐ ^ŝƚĞŝŶƉƵƚĚĂƚĂ ƌŽƉďŽdž ^ŝŵ͘ ŽƵƚƉƵƚƐ DŽĚĞůŝŶŐ ƚĞĂŵƐ Comparison of experimental site data measurements vs. simulated outputs ƌŽƉƐLJƐƚĞŵƐ 'ƌĂƐƐůĂŶĚƐLJƐƚĞŵƐ 10 ϱ ,ŽǁƚŽĐŽŵƉĂƌĞŽďƐĞƌǀĞĚǀƐ͘ƐŝŵƵůĂƚĞĚĚĂƚĂ͍ 3HUIRUPDQFHDJDLQVWWKHPHWULFV – – – – – ZϮ͕ŽĞĨĨŝĐŝĞŶƚŽĨĚĞƚĞƌŵŝŶĂƚŝŽŶ Ě͕ŝŶĚĞdžŽĨĂŐƌĞĞŵĞŶƚ ZZD^͕ZĞůĂƚŝǀĞƌŽŽƚŵĞĂŶƐƋƵĂƌĞĞƌƌŽƌ &͕DŽĚĞůůŝŶŐĞĨĨŝĐŝĞŶĐLJ W;ƚͿ͕WĂŝƌĞĚ^ƚƵĚĞŶƚƚͲƚĞƐƚƉƌŽďĂďŝůŝƚLJŽĨŵĞĂŶƐďĞŝŶŐĞƋƵĂů $QDO\VLV • sŝƐƵĂůŝnjŝŶŐŵŽĚĞůƉĞƌĨŽƌŵĂŶĐĞ – >ŝŶĞƉůŽƚƐŽĨŵĞĂƐƵƌĞĚĂŐĂŝŶƐƚŵŽĚĞůůĞĚĚĂƚĂ – ŽdžƉůŽƚƐ • ĂƚĂĂŐŐƌĞŐĂƚŝŽŶ – ůůƐĞĂƐŽŶƐŝŶŽŶĞƐŝƚĞ͘ – ^ŝƚĞƐ͘ – ^ĞĂƐŽŶƐǁŝƚŚƉĂƌƚŝĐƵůĂƌĐƌŽƉĂĐƌŽƐƐĂůůƐŝƚĞƐ͘ 11 ^ĞĂƐŽŶĂůďŽdžƉůŽƚƐĨŽƌŐƌĂŝŶLJŝĞůĚ džĂŵƉůĞƐĂƚƐĞĂƐŽŶĂůƐĐĂůĞʹ ^ƚĞƉϭͲ ^ŝƚĞƐϭΘϰ - Boxplots represent the simulated yield from an ensemble of models at step 1 (without any prior information) Observed yield per crop type 12 ϲ ůůƐĞĂƐŽŶƐďŽdžƉůŽƚƐĨŽƌŐƌĂŝŶLJŝĞůĚ ^ƚĞƉƐϭΘϮͲ ƌŽƉůĂŶĚƐŝƚĞƐ 1,0 1,0 0,8 0,8 0,6 0,4 0,2 Cropland sites C1 C2 n=10 n=14 n=13 n=15 n=14 n=11 n=12 n=13 n=13 STEP 2 Mean annual grain yield at step 2 Grain yield (kg DM.m-2.yr-1) Grain yield (kg DM.m-2.yr-1) n=13 annual grain yield at step1 STEP Mean 1 Cropland sites 0,6 0,4 0,2 0,0 0,0 C1 C2 C3 C4 C5 C3 C4 C5 Cropland sites Cropland sites Simulated mean annual grain yield from an ensemble of models Observed mean annual grain yield 13 ůůƐĞĂƐŽŶƐďŽdžƉůŽƚƐĨŽƌŐƌĂƐƐůĂŶĚƉƌŽĚƵĐƚŝŽŶ n=8 n=8 n=8 n=8 STEP 2 n=8 n=7 n=6 n=7 STEP 1 n=7 n=7 ^ƚĞƉƐϭΘϮĂƚŐƌĂƐƐůĂŶĚƐŝƚĞƐ 1,4 Grassland production (kg DM.m-2.yr-1) 1,2 1,0 0,8 0,6 0,4 0,2 0,0 1,2 1,0 0,8 0,6 0,4 0,2 Grassland sites (y ie ld /in ta ke G 4 ) (y ie ld /in ta ke G 5 ) (y ie ld /in ta ke ) G 3 (in ta ke ) G 2 (in ta ke ) G 1 (y ie ld /in ta ke G ) 4 (y ie ld /in ta ke G 5 ) (y ie ld /in ta ke ) G 3 (in ta ke ) G 2 (in ta ke ) 0,0 G 1 Grassland production (kg DM.m-2.yr-1) 1,4 Grassland sites Simulated mean annual grassland production from an ensemble of models Observed mean annual grassland production 14 ϳ ƐƵŵŵĂƌLJŽĨƐŽŝůEϮKĞŵŝƐƐŝŽŶƐ ƌŽƉůĂŶĚƐŝƚĞƐĂƚƐƚĞƉϭ - Boxplots represent the mean daily simulated N2O emissions from an ensemble of models * nb days covering the whole period of simulation 15 ^ŝŵƵůĂƚĞĚǀƐ͘ŽďƐĞƌǀĞĚEϮKĚŝƐƚƌŝďƵƚŝŽŶĨƌĞƋƵĞŶĐLJ džĂŵƉůĞƐĂƚϭĐƌŽƉƐŝƚĞĂŶĚϭŐƌĂƐƐůĂŶĚƐŝƚĞ Cropland Grassland Æ N2O peak magnitude and peak frequency prediction is difficult Æ Large variability in the shapes of simulated distribution frequencies (gaussian, log-normal, Weibull and negative exponential laws…) Æ Observed N2O uptake (negative emission values) are not captured by models. 16 ϴ dĂŬĞŚŽŵĞŵĞƐƐĂŐĞƐ Æ >ĂƌŐĞƐƚ ďĞŶĐŚŵĂƌŬŝŶŐ ĞdžĞƌĐŝƐĞ ŽŶ ŐƌĂƐƐůĂŶĚ ĂŶĚ ĐƌŽƉ ƐLJƐƚĞŵƐ ĨŽƌ ',' ĞŵŝƐƐŝŽŶƐ ĂŶĚ ƌĞŵŽǀĂůƐ͖ Æ 'ƌĂĚƵĂů ĐĂůŝďƌĂƚŝŽŶ ͗ ůŝŶĚ͗ ƐƚĞƉϭ ͖ ŵŽĚĞů ŝŶŝƚŝĂůŝnjĂƚŝŽŶ ͗ ƐƚĞƉϮ ͖ ŵŽĚĞů ĐĂůŝďƌĂƚŝŽŶ͗ ƐƚĞƉƐ ϯ͕ ϰ͕ ϱ ͖ Æ /ŵƉƌŽǀĞŵĞŶƚ ŽĨ ƐŝƚĞ ƐƉĞĐŝĨŝĐ ƉƌĞĚŝĐƚŝŽŶƐ ĂŶĚ ƵůƚŝŵĂƚĞůLJ ŵŽĚĞůƐ ƉĞƌĨŽƌŵĂŶĐĞ Æ WƌŽĚƵĐƚŝŽŶ ŽĨ ŐƵŝĚĞ ƵƐĞƌƐ ŽŶ ǁŚŝĐŚ ŵŽĚĞů ƚŽ ƵƐĞ ĨŽƌ ǁŚŝĐŚ ƉƵƌƉŽƐĞ Æ ^Ğƚ ƐƚĂŶĚĂƌĚƐ ĨŽƌ ŶĞǁ ŵŽĚĞůƐ ƚŽ ŵĞĞƚ Æ dĞƐƚ ŵŝƚŝŐĂƚŝŽŶ ŽƉƚŝŽŶƐ ĂƐ Ă ĨŝŶĂů ŐŽĂů ŽŶ ďŽƚŚ ŐĂƐ ĞŵŝƐƐŝŽŶƐ ĂŶĚ ĨŽŽĚ ƉƌŽĚƵĐƚŝŽŶ͘ 17 ^ĞĞ ĂůƐŽ ƉŽƐƚĞƌ;ŶΣϮϭͿŽŶ 'ƌĂƐƐůĂŶĚ ƉƌŽĚƵĐƚŝŽŶĂŶĚ','ƐĞŶƐŝƚŝǀŝƚLJ ƚŽĐůŝŵĂƚĞ ĐŚĂŶŐĞǁŝƚŚ ĂŶĞdžĞƌĐŝƐĞ ĂĚĂƉƚĞĚ ĨƌŽŵ ƚŚĞŽŽƌĚŝŶĂƚĞĚ ůŝŵĂƚĞͲƌŽƉ DŽĚĞůŝŶŐ WƌŽũĞĐƚ;ϯDW͕ŐD/WͿ Mean annual temperature (°C) 1600 1600 @380 ppm 1400 @900 ppm 1200 1000 -0.2 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 800 600 400 Mean annual precipitation (mm) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean annual precipitation (mm) 1400 1200 1000 800 600 400 6 6 8 10 12 14 16 18 Mean annual temperature (°C) 20 22 8 10 12 14 16 18 24 20 22 24 18 Mean annual temperature (°C) ϵ 7KDQN\RXIRU\RXUDWWHQWLRQ 9LVLWRXUZHESDJH KWWSZZZJOREDOUHVHDUFKDOOLDQFHRUJUHVHDUFK VRLOFDUERQQLWURJHQF\FOLQJFURVVFXWWLQJ JURXS &RQWDFWV -HDQ)UDQFRLV6RXVVDQD#SDULVLQUDIU ILRQDHKUKDUGW#SDULVLQUDIU ϭϬ Sensitivityanalysisforclimatechangeimpacts,adaptationandmitigationprojectionwith pasturemodels BellocchiGianni1,EhrhardtFiona2,SoussanaJeanǦFrançois2,ConantRich3,FittonNuala4,Harrison Matthew5,LiefferingMark6,MinetJulien7,MartinRaphaël1,MooreAndrew8,MyrgiotisVasileios9, RolinskiSusanne10,RugetFrançoise11,SnowVal12,WangHong13,WuLianhai14 1 INRA,GrasslandEcosystemResearch(UR874),ClermontFerrand,France 2 INRA,Paris,France 3 NREL,ColoradoStateUniversity,FortCollins,USA 4 InstituteofBiologicalandEnvironmentalSciences,UniversityofAberdeen,Scotland,UnitedKingdom 5 TasmanianinstituteofAgriculture,Burnie,Australia 6 AgResearchGrasslands,PalmerstonNorth,NewZealand 7 UniversitédeLiège,Arlon,Belgium 8 CSIRO,Australia 9 SRUCEdinburghCampus,Scotland,UnitedKingdom 10 PotsdamInstituteforClimateImpactResearch,Germany 11 INRA,UMREMMAH,Avignon,France 12 AgResearch,LincolnResearchCentre,Christchurch,NewZealand 13 AgricultureandAgriǦFoodCanada,Saskatoon,Canada 14 DepartmentofSustainableSoilScienceandGrasslandSystem,RothamstedResearch,United Kingdom Thedevelopmentofclimateadaptationservicesrequiresanimprovedaccuracyinmodel projectionsforclimatechangeimpactsonpastures.Moreover,changesingrasslandmanagement needtobetestedintermsoftheiradaptationandmitigationpotential.WithinAgMIP(Agricultural ModelIntercomparisonandImprovementProject),basedontheC3MPprotocolforcrops,we exploreclimatechangeimpactsonfuturegreenhousegasemissionsandremovalsintemperate grasslandsystems.Sitecalibratedmodelsareusedtoprovideprojectionsunderprobabilistic climatechangescenarios,whicharedefinedbyacombinationofairtemperature,precipitationand atmosphericCO2changes.Thisdesignprovidesatestofyield,greenhousegasemissions(N2Oand CH4)andCsequestrationsensitivitytoclimatechangedrivers.Moreover,changesinanimal stockingdensityandingrazingvs.cuttingareexploredtotestpotentialmitigationandadaptation options.Thisintegratedapproachhasbeentestedfor12modelsappliedto19grasslandsitesover threecontinentsandisseenasapreǦrequisitefortheuseofmodelsinthedevelopmentofclimate adaptationandmitigationservicesforgrazinglivestock. Bellocchi, G., Ehrhardt, F., Soussana, J.-F., Conant, R., Fitton, N., Harrison, M., Lieffering, M., Minet, J., Martin, R., Moore, A., Myrgiotis, V., Rolinski, S., Ruget, F., Snow, V., Wang, H., Wu, L., 2015. Sensitivity analysis for climate change impacts, adaptation and mitigation projection with pasture models. In Towards ClimateSmart Solutions L3.1 Climate, adaptation and mitigation services (http://csa2015.cirad.fr/var/csa2015/storage/fckeditor/file/L3%20Towards%20Climatesmart%20Solutions(1).pdf, accessed 25 March 2015), Climate-Smart Agriculture, 16-18 March 2015: Montpellier, p. 110. Session: L3.1 Climate adaptation and mitigation services Sensitivity analysis for climate change impacts, adaptation & mitigation projection with pasture models. Bellocchi Gianni1, Ehrhardt Fiona2, Conant Rich3, Fitton Nuala4, Harrison Matthew5, Lieffering Mark6, Minet Julien7, Martin Raphaël1,Moore Andrew8, Myrgiotis Vasileios9, Rolinski Susanne10, Ruget Françoise11, Snow Val12, Wang Hong13, Wu Lianhai14, Ruane Alex15, Soussana Jean-François2. 1 INRA, Grassland Ecosystem Research (UR874), Clermont Ferrand, France; 2 INRA, Paris, France; 3 NREL, Colorado State University, Fort Collins, USA; 4 Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK; 5 Tasmanian institute of Agriculture, Burnie, Australia; 6 AgResearch Grasslands, Palmerston North, New Zealand; 7 Université de Liège, Arlon, Belgium; 8 CSIRO, Australia; 9 SRUC Edinburgh Campus, Scotland, UK; 10 Potsdam Institute for Climate Impact Research, Germany; 11 INRA, UMR EMMAH, Avignon, France; 12 AgResearch, Lincoln Research Centre, Christchurch, New Zealand; 13 Agriculture and Agri-Food Canada, Saskatoon, Canada; 14 Department of Sustainable Soil Science and Grassland System, Rothamsted Research, UK. 15NASA Goddard Institute for Space Studies, Climate, Impacts Group, New York, NY, United States of America. Context - A study for temperate grassland systems The development of climate adaptation services requires an improved accuracy in model projections for climate change impacts on pastures. Moreover, changes in grassland management need to be tested in terms of their adaptation and mitigation potential. Within AgMIP (Agricultural Model Intercomparison and Improvement Project), based on the C3MP protocol for crops, we explore climate change impacts on grassland production, future greenhouse gas emissions and removals in temperate grassland systems. Key words: Climate change, Pasture, Carbon, Greenhouse gas, Soil, Livestock. 1000 800 Fig.c Mean annual precipitation (mm) Yield Mean annual precipitation (mm) 1200 600 1200 1000 800 600 Fig.a 400 6 8 10 Fig.b 400 12 14 16 18 20 22 24 6 8 10 1600 1600 1400 1400 1200 1000 800 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 600 Fig.c 400 6 8 10 12 14 16 18 Mean annual temperature (°C) 12 14 16 18 20 22 20 22 24 800 600 Fig.d 8 10 1800 1600 1400 1200 1000 800 600 400 200 800 700 P (m m) 2 600 500 CO (ppm 2 ) 400 5 0 -5 1400 1200 1000 26 24 22 20 18 16 14 12 10 P (mm 800 ) 600 T2 vs CO2 vs Yield -5 0 5 10 15 20 15 -1 -1 .yr ) 20 10 5 26 24 22 20 18 16 14 12 0 T(° C) 4 10 Yield (t DM.ha 8 15 -5 800 700 600 500 CO (ppm 2 ) 400 Relative Yield (2050s RCP 4.5/actual) Relative Yield (2050s RCP 8.5/actual) Relative N2O emissions (2050s RCP 4.5/actual) 1000 6 10 T2 vs P2 vs Yield -5 0 5 10 15 20 20 Mean surface response of temperate grasslands N2O emissions to climatic drivers (n=891 ; r2 = 0,296, P<0.001). Production changes were calculated relative to climate conditions leading to maximum N2O emissions, under 380 ppm (Fig.c) and 900 ppm (Fig.d). 1200 400 12 P2 vs CO2 vs Yield 2 4 6 8 10 12 14 16 18 20 22 24 Mean annual temperature (°C) Mean annual precipitation (mm) N2O Mean annual precipitation (mm) Mean annual temperature (°C) 14 Mean surface response of temperate grasslands annual production to climatic drivers (n=1089 ; r2 = 0.64, P<0.001). Production changes were calculated relative to climate conditions leading to maximum production, under 380 ppm (Fig.a) and 900 ppm (Fig.b). 1400 -0.2 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 16 3/Projection of the surface equation in {T, P, CO2} dimensions 1600 1400 18 2/Determination of the final equation for temperate grassland yield estimation by using a backward stepwise regression 900 ppm 1600 20 6 Y (CO2, T, P) = a + b(T) + c(T)² + d(P) + e(P)²+ f(CO2) + g(CO2)² + h(T*P)+ i(T*CO2)+ j(P*CO2)+ k(T*P*CO2) Sensitivity of temperate grasslands production & N2O emissions to climatic drivers from an ensemble of models 380 ppm 22 3/ P*CO2 *Yield ; local mean T (°C) 2/ T* CO2 *Yield ; local mean P (mm) C) 1/Determination of a global equation for yield by using a regression and {T, P, CO2} terms (= emulator): 1/ T*P*Yield ; CO2 = 380 ppm T (° Calculation of an emulator for yield & N2O emissions -1 P 1024 1134 756 491 750 1150 1150 1071 1071 784 879 648 910 714 1383 1343 1343 378 378 -1 T 13,7 11,7 12,9 16,5 13,5 10,3 10,3 6,7 6,7 12,0 9,7 13,9 13,4 11,1 8,8 9,8 9,8 8,4 8,4 .yr ) COUNTRY Australia Australia Australia Australia Australia Switzerland Switzerland France France France France France New Zealand New Zealand United Kingdom United Kingdom United Kingdom United States United States Each dot represents an individual run. The mesh curve was fitted with the emulator calculated as described (n=99 ; r2 =0.995, P<0.001). -1 MODEL DairyMod v5.3.0 DairyMod v5.3.0 APSIM-GRAZPLAN v7.5 APSIM-GRAZPLAN v7.5 DairyMod v5.3.0 PaSim LPJmL PaSim LPJmL STICS v8.3.1 STICS v8.3.1 STICS v8.3.1 APSIM v7.6 APSIM-SWIM Daily Daycent Daily Daycent Daily Daycent Daycent Daycent Site specific emulator calculated with 99 scenarios. Temperature changes from -1°C to +8°C, precipitation changes from -50% to +50%, CO2 concentration from 380 ppm to 900 ppm. Yield (t DM.ha Combinations site/model : 16 sites – 8 models Ellinbank Dairy research institute, Australia, DairyMod). .yr ) • 16 contrasted grassland sites were used covering a large climate gradient over 3 continents (mean annual temperature T from 7 to 14°C; mean annual precipitation P from 380 to 1380 mm) • Model simulations of grassland systems using 99 combinations of climate drivers {Temperature, Precipitation, CO2} to explore yield and GHG responses to climate change. • Calibrated models on specific sites & global models on a set of common sites. • Grassland management considered for simulation: no N-limitation, no irrigation, cutting events. • Target outputs : Yields, GPP, NPP, net above-ground primary production, net herbage accumulation, SOC stock, SON stock, N2O emissions Results – Site specific sensitivity of grasslands annual production to climatic drivers (Illustrative example for site -1 Modeling Project), AgMIP Yield (t DM.ha Methodology - An exercise adapted from C3MP (Coordinated Climate-Crop 12 14 16 18 20 22 24 Mean annual temperature (°C) Relative N2O emissions (2050s RCP 8.5/actual) Extension to global maps for grassland systems Relative changes in grassland production and N2O emissions under future climatic scenarios (2050s RCP 4.5, 2050s RCP 8.5) compared to current climate (1980-2009) were projected from the emulator for all sites. Results show that without N limitation, production and N2O emissions mostly increases by the 2050’s. Elevated CO2 (ca. 600 ppm in both RCPs) plays a large role in this increase and this questions the extent to which models may overestimate this CO2 effect (e.g. for P limited grasslands). The use of an emulator provides a fast-track to upscale simulations for global grasslands and test a large range of climate scenarios, as well as adaptation and mitigation options. By extending the methodology to tropical grassland systems and rangelands, global maps for the variation of production, carrying capacity and GHG emissions could be generated for the grassland biome. 10
© Copyright 2025