SupportingInformationfor: SolutionPhaseSynthesisofIndiumGalliumPhosphideAlloyNanowires Nikolay Kornienko1, Desiré D. Whitmore1, Yi Yu1, Stephen R. Leone1,2,4, Peidong Yang*1,3,5,6 1 Department of Chemistry, 2Department of Physics and 3Department of Materials Science Engineering, University of California, Berkeley 94720, United States 4 Chemical Sciences Division and 5Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley CA 94720, United States 6 Kavli Energy Nanosciences Institute, Berkeley, California 94720, United States * Correspondence to: p_yang@berkeley.edu TableofContents: FigureS1.TEMIn/Gagrowthseeds.............................................................................................................................2 FigureS2.TEMofInPandGaPNWs.............................................................................................................................2 FigureS3.Compositionanddiametercontrol.........................................................................................................3 FigureS4.XRDofInxGa1‐xPNWs..................................................................................................................................4 FigureS5.ElectrondiffractionofInxGa1‐xPNWs...................................................................................................5 FigureS6.RamanspectraofInPandGaP..................................................................................................................6 FigureS7.UV‐VisabsorptionofInxGa1‐xPNWs.....................................................................................................7 FigureS8.EELSanalysis....................................................................................................................................................8 FigureS9.EELSdatafitting..............................................................................................................................................9 FigureS10.IndividualNWPL......................................................................................................................................10 FigureS11.NormalizedPLIntensity........................................................................................................................11 1 FigurreS1.STEMimageofIn//Gaalloyseed ds(A)andth heircorrespo ondingEDSeelemental mapss(B,C). nIn,Ga,andP Pprecursorssweremixed dtogetherin FigurreS2.TEManalysisofproductswhen onestepbeforeheatingrevealsthatseparateInPandG GaPNW’sforrm.EDSanallysisofwiress dBshowspu ureInPwhileecorrespondinganalysis ofwiresDan ndCindicateespureGaP. Aand 2 ositionoftheeresultingNW Wsiscontroolledbythep precursorrattioofTMIn FigurreS3.Compo andT TEGa(A)and dthediameteeriscontrolleedbythetottalprecursorrconcentration(B).TEM imageesofNWsof f increasingd diameter(C‐F F). 3 FigurreS4.XRDoffInP,InxGa1‐xxP,andGaP((A‐D)indicattethattheNW Wsallconsisstofprimarilly theziincblendecry ystalstructure. 4 ondiffraction nofInP,InxGa G 1‐xPandGaaPNWsrotattedperpendiculartothe FigurreS5.Electro [011]]planeswith hcomposition nindicated((A‐E)revealssthattheNW Wsgrowinth he [111]]directionSim mulatedelecctrondiffracttionpattern((F)forzincbllendeInPvieewed perpeendiculartotthe[011]planesmatcheestheexperim mentaldata.Asimplestrructural modeel(G)showsseverallowM Millerindex planesoftheezincblendecrystalstruccture. 5 nspectraof((A)InPNWsandwaferan nd(B)GaPN NWsandwaffershow FigurreS6.Raman consistentphonon nmodespossitionsandlin neshapes. 6 d FigurreS7.UV‐VissabsorptionspectrumforindirectbaandgapNWss(A)showsaabelowband gapaabsorptionan ndonlyashaarpriseinabsorptionateenergiesgreaaterthantheedirectband gapo ofthemateriaal.Incontrasst,directbandgapNWs( B)featureasharprisein nabsorption attheebandedge. 7 FigurreS8.EELSaanalysisofth heNWswasp performedu singamonocchromatedZ ZLPwitha FWHM Mof0.17eV(A).Forpow werlawfittin ng(B,C)theb backgroundw wassubtracttedfromthe rawd dataandtheinelasticsign nalwasextraacted.Bandggapextractio onusingtheiinflection pointtfromrawdaata(D)gaveslightlydiffeerentresults butthetrend dofbandgap pvs. comp positionwasconsistent(E E). 8 FigurreS9.EELSo onsetfittingo ofGaP(A),In nxGa1‐xP(B‐D D)andInP(E E)NWs.GaPaandInPEELSS 3/2 specttracanbeweellfittedwith hindirectban ndgap(E ))anddirectb bandgap(E1//2)models whileeInxGa1‐xPhaavecontributtionsfrombo othdirectan ndindirectbaandgaps.Astheindium comp positionisinccreased,theEELSdatareesemblesmooretheE1/2m model,indicaatingagreateer contrributionfrom mthedirectb bandgap.TheeEgdescribeestheextracttedbandgap pvalue. 9 FigurreS10.PLm measurementsscorrelatinggtothecomp positionofin ndividualNW Wsweretaken n toobttainanexacttcomposition n‐bandgaprrelation.The SEMimageo ofanindivid dualNW(A) wasm matchedwith htheopticalimageoftheesameNWon nasiliconsu ubstrate(B)ttocorrelate itsED DSspectrum(C)andelem mentalcompo ositiontotheePLenergy((D).Thecom mprehensive measurementsarresummarizeedin(E)and dfollowthessametrendasfigure5inthemaintexxt. 1 10 FigurreS11.PLin ntensity,norm malizedtoth heNWvolum me,wasusedasanotherm methodto pinpo ointthedirecct‐indirectbaandgaptransition.SEMiimages(A)w wereusedtomeasure volum meandcorreelatedtotheo opticalimageeoftheNWoonasiliconssubstrate(B))andthePL intensity(C).ThePLintensity y,acquiredun nderidenticaalconditionssforallsamp ples,was dividedbytheNW Wvolumetogeneratetheenormalized dPLintensityyvs.PLenerggydiagram (D).T Theyellowdo ottedlinerep presentstheexpectedPL LintensityasstheΓvalleyymoves higheerinenergytthantheXvaalley,whichsscalesas: / ,whereB Bisaconstan nt andE EΓ(x)andEX(xx)arethebaandminimaaasafunction ofcompositiion. 1 11
© Copyright 2024