Unit 3: Linear Equations Name _____________________________________ Adding and Subtracting Fractions 2 Directions: Solve. 72 Appendix B: Answer Keys Transparency/Guided Practice Book Answers 54 Unit 2: Linear Equations Name _____________________________________ Adding and Subtracting Fractions Directions: Calculate. 30 Appendix B: Answer Keys Transparency/Guided Practice Book Answers 67 2 How to • • • • • • • • • • • • • • • • • Subtract Fractions Facts to Know Subtracting Fractions with the Same Denominators When fractions have the same denominators, subtract the numerators only and place the total over the denominator. Sample: From a bag that contained 7– pound of birdseed, Margery poured 3– of a pound into the bird 8 8 feeder. How much birdseed is left? Step 1 Subtract the numerators. Step 2 Write the answer over the denominator. Step 3 Reduce the final answer. 7–3=4 4– 8 4– pound = 1– pound 8 2 More on Finding Common Denominators Sometimes you must change more than one denominator to add or subtract. For example, how would you solve this problem: Sample: 1– – 1– = ? 2 3 These fractions have different denominators. You cannot subtract them, nor can only one denominator be changed because 2 won’t divide into 3 evenly, and 3 won’t divide into 2 evenly. Therefore, you must find a common denominator, a number that both 2 and 3 will divide into evenly. There are three methods for finding a common denominator. Method 1— Check the largest denominator in the problem to find out whether it can be divided evenly by the other denominator(s) in the problem. – 1– = 2– 1 1 3 6 Sample: – – – = ? 3 6 – 1– = 1– 6 can be evenly divided by 3, so there’s no need to look for another number. 6 6 1– Method 2—Multiply the denominators together to find a common denominator. 6 3 2 Sample: – – – = ? 4 3 Step 1 Multiply the denominators. The number 12 9 – 3– = — 4 12 is the common denominator. 8 – 2– = — Step 2 Raise each fraction to 12ths. 3 12 1 — Step 3 Subtract the new fractions. 12 Method 3—Go through the multiplication table of the largest denominator. Sample: 5– – 1 –=? 9 6 5– = 10 Step 1 Go through the multiplication table of the largest — 9 18 denominator, 9. 3 – 1– = — Step 1 9 x 1 = 9 which cannot be divided evenly by 6. 6 18 25 7 Step 1 9 x 2 = 18 which can be divided evenly by 6 and 9. — = 1— 18 18 Step 2 Raise each fraction to 18ths. Step 3 Subtract the new fractions. 9 . 2 How to • • • • • • • • • • • • • • • • • Subtract Fractions Facts to Know (cont.) Subtracting Fractions with Different Denominators When subtracting fractions with different denominators, find a common denominator. Sample: Lupe walks 1– mile to the train. She stops for coffee at Tom’s restaurant, which is 3– mile to 2 8 the train. How much further does she have to walk after Tom’s? You’ll have to subtract 3– from 1–, but they don’t have common denominators. 8 2 Step 1 Find the least common denominator. The numbers 2 and 8 1– = 4– 2 8 both evenly divisible by 8. – 3– = 3– Step 2 Raise 1– to eighths. 8 8 2 1– mile Step 3 Subtract the fractions using the least common denominator. 8 Subtracting Fractions from a Whole Number When subtracting fractions from the whole number 1, you must change the number 1 to a fraction with the same numerator and denominator as the denominator in the fraction. Sample: Ian took one cup of sugar from a bag. He only used 3– cup to make ice tea. 4 How much sugar is left? Step 1 Change 1 to a fraction, using the same number for the 1 = 4– 4 numerator and denominator as the denominator of the 3 – – = 3– 4 4 original fraction (1 cup = 4– cup). 4 1– cup left Step 2 Subtract the fractions. 4 When subtracting a fraction from a whole number larger than 1, you must regroup. Sample: 3 – 3– = ? 8 3 = 2 8– Step 1 Regroup by changing 3 to 2 8–. 8 8 3 (Remeber, 1 = 8–.) – – = – 3– 8 8 8 Step 2 Subtract. 2 5– 8 Subtracting Mixed Numbers You can subtract mixed numbers provided the fractions have the same denominators. Sample : 4 1– – 1 3– = ? 3 4 4 = 3— 4 + 12 4 1– = 4 — — Step 1 Find the lowest common denominator. 3 12 12 12 9 = –1 — 9 9 from — 4 ; – 1 3– = 1 — Step 2 Since you can’t subtract — 4 12 12 12 12 4. regroup 1 as 12 — from the 4. Add it to — 12 12 Step 3 Subtract the fractions. Then subtract the whole numbers. 10 = = 3 16 — 12 9 –1 — 12 7 2 — 12 2 Practice • • • • • • • • • • • • • • • Subtracting Fractions Directions: Subtract the fractions. Remember, to reduce the fractions to lowest terms. 5 = 1. 4– – 2– = 5. 17 — – 11 —= 9. 1– – 1– = 13. 5– – — 5 5 23 23 6 18 2 6 9 –— 4 = 2. — 10 10 6. 20 — – 17 —= 21 21 10. 7– – 1– = 8 4 14. 19 — – 1– = 20 4 7 –— 6 = 3. — 12 12 7. 7– – 3– = 8 8 7 – 1– = 11. — 10 5 15. 3– – 1– = 4 2 4. 6– – 2– = 7 7 7 –— 6 = 8. — 15 15 12. 1– – 1– = 4 8 7 = 16. 13 —– — 15 30 Directions: Subtract the fraction from the whole number. 17. 5 3– 4 – 3– 4 19. 4 3– 4 – 3– 8 21. 12 3– 4 – 12 — 25 23. 5 3– 4 – 1– 4 25. 13 3– 4 – 11 — 22 18. 7 3– 4 1 – — 16 20. 10 3– 4 – 5– 7 22. 8 3– 4 9 – — 12 24. 25 3– 4 – 14 — 17 26. 5 3– 4 – 5– 7 11 . 2 Practice • • • • • • • • • • • • • • • Subtracting Fractions Keys to Subtracting Fractions • If the denominators in the fractions are not alike, find the lowest common denominator. • Regroup if a minuend (the number you subtract from) is a whole number or the fraction in a minuend is smaller than the fraction in a subtrahend (the number being subtracted). • Subtract the fractions first and then subtract the whole numbers. Directions: Subtract the mixed numbers. Remember, reduce to the lowest term. 9 7– 8 5 –6– 8 7. 9 15 — 10 7 – 7— 10 8. 9 3– 8 – 2 3– 8 3. 14 19 — 24 5 –8— 24 9. 4 7— 11 4 –3— 11 4. 11 5– 6 1 –5– 6 10. 4 8— 13 5 –6— 13 5. 6 7– 8 – 3 3– 8 11. 6 1– 4 – 3 1– 3 6. 5 3– 8 – 1 4– 7 12. 10 3– 5 – 8 3– 4 1. 2. 6 7 –5— 10 12 1– .50 50% 2 Page 8 1. 1 3/4 2. 1 4/5 3. 1 1/3 4. 1 3/5 5. 2 1/5 6. 1 3/4 7. 2 1/7 8. 2 1/5 9. 2 1/8 10. 5 11. 7/4 12. 8/5 13. 9/4 14. 23/8 15. 17/5 16. 13/3 17. 17/3 18. 23/2 19. 41/8 20. 53/12 21. 1/2 22. 2/3 23. 1/4 24. 2/3 25. 1/3 26. 6/13 27. 1/2 28. 1/3 29. 2/3 30. 1/2 31. 3/15 32. 9/12 33. 4/16 34. 6/40 35. 25/35 36. 6/36 37. 12/18 38. 10/45 39. 3/4 40. 5/7 41. 1 42 3 1/3 43. 1 1/7 44. 4 45. 2 1/2 46. 7 2/3 47. 1 3/8 48. 25/28 49. 31/36 50. 14 1/12 51. 2 52. 1 4/5 53. 11 11/24 54. 14 16/35 55. 1 7/10 Page 11 1. 2/5 2. 1/2 3. 1/12 4. 4/7 5. 6/23 6. 1/7 7. 1/2 8. 1/15 9. 1/3 10. 5/8 11. 1/2 12. 1/8 13. 5/9 14. 7/10 15. 1/4 16. 19/30 17. 4 1/4 18. 6 15/16 19. 3 5/8 20. 9 2/7 21. 11 13/25 22. 7 1/4 23. 4 3/4 24. 24 3/17 25. 12 1/2 26. 4 2/7 Page 12 1. 3 1/4 2. 8 1/5 3. 6 7/12 4. 6 2/3 5. 3 1/2 6. 3 3/7 7. 3/10 8. 6 5/8 9. 3 7/11 10. 1 12/13 11. 2 11/12 12. 1 17/20 13. 2 13/18 14. 8 5/12 15. 10 3/4 16. 7 13/15 17. 8 5/6 18. 7 27/40 Page 15 1. 3/8 2. 2/21 3. 9/40 • • • • • • • • • • • • • • • • • • • • • • Answer Key 4. 6/35 5. 1/6 6. 1/6 7. 2/7 8. 2/9 9. 1/4 10. 3/4 11. 1/4 12. 1/6 13. 3/20 14. 35/72 15. 1/8 16. 1/10 17. 1/5 18. 2/9 19. 3/5 20. 1/2 21. 1/5 22. 2/27 23. 3/7 24. 15/154 25. 11/16 26. 1/8 27. 4/39 28. 2/7 29. 11/30 30. 4/47 31. 17/611 32. 7/5,600 Page 16 1. 1 1/4 2. 2 2/3 3. 1 1/6 4. 3 3/5 5. 1 5/7 6. 3/10 7. 6 1/8 8. 2 2/5 9. 8/9 10. 1 1/8 11. 3 1/3 12. 3 1/3 13. 5 1/3 14. 4 2/3 15. 2 2/5 16. 7/16 17. 2 1/2 18. 1 1/35 19. 1 7/18 20. 5/6 21. 8 22. 2 4/33 23. 2 2/3 47 24. 5 3/5 25. 9 26. 3 1/8 27. 9 5/7 28. 4/21 Page 19 1. 11/14 2. 1 13/18 3. 14/19 4. 82/87 5. 18/29 6. 1 1/4 7. 2/3 8. 5 9. 3/4 10. 3/4 11. 2 1/6 12. 3/7 13. 5/12 14. 8/9 15. 1 5/27 16. 3/10 17. 3 1/9 18. 6 1/4 19. 9 3/4 20. 1/4 21. 25/133 22. 5/64 23. 2 31/32 24. 33 3/4 25. 18/175 26. 1/32 27. 150 28. 7 1/2 29. 4 2/27 30. 10 Page 20 1. 5/6 2. 4/9 3. 15/16 4. 2 4/7 5. 2/5 6. 4 7. 1/2 8. 1 9. 4 10. 2 1/3 11. 2/9 12. 4/15 13. 4 14. 1/12 15. 7/16 16. 6 2/3 17. 2/15 18. 6 19. 10 20. 18 21. 10 1/2 22. 9 1/3 23. 12 24. 13 1/2 25. 10 2/3 26. 7 27. 4 4/5 28. 3 1/3 29. 7 1/2 30. 7/20 31. 4 2/3 32. 9 33. 1 5/6 34. 1 1/4 35. 1 Page 24 1. nine tenths 2. three hundred six thousandths 3. forty-two thousandths 4. six and three hundredths 5. eighty and seven tenths 6. two hundred thirty-four and six hundred twelve thousandths 7. sixty-eight and thirty-five ten thousandths 8. one thousand two hundred thirtyfour ten thousandths 9. one and two hundred thirtyfour thousandths 10. twelve and thirtyfour hundredths 11. .43 12. 40.03 13. .017 14. 86.6 15. .0508 16. 5.04 17. 12.140; 12.404; 12.444; 12,400 18. 0.96; 0.9666; 10.96; 109.6 19. 0.055; 0.5; 0.505; 0.55 .
© Copyright 2024