LABUAN ADDITIONAL MATHEMATICS PROJECT WORK 2015 SUGGESTED ANWSER BY www.addmathsprojectwork2015.blogspot.com PART 1 .c om a) Sets of Son = {C,D} Sets of Daughter = {A,B} Sets of Grand-son = {G,H,J,K} Sets of Grand-daughter = {E,F,L} Sets of Great Grand-daughter = {M,P} sp Daughter A Daughter B Son C Son D bl og Zulkifli ot b) 1. Father of ec tw or k. (i) Domain = { Zulkefli } Codomain = { Daughter A, Daughter B, Son C, Son D } Objects = Zulkefli Images = Daughter A, Daughter B, Son C, Son D Range = { Daughter A, Daughter B, Son C, Son D } (ii) Type of Relation = One – to – many Relation (iii) { (Daughter A, Zulkefli) , (Daughter B, Zulkefli) , (Son C, Zulkefli) , (Son D, Zulkefli) } sp r at h Son C Son D oj 2. Son of Zulkefli Aminah ad d m (i) Domain = { Son C, Son D } Codomain = { Zulkefli, Aminah } Objects = Son C, Son D Images = Zulkifli, Aminah Range = { Zulkifli, Aminah} (ii) Type of Relation = Many – to – many Relation (iii) { (Son C, Zulkefli) , (Son C, Aninah), (Son D, Zulkefli) , (Son D, Aninah) } 3. Grand-daughter of Grand-daughter E Grand-daughter F Grand-daughter L Zulkefli Aminah og sp ot .c om (i) Domain = { Grand-daughter E, Grand-daughter F, Grand-daughter L } Codomain = { Zulkefli, Aminah } Objects = Grand-daughter E, Grand-daughter F, Grand-daughter L Images = Zulkifli, Aminah Range = { Zulkifli, Aminah} (ii) Type of Relation = Many – to – many Relation (iii) { (Grand-daughter E, Zulkefli) , (Grand-daughter E, Aninah), (Grand-daughter F, Zulkefli) , (Grand-daughter F, Aninah), (Grand-daughter L, Zulkefli) , (Grand-daughter L, Aninah) } k. bl c) A function is a relation in which NO two ordered pairs have the same first coordinate. So, from the three arrow diagrams stated above, only the first relation (Relation 1 – Father of) arrow diagram is considered a function. This is because, when observing the first and second arrow diagram : tw or 1- { (Daughter A, Zulkefli) , (Daughter B, Zulkefli) , (Son C, Zulkefli) , (Son D, Zulkefli) } The first coordinates does not have any repetition. ec 2- { (Son C, Zulkefli) , (Son C, Aninah), (Son D, Zulkefli) , (Son D, Aninah) } The first coordinates have repetition for both Son C and Son D. sp r oj This proof that, there is only one relation (Relation 1) which is a function. ad d m at h PART 2 – DO IT ON YOUR OWN PART 3 a) Function of f f(x) = x + 3 Function of g g(x) = x2 .c om b) Inverse function of f f ( x) x 3 sp 1 ( x) x 3 og f ot Let f 1 ( x) y f ( y) x y 3 x y x3 bl Inverse function of g g ( x) x 2 k. Let g 1 ( x) y or g ( y) x tw y2 x g 1 ( x) x fg ( x) f [ g ( x)] at h fg ( x) x 2 3 sp r c) Composite function of fg oj ec y x Composite function of gf gf ( x) g[ f ( x)] m gf ( x) ( x 3) 2 ad d gf ( x) x 2 6 x 9 Composite function of f2 Composite function of g2 ff ( x) f [ f ( x)] ff ( x) ( x 3) 3 gf ( x) g[ f ( x)] ff ( x) x 6 gf ( x) x 4 gf ( x) ( x 2 ) 2 d) Composite function of g-1f-1 g 1 f 1 ( x) g 1 [ f 1 g 1 f 1 ( x) x 3 ( x)] Inverse function / (fg)-1 ( fg ) 1 ( x) x 2 3 .c om Let ( fg ) 1 ( x) y fg ( y ) x y2 3 x ot y x3 sp ( fg ) 1 ( x) x 3 og Yes g-1f-1(x) = (fg)-1(x) e) Composite function of ff-1 ff ( x) f [ f 1 ( x) ( x 3) 3 1 ( x) x ( x)] bl 1 k. ff 1 or ff tw Composite function of gg-1 gg 1 ( x) g[ g 1 ( x)] gg 1 ( x) x sp r gg 1 ( x 1) x 1 oj ec gg 1 ( x) ( x ) 2 at h Therefore, ff-1 is not equal to gg-1 Deduce ff-1 (k2 + 2) ( x) x 1 (k 2 2) k 2 2 ad d ff 1 m ff FURTHER EXPLORATION x 1 , x 1 x 1 x 1 1 g 2 : x gg : x x 1 x 1 1 x 1 g:x .c om i) x 1 1( x 1) x 1 x x 1 x 1 1( x 1) ot a) oj 1 1 x sp r g4 : x g2g2 : x ec tw x 1 x 1 k. 1 x 1 x 1 or g3 : x g2g : x bl og sp 2 x 1 x 1 2 x 1 x at h x x 1 x 1 ad d m g5 : x g4g : x x 1 1 6 5 x 1 g : x g g : x x 1 1 x 1 x 1 1( x 1) x 1 x x 1 x 1 1( x 1) 2 x 1 x 1 2 x 1 x By finding all the functions of g2,g3,g4,g5, and g6 we can observe the trend of the function Power of 2,6,10,14,18,22,26,30 Composite Function 1 x x 1 x 1 x x 1 x 1 3,7,11,15,19,23,27 g 4,8,12,16,20,24,28 5.9,13,17,21,25,29 ot sp 1 or g 2 n : x x x og g 2n : x tw or x 1 x 1 2 n 1 g 2 n 1 : x :x or g x 1 x 1 bl ii) 1 x k. Thus, g 30 : x ec b) ax b cx d 1 f ( x) y sp r m at h ay b x cy d ay b cyx bx oj f :x f ( y) x ay cyx bx b ad d y (a cx ) bx b bx b a cx bx b a f 1 ( x) ,x a cx c y .c om function i) Inverse of f : x 2x 1 x3 a , c 3x 1 2x a 2 where c 1 3x 1 thus f 1 ( x) ,x2 2x tw or ( x) ec 1 ad d m at h sp r oj f k. check bl based on the inverse function above, x ≠ og sp ot .c om f 1 ( x) y f ( y) x 2y 1 x y3 2 y 1 xy 3 x 2 y xy 3 x 1 y (2 x) 3 x ! 3x 1 y 2x 3x 1 f 1 ( x) 2x ii) Inverse of f : x 3x 1 4x x 3 4x a 3 where c 4 3x 1 3 thus f 1 ( x) ,x 2x 4 tw ( x) ad d m at h sp r oj ec 1 or check f bl a , c k. based on the inverse function above, x ≠ og sp ot .c om f 1 ( x) y f ( y) x 3y x 1 4y 3 y x 4 xy 3 y 4 xy x y (3 4 x) x ! x y 3 4x x f 1 ( x) 3 4x iii) Inverse of f : x 2x 5x 2 a , c bl based on the inverse function above, x ≠ 2x 2 5x a 2 where c 5 2x 2 thus f 1 ( x) ,x 2 5x 5 tw or ( x) sp r oj ec 1 k. check f m at h REFLECTION WRITE YOUR OWN REFLECTION ad d og sp ot .c om f 1 ( x) y f ( y) x 2y x 5y 2 2 y 5 xy 2 x 2 y 5 xy 2 x y (2 5 x) 2 x! 2x y 2 5x 2x f 1 ( x) 2 5x
© Copyright 2024