Institut für Laser-Physik Universität Hamburg Andreas Hemmerich Bose-Einstein Condensation List of Topics: Bose-Einstein Statistics and Bose-Einstein Condensation Cold Collisions, S-Wave Approximation Evaporative Cooling in Magnetic Traps Experimental Realization and Observation of Bose-Einstein Condensation Order Parameter, Gross-Pitaevski-Equation Thomas-Fermi Limit, Excitations, Superfluidity Light Scattering in Bose-Einstein Condensates Hydrodynamic Gross-Pitaevski-Equation, Expansion of Bose-Einstein Condensates, Vortices Phase and Interference of Bose-Einstein Condensates Bose-Condensates in Periodic Potentials 1 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Textbooks & Reviews Bose-Einstein Condensation in Dilute Gases C. J. Pethick and H. Smith, Cambridge University Press (2002) Bose-Einstein Condensation L. P. Pitaevskii and S. Stringari, Oxford University Press (2003) Ultracold Atomic Gases in Optical Lattices M. Lewenstein, et al., Oxford University Press (2012) Theory of Bose-Einstein Condensation in Trapped Gases F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Reviews of Modern Physics, Vol. 71, (1999) Making, Probing and Understanding Bose-Einstein Condensates W. Ketterle, D.S. Durfee, and D.M. Stamper-Kurn, http://arxiv.org/abs/cond-mat/9904034 Bose-Einstein Condensation of Trapped Atomic Gases Ph.W. Courteille , V.S. Bagnato , V.I. Yukalov, http://arxiv.org/abs/cond-mat/0109421 Ultracold Atomic Gases in Optical Lattices M. Lewenstein, et al., Advances in Physics 56 (2), 243 (2007). 2 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Bose-Einstein-Condensation: cooling @ high density three-body collisions yield molecule formation cooling @ low density 3 2 kBT ≈ 1 mV2 2 ⇒ Thermal de Broglie Wavelength: 2π λth = 2π/mV = 3 m kBT Luis Victor de Broglie 1923 Thermal Ensemble: Coherence Length = Thermal de Broglie Wavelength Critical Temperature: de Broglie Wavelength λth ≈ mean particle separation d ≈ 1/ρ1/3 ⇒ T = Bose-Einstein-Condensate 3 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 2 2 2/3 4π ρ 3m kB Satyendra Nath Bose, Albert Einstein S. N. Bose, Z. Phys. 26, 178 (1924) A. Einstein, Sitzber. Kgl. Akad. Wiss. 3 (1924/25) Andreas Hemmerich 2015 © Quantum Statistics Revisited: ni = occupation of i-th mode use Fock-states to describe system of bosons: |n0 ,n1, ....> εi E = n0ε0 + n1ε1 + ... energy of |n0 ,n1, ....> N = n0 + n1 + ... particle number of ε0 |n0 ,n1, ....> We do not know the state of the system. Description via probability distribution: P [n] , n ≡ [n0,n1, ...] Each possible probability distribution P is characterized by its entropy S(P) which measures the degree of ignorance connected with P. The entropy S can be evaluated for arbitrary P (Shannon 1948) as : S(P) = – kB ∑ Shannon, C.E. (1948) “A Mathematical Theory of Communication” Bell Syst. Tech. J., 27, 379-423, 623-656 P [n] ln( P [n] ) n How to find P[n] : maximize S(P) under boundary conditions 0 = f0(P) = f1(P) = .... 0 Example of complete ignorance: solution: 4 ! = ∂ ∂P[n] S(P) + λ0 f0(P) + λ1 f1(P) + .... f0(P) ≡ 1 – ∑ P [n] n λn = Lagrange Parameters only a single boundary condition f0 P [n] Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = constant Andreas Hemmerich 2015 © Canonical Ensemble: ∑ 0 = f1(P) ≡ E – system is subject to the constraint: E [n] P [n] E = n ∑ E [n] P [n] = mean energy n find P by maximizing entropy with the constraints f0(P), f1(P): → Boltzmann-distribution P [n] = C e – β E [n] β = 1 kBT , C = Normalization Example: thermal photons in a box V with mode separation mean occupation of i-th mode: Ω ≡ ni = πc V1/3 , ωi = i Ω , εi = i Ω ∑ n0 ,n1, .... → e – β E [n] = Π e – βωi ni i ni P[n0,n1, ... ] 1 = e βωi – 1 (Plancks black-body radiation law) mean particle number N is not conserved but rather a function of temperature T : N = ∑ i=0 ni = V 8π γ3/2(1) Λ3 ~ T3 Λ ≡ 2π c β = thermal de Broglie-wavelength 5 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 → N k BT ~ T4 (Stefan-Boltzmann-law) Andreas Hemmerich 2015 © Grand Canonical Ensemble: system is subject to two constraints: known mean energy: ∑ 0 = f1(P) ≡ E – E [n] P [n] n known mean particle number: ∑ 0 = f2(P) ≡ N – N [n] P [n] n P [n] = find P by maximizing entropy with the constraints f0(P), f1(P), f2(P): C e – β E [n] e – λ N [n] , C = Normalization physical significance of Lagrange parameters β and λ: S(P) = – kB ∑ P [n] ln( P [n] ) = – kB n ⇒ E = ∑ P [n] (–β E [n] – λ N [n] ) – kB ln(C) = kB β E + kB λ N – kB ln(C) n λ S – N kB β β + kBT ln(C) ! = TS + µN + ⇒ kBT ln(C) β = 1 kBT λ = – µ k BT T = Temperature, µ = Chemical Potential mean occupation of i-th mode: ni = ∑ n0 ,n1, .... Fermions: Bosons: 6 ni = 0,1 ni = ni = 0,1,2, .... ni = Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = Ai ∂ ln ∂Ai ni P[n0,n1, ... ] ∑ ni n Ai i Ai ≡ exp( –β εi– λ) 1 Ai–1 + 1 1 Ai–1 – 1 Andreas Hemmerich 2015 © The ideal Bose-Gas Bose-Einstein-distribution: εi ε0 ni = gi ξ = exp(β µ) , β = 1/kBT -1 ξ exp(β εi) – 1 εi , i = 0,1,2.... single particle energies, choose ε0 = 0 gi , i = 0,1,2.... degrees of degeneracy µ = chemical potential ∈ [-∞,0], ξ = fugacity ∈ [0, 1] T = temperature Normalizing to N Particles: N = ∞ ∑ i=0 ni = n0 + G(ξ) Bose-Condensation: G(ξ) grows monotonously and is bounded on [0,1] ξ = 1, N > Nc ≡ G(1) g3 g1 µ ε0 7 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ε1 g2 ε2 energy ε3 Andreas Hemmerich 2015 © Example1: N Bosons in a (large) Box with Volume V εi ∞ G(ξ) = gi ∑ i=1 = V Λ3 ≈ ξ-1 exp(εi/kBT) – 1 ∞ 2 π1/2 Density of States: dx 0 g(ε) = ∞ dε 0 x1/2 g(ε) ξ exp(ε/kBT) – 1 = ξ-1 exp(x) – 1 ε0 -1 V g (ξ) 3/2 Λ3 (2m)3/2 ε1/2 V 43 π2 Thermal deBroglie Wavelength: 2 1/2 Λ ≡ ( 2π ) , mkBT k ≡ 2π /Λ ⇒ 2k2 = π kB T 2m The Function g3/2(ξ): g3/2(ξ) ≡ 2 π1/2 ∞ 0 dx x1/2 ξ-1 exp(x) – 1 ∞ = ∑ n=1 g3/2(ξ) is monotonous on [0,1], g3/2(1) ≈ 2.61 8 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ξn 2.61 g3/2(ξ) n3/2 1 ξ Andreas Hemmerich 2015 © Bose-Einstein-Condensation in a Box with Volume V: V N = n0 + 3 g3/2(ξ) , Λ N > Nc ≡ g3/2(1) V3 Λ Normalisation for N Particles: Critical Particle Number Nc : Critical Temperature Tc , Λc: k BTc = n0 = 1/(ξ-1–1) = ξ/(1 – ξ) ρ 2/3 2π2 ( ) m g3/2(1) or (ε0, g0 = 0) ρΛ3 > g3/2(1) ≈ 2.61 ρ ≡ N/V Particle-Density, ρΛ3 Phase-Space-Density , ρΛc3 = g3/2(1) ( Exp: Λ-Point 4He: Tc = 2.177 K, 87Rb at ρ=1014 cm-3 ⇒ Tc = 400 nK ) Bose-Kondensat Chemical Potential µ(T,V,N): ξ für N → 1 ξ 1 g (ξ) 1 = 1 + ρΛ3 3/2 N 1–ξ ⇒ ξ(T,V,N) = 1 ξ für N = 105 ⇒ ξ = ξ(T,V,N) Thermodynamic Limes: V, N → ∞ such that ρΛ3 constant: g3/2-1 (ρΛ3) ∞ 0 g3/2(1) 0 1 2 3 4 5 ρΛ3 if ρΛ3 < g3/2(1) if ρΛ3 > g3/2(1) i.e. in Bose-Condensed Regime µ(T,V,N) = kBT ln( ξ(T,V,N) ) 9 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Occupation of Ground State: n0 = 1 – N 1 g (ξ) ρΛ3 3/2 and g3/2-1 (ρΛ3) ξ(T,V,N) = 1 if ρΛ3 < g3/2(1) ρΛ3 > g3/2(1) if yield n0 N if ρΛ3 < g3/2(1) T 3/2 = 1 – if Tc ρΛ3 > g3/2(1) 0 = 1– g3/2(1) ρΛ3 Bose-Condensate n0 N 1 0 10 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 0 1 2 T Tc Andreas Hemmerich 2015 © Internal Energy: ∞ U = ∑ i=0 g5/2(ξ) ∞ n i εi ≈ dε 0 ∞ ≡ 4 3π1/2 dx 0 g(ε) ε ξ-1exp(ε/kBT) – 1 V g (ξ) 3 kBT 5/2 2 Λ3 = ∞ x3/2 -1 ξ exp(x) – 1 = ∑ n=1 ξn 1.2 0.8 0.4 0 0 n5/2 monotonous on [0,1], g5/2(1) ≈ 1.34 g5/2(ξ) 1 ξ Specific Heat: Cv N ≡ 1 ∂U N ∂T V,N 1 g ( ξ(T,V,N) ) 15 kB 5/2 4 ρΛ3 = d g ( ξ(T,V,N) ) = 3/2 dξ d dξ d g ( ξ(T,V,N) ) = 5/2 dξ d dξ ∂ξ ∂T V,N = ∞ ∑ n=1 ∞ ∑ n=1 ξn n3/2 ξn n5/2 d d (ρΛ3) = g3/2-1(ρΛ3) dT dy 11 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ∞ = ξ-1 = ξ-1 ∑ n=1 ∞ ∑ n=1 + ξn n1/2 ξn n3/2 d (ρΛ3) dT d g ( ξ) 3/2 dξ 3 kBT 2 ρΛ3 d g ( ξ(T,V,N) ) 5/2 dξ = ξ-1 g1/2( ξ(T,V,N) ) = ξ-1 g3/2( ξ(T,V,N) ) ∂ξ ∂T V,N ξ ρΛ3 = – 3 2 T g1/2(ξ) Andreas Hemmerich 2015 © Cv ⇒ 1 g (ξ) 15 kB 5/2 4 ρΛ3 = N ξ(T,V,N) – 9 k g3/2(ξ) 4 B g1/2(ξ) g3/2-1 (ρΛ3) falls T > Tc 1 falls T < Tc = ρΛ3 N 2π2 3/2 ) = ( V mkBT Limiting Cases: ρΛ3 = g3/2(ξ) T > Tc ⇒ 1 = ξ, g1/2( 1) = ∞ T < Tc ⇒ T→ ∞ ⇒ ρΛ3 → 0 ⇒ Cv ⇒ kBN ⇒ Cv kBN ξ = g3/2-1 (ρΛ3) → 0 = 15 g5/2(ξ) 4 g3/2(ξ) – = 15 g5/2(1) 4 ρΛ3 15 g5/2(1) = 4 g3/2(1) ⇒ Cv kBN = 9 g3/2(ξ) 4 g1/2(ξ) 15 – 9 4 4 = T 3/2 Tc 3 2 Cv kBN 3/2 0 0 1 T Tc 2 cf. classical ideal Gas: Cv kBN 12 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = 3/2 Λ-Point of 4He Andreas Hemmerich 2015 © Example2: N Bosons in a 3D harmonic Potential States: |ix,iy,izi , ix,iy,iz = 0,1,2,.... g(ε) = Density of States: ∞ G(ξ) = dε 0 g3(ξ) ≡ 1 2 ∞ 0 ε2 2 (Ω)3 kB T = -1 ξ exp(ε/kBT) – 1 ξ-1 exp(x) – 1 = N = n0 + Bose-Einstein-Condensation: N > Nc ≡ Critical Temperature TC and Density ρC: ξn ∑ n=1 Normalising to N Particles: 3 Ω ∞ x2 Ω k B Tc ≡ 0 dx x2 ξ-1 exp(x) – 1 3 g3(ξ) , Ω kB T ∞ monotonous on [0,1], g3(1) ≈ 1.202 n3 k BT 1 2 3 Θ > g3(1) , Θ ≡ N Ω 3 k BT Θ Phase-Space Density g3(1) (N /g3(1))1/3 Ω (cf. Boltzmann gas: 13 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Ω ε0 g(ε) dx ε1 1 (i+1)(i+2) 2 gi = mΩ2(x2+y2+z2) ε2 Single Particle Spectrum: εi = i Ω , i = (ix+iy+iz) = 0,1,... Degeneracies: 1 2 Ω > k BT > k T) B Andreas Hemmerich 2015 © Chemical Potential µ(T,Ω,N): ξ 1 1 = + N 1–ξ 1 g (ξ) Θ 3 Thermodynamic Limes: N → ∞ with Θ ⇒ ξ(T,Ω,N) = n0 N ξ = ξ (T,Ω,N) ⇒ constant: g3-1 (Θ) falls Θ < g3(1) 1 falls Θ > g3(1) 0 = 1– g3(1) Θ T 3 = 1 – Tc Bose-Einstein-Condensate of Rubidium atoms µ(T,Ω,N) = kBT ln( ξ(T,Ω,N) ) falls Θ < g3(1) falls Θ > g3(1) 1 note small deviations due to collisional interactions J. Ensher et al. Phys. Rev. Lett. 77, 4984 (1996) 0 0 14 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 T/Tc 1.8 Andreas Hemmerich 2015 © Interaction via two-body collisions U(|r1 – r2|) R0 |r1 – r2| Λ >> R0 ⇒ S-Wave Scattering : Elastic scattering cross section: eikz → eikz + Spherical Wave: phase δ0(k), amplitude sin(δ0(k)) 4π sin(δ (k)) e iδ0(k) 0 k σ ≈ 4πA0(k)2, A0(k) ≡ – eikr r sin(δ0(k)) = Scattering Length k Effect of potential is described by a single number "A0" : details of potential are not resolved in S-wave scattering → potential U can be replaced by as a contact potential: 2A 0 U( r1 - r2 ) = g δ ( r1 - r2 ) , g = 4πm Examples: No bound states: A0 > 0 Bound states: depending on exact form of potential A0 > 0 or A0 < 0 15 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 H 7Li A0(Å) 0.72 –14 23 Na 87 Rb 49 55 Andreas Hemmerich 2015 © Physical significance of the sign of the scattering length: Negative Scattering Length: Potential provides scattering resonance near dissociation limit This yields large values of the wave function near r1 - r2 = 0 Large pobabillity for small distances of collision partners → attractive character of interaction U(|r1 – r2|) |r1 – r2| Positive Scattering Length: Potential provides bound state near dissociation limit This yields small values of the wave function near |r1 – r2| = 0 Small distances of collision partners are avoided → repulsive character of interaction U(|r1 – r2|) |r1 – r2| 16 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Potential U acts as a contact potential: 2A 0 U( r1 - r2 ) = g δ ( r1 - r2 ) , g = 4πm collision energy / particle: 1 2 Ecol = dr dr’ U(r-r’) ρ(r) ρ(r’) = N gρ 2 , ρ = N = 1 N dr ρ2(r) mean density particle number dr ρ(r) for small ρ the collision energy Ecol is determined by two-body collisions (dashed lines) for larger ρ three-body collisions may yield molecule formation (solid lines) A + A + A → 2A + A , τ-1 = α ρ2 E col N 87Rb 7 Li 5x10-39 cm6 s-1 H↑: α = α = 4x10-30 cm6 s-1 [Kagan et al., JETP 54, 590(1981)] 87Rb↑: Example: ρ= 1014 cm-3 H ρ [Moerdijk et al., Phys.Rev.A(1995)] ⇒ τ(87Rb) 17 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = 25 s 1gρ 2 Andreas Hemmerich 2015 © Magnetic Traps Interaction W = – µB Magnetic moments µ parallel to B are dragged towards local maxima of |B|: –> high field seakers Magnetic moments µ antiparallel to B are dragged towards local minima of |B|: –> low field seakers Local maxima of |B| are not available because ∇B = 0 –> only low field seakers can be trapped. Magnetic moment follows the field orientation adiabatically, if v ∂ ω ∂r B << ωB2 m=1 m=0 m=-1 Condition cannot be realized in the vicinity of a field zero: Loss of particles by spin flip transitions (Majorana-transitions) m=1 m=0 m=-1 1. Quadrupole Geometry → linear potential, small trap volume (i.e., high compression), however, B has a zero. Atoms have to be kept away from the field zero, e.g. by a blue detuned laser beam (optical plug). 2. “TOP”-Trap (quadrupole + rotating offset field) → quadratic potential, large trap volume, B has no zero. 3. Ioffe Geometry (linear quadrupole + static offset) → quadratic potential, large trap volume, B has no zero. 18 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Cooling by Evaporation: H. Hess, Phys. Rev. B, 34, 3476 (1986). W. Ketterle and N. van Druten, Adv. Phys. 37, 181 (1996). Evaporative Cooling in Magnetic Traps Energy Potential • Expelling high energy atoms (→ loss of particles) • Thermalization by elastic two-body collisions ⇒ cooling rate limited by rate for thermalization: typical elastic collision rate @ ρ = 1010 cm-3 : 1 s-1 µ Forced Evaporation by RF-Transitions Energy m=2 1 νRF 0 –1 Run away effect: temperature decrease → density increase → increase of thermalization rate → faster cooling –2 B 19 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Making and Observing a Bose-Einstein Condensate M. Anderson et al., Science 269,198 (1995) K. Davis et al., Phys. Rev. Lett. 75,3969 (1995). C. Bradley, et al.,Phys. Rev. Lett. 75, 1687 (1995) trap-potential → Laser-Cooling → Magneto-Optic Trap uncondensed atoms → Magnetic Trap → Forced Evaporative Cooling → Free Expansion → Absorption Image Lens CCD Camera ballistic expansion of a Bose-condensate 20 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Theoretical description of Bose-Einstein Condensate Many-Body-Hamiltonian H + 2 ∇ 2 dr Ψ (r,t) – + Vtrap(r) + 1 dr' Ψ +(r' ,t) U(r' – r)Ψ(r' ,t) Ψ (r,t) 2m 2 = Vtrap(r ) = trap potential = two-body interaction potential U(r' – r) Ψ (r,t) = field operator Ψ (r,t) = ∑ Ψ ν (r) + Ψ(r ,t) , Ψ (r ',t) a ν (t) = δ (r' – r) Ψ ν (r) = basis-set of functions (e.g., single particle wave functions) a ν (t) = corresponding anihilation operators Heisenberg Equation use commutation relations i ∂ Ψ(r,t) = ∂t Ψ(r ,t) , 21 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 H = – 2 ∇ 2 + Vtrap(r) + 2m dr' Ψ +(r' ,t) U(r' – r)Ψ(r' ,t) Ψ (r,t) Andreas Hemmerich 2015 © Calculation of Heisenberg Equation 22 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Gross-Pitaevskii Equation Start with Heisenberg equation for many-body system: i ∂ Ψ(r,t) ∂t U(r' – r) – = 2 ∇ 2 + Vtrap(r) + 2m dr' Ψ +(r' ,t) U(r' – r)Ψ(r' ,t) Ψ (r,t) = two-body interaction potential + Ψ(r ,t) , Ψ(r ',t) = δ (r' – r) Apply Bogoliubov approximation: Ψ(r,t) = Φ(r,t) + Φ (r,t) = Ψ (r,t) Ψ '(r,t) n0(r,t) = |Φ(r,t)|2 Intoduce S-Wave-limit: Obtain GP-Equation: U(r' – r) = g δ (r' – r) , g = ∂ i Φ(r,t) ∂t 23 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = 4 π 2 A0 m 2 ∇ 2 – + Vtrap(r) + g Φ(r,t) 2m 2 Φ(r,t) Andreas Hemmerich 2015 © Structure of Gross-Pitaevskii Equation ∂ i ∂t Φ(r,t) = 2 ∇ 2 – + Vtrap(r) + g Φ(r,t) 2m 2 Φ(r,t) GP-Equation = Schrödinger-Equation + χ(3)-term g=0 → GP-Equation = Schrödinger-Equation → matter waves experience dispersion in vacuum → matter waves self-interact at large densities giving rise to inherent four-wave mixing similar as photons in a χ(3)-medium at large intensity 24 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Time-Independent GP Equation Ansatz: Φ(r,t) = Φ(r) e µ -i t Time-independent GP-Equation: µ Φ(r) = µN Ekin = Φ(r) – 2 ∇ 2m – 2 ∇ 2 + Vtrap(r) + g Φ(r) 2m Epot Φ(r) Ekin + Epot + 2Ecol = 2 Φ(r) 2 = Φ(r) Vtrap(r) Φ(r) Ecol = 1 Φ(r) g ρ(r) Φ(r) 2 Recall Thermodynamics: T = 0 → total energy = chemical potential × particle number: U ≡ µN is the internal energy 25 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 µ is the chemical potential thermodynamical relations: equation of state etc. Andreas Hemmerich 2015 © EXAMPLE inside box: Consider box potential for large volume V: Φ (r) determine internal energy: = N V and Vtrap(r) = 0 µ N = Ekin + Epot + 2Ecol 2 ∇ 2m 2 = 0 Φ (r) Vtrap(r) Φ (r) = 0 Ecol = 1 Φ (r) g ρ(r) Φ (r) 2 = g N2 2V Ekin = Φ (r) – Epot = Φ (r) derive thermodynamic quantities with respect to variables N, V (Entropy S = 0): chemical potential µ = equation of state P = sound velocity c = gN V - dU dV 1 = = = κs ρmass 4 π 2 A0 N mV g N2 2V2 - , U = Ekin + Epot + Ecol V2 dP mN dV 1 dV compressibility: κs ≡ − V dP 26 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 S = gN mV mass density: ρmass ≡ mN V Andreas Hemmerich 2015 © Healing Length ξ : minimal length scale for change of order parameter condition for locally stable quantum fluid: collisional pressure εcol(r) must exceed quantum pressure εkin(r) assume exponentially changing order parameter εcol(r) ≡ g ρ(r)2 Φ(r) ≈ Φ0 exp(– r ) ξ Φ0 exp(– r ) ξ ξ 2 εkin(r) ≡ – Φ* (r) 2 2 ∇ Φ(r) ≈ 2 ρ(r) 2m 2m ξ εcol > εkin ξ > ξ0 ≡ 1 8π ρ0 A0 typical situation in experiments: ρ0 ≈ 1014 cm-3, A0 ≈ 10-8 m → ξ0 ≈ 200 nm 27 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © significance of collisional interactions Define Interaction parameter: EXAMPLE: η≡ E col E kin measures significance of collisional interactions as compared to quantum pressure consider harmonic oscillator potential and small interaction L0 ≡ mω0 ω0 ≡ ωx ωy ωz η << 1 1/ e radius of single particle ground state 1 3 mean vibrational frequency L0 28 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © interaction small η << 1 : → GP-Equation ≈ Schrödinger-Equation condensate wave function Ekin ≈ wave function of single particle ground state = N (ωx + ωy + ωz) 2 η ≡ E col E kin = 1 Φ (r) g ρ(r) Φ (r) 2 Φ (r) – 2 ∇ 2m 2 ≈ N A0 L0 Φ (r) condensate thermal cloud r L0 Lth Condensate: Bose-Condensate corresponds to macroscopic population of single particle ground state Thermal Cloud: In a harmonic potential the spatial distribution of a thermal sample is described by a Gaussian with Radius Lth : Lth = 2 kBT L = 1/ e 0 ω radius of thermal wavefunction Lth[T=Tc] = 2 N1/6 L0 29 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Typical parameter set in experiments: Thomas-Fermi Limit: η >> 1 N ≈ 106 L0 ≈ 10-5 m A0 ≈ 10-8 m η ≈ 103 neglect kinetic energy term in GP-equation µ Φ(r) = ρ(r) = Vtrap(r) + g Φ(r) µ – Vtrap(r) g 2 if Φ(r) µ > Vtrap(r) 0 otherwise Energy Vtrap(r) µ r ρ(r) r 30 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Thomas-Fermi-Limit for Harmonic Potential Vtrap(r) = m ωx2 x2 + ωy2 y2 + ωz2 z2 , 2 ω0 ≡ ωx ωy ωz 1 3 , L0 ≡ mω0 using N = d3 r ρ(r) , µ = Vtrap ( r = Ri , i = x,y,z) ρ(r) = µ – Vtrap(r) g if Energy µ > Vtrap(r) 0 otherwise Vtrap(r) = m ωx2 x2 + ωy2 y2 + ωz2 z2 2 µ r yields ρ(r) Ri ω = ω0 R0 , i Ecol = µ R0 ≡ L 0 15 N A0 L0 1 5 ≈ 7 L0 R r 2 µN 7 A = ω0 15 N 0 2 L0 2 5 ≈ 25 ω0 31 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Harmonic Potential: Thomas-Fermi-Limit versus Exact Solution 0 0 0 radius / L0 32 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Elementary Excitations i ∂ Ψ(r,t) = ∂t Heisenberg equation for many-body system: Bogoliubov approximation: – 2 ∇ 2 + Vtrap(r) + g Ψ +(r ,t) Ψ(r ,t) 2m Ψ(r,t) = (Φ(r) + Ψ´(r,t)) e-i Ψ´(r,t) = ∑ Ψ (r,t) µ t | uν(r) aν(t) + vν*(r) aν+(t) ω 0 uν(r), vν(r) = aν+(t) = quasi-particle wave functions quasi-particle creation operator [aν(t), aµ+(t) ] = δνµ , aν(t) = aν(0) e-iωνt Neglect contributions non-linear with respect to u,v : µ Φ(r) = 2 ∇ 2 – + Vtrap(r) + g Φ(r) 2m 2 (µ + ω) u(r) = – 2∇ 2m (µ - ω) v(r) = – 2 ∇2 + Vtrap(r) + 2 g Φ (r) 2m 33 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 + Vtrap(r) + 2 g Φ (r) 2 u(r) + g Φ(r)2v(r) 2 v(r) + g Φ(r)2u(r) 2 Φ(r) Andreas Hemmerich 2015 © Calculation of Bogoliubov equations neglect all terms higher order than linear in u,v group all terms oscillating with same frequency 34 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Examples of Elementary Excitations: Uniform Gas, i.e. Vtrap = 0 : µ ρ = Φ(r)2 = g , u(r) = u0 eiqr , v(r) = v0 e-iqr ground state density is constant, excitations are plane waves dispersion relation takes Bogoliubov form: 2 q2 2q2 + 2gρ , 2m 2m ω = ω ω = q c2 + q 2m 2 q2 ω = 2m ω= cq, c ≡ gρ m sound velocity q mc phonons versus particle excitation: < mc q > mc ω < Ecol N ω > Ecol N q λ > 8π ξ phonons 35 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 2m c λ < Ecol ≡ N ξ ≡ collision energy per particle 1 8π ρ0 A0 healing length 8π ξ particles Andreas Hemmerich 2015 © Calculation of Bogoliubov dispersion relation Ansatz: 36 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © → superfluidity for low q, system cannot be excited by classical particle consider classical particle with mass M>>m and momentum q0 and dispersion relation: energy momentum conservation: Eclass(q) ≡ 2 q2 2M Eclass(q0) − Eclass(q0 - q) = ω(q) µ2q2 + 4qc2 = (q - 2q0)2 µ ≡ M m , qc ≡ Mc q02 ≥ (1 - µ-2 ) qc2 v02 ≥ (1 - µ-2 ) c2 ω critical velocity Eclass(q) classical particle mass M > m qc q Eclass(qc + q) − Eclass(qc) 37 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Calculation of critical momentum quadratic equation for variable q dicriminante > 0 : 38 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Bragg Spectroscopy momentum space: resonance condition: q = 2kx = 2k sin(θ/2) δω = phonon like regime: λ > 2π ξ δω ≈ q gρ m particle like regime: λ < 2π ξ 0 39 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 δω ≈ 2q2 + gρ 2m 2 sin(θ/2) 2 sin(θ/2) δω 2q2 2 q2 + 2g ρ 2m 2m 2kx δω 2kx 0 Andreas Hemmerich 2015 © Excitation spectrum in particle-like regime: box-like trap potential: inhomogeneous trap: Δω ≈ g Δρ ≈ excitation probability g <ρ> excitation probability frequency δω δω = ≈ 2 q2 2m δω frequency + gρ 2 q2 2m δω δω = ≈ δω 2q2 + g <ρ> 2m 2q2 2m J. Stenger et al, PRL 82, 4569 (1999). Observation for trapped BEC BEC after 3 ms expansion momentum distribution of single-particle ground state thermal cloud at T= 1µK 40 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Preparing selected momenta position space: momentum space: P2 1. pulse P1 k P2 2. pulse P3 P1 2k P2 frame moving at k: P1 –k 41 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 P3 +k Andreas Hemmerich 2015 © Four Wave Mixing: P3 P1 –k +k –k P4 P2 and P1 form a density-grating, which Bragg-scatters P3 into P4 0 = P2 – P1 + P3 – P4 P3 P1 –k +k –k P4 P2 and P3 form a density-grating, which Bragg-scatters P1 into P4 0 = P2 – P3 + P1 – P4 P3 P1 P4 Laboratory Frame Experiment: Deng et al., Nature 398, 218 (1999) 42 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Rayleigh Scattering position space: k laser beam MIT Data (Ketterle et al.) 43 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Self-induced Bragg- Scattering self-organization process: atoms arrange in optical lattice with every second site occupied position space: momentum space: second order k first order k k k laser beam laser beam 4 k 2 k k MIT Data (Ketterle et al.) 44 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Short Pulse with High Intensity q position space: δω = 2q2 m -q k laser beam Photons scattered into laser beam are recoil shifted. Stimulated process only efficient if band width of laser beam larger than recoil shift → pulse duration < recoil time momentum space: 2 k first order k k laser beam -2k -k k 2 k -k Schneble et al., Science 300, 475 (2003) -2k 45 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Hydrodynamic GP-Equation: Define: Ψ(r,t) ≡ ∂ ρ + ∇(ρv) = 0 ∂t ρ(r,t) e i S(r,t) ∇ S(r,t) v(r,t) ≡ m j (r,t) ≡ ρ(r,t) v(r,t) = m 1 2i (Ψ∗ ∇ Ψ - Ψ ∇ Ψ∗) m 2 ∂ v + ∇ Vtrap + gρ - 1 ∇2 ρ + ∂t 2m ρ ∂ ρ + ∇(ρv) ∂t η >> 1 : Collisionless Hydrodynamic Limit (CHL) (no collisions with thermal atoms) m ∂ v + ∇ Vtrap + gρ + ∂t 1 2 1 2 mv 2 = 0 = 0 mv 2 = 0 T = 0 case of Landaus theory of superfluidity v = 0 yields Thomas-Fermi Limit ∇ Vtrap + gρ ⇒ Vtrap + gρ = 0 = const ≡ µ 46 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Equivalence of conventional and hydrodynamic GP-equation evaluate equation for real and imaginary part insert definition of velocity 47 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Collective Excitations ω << µ Linearization: ρ = ρ0 + δρ , ρ0 ≡ Th-F density ∂2 δρ = ∇ c2(r) ∇ δρ ∂t2 Solutions for Vtrap = 0 : m c2(r) ≡ µ - Vtrap(r) , ∝ Sin(ω t - q r + φ ) local sound velocity ω=cq , c= µ m = g ρ0 m Bogoliubov dispersion relation for Th-F Limit Solutions for Vtrap(r) = 1m 2 ω2 r2 : ω> (nr , l) = 2 nr 2 + 2 nr l + 3nr + l ω Stringari et.al, PRL 77, 2360 (1996) 48 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Excitations in a 3D Spherical Harmonic Oscillator Potential: η << 1 : ω< (nr , l) = ( 2 nr + l ) ω = (nx + ny + nz) ω η >> 1 : ω> (nr , l) = 2 nr 2 + 2 nr l + 3nr + l ω surface excitations, nr = 0 : n=1 : nr = 0, l = 1, m = ±1,0 n=2 : nr = 0, l = 2, m = nr = 1, l = 0, m = ±2,±1,0 0 n=3 : nr = 0, l = 3, m = nr = 1, l = 1, m = ±3,±2,±1,0 ±1,0 n=4 : nr = 0, l = 4, m = nr = 1, l = 2, m = nr = 2, l = 0, m = ±4,±3,±2,±1,0 ±2,±1,0 0 ω<(nr , l) = ω>(nr , l) = l l ω ω compressional modes, nr > 0, l = 0 : Vibrationen nach Hauptquantenzahl n angeordnet: n=1 dipol mode, nr = 0, l = 1 : 1 + m = 0, nz =1: ω> = ω< = ω = n=2 n=2 5 quadrupol mode, nr = 0, l = 2 : ω< = 2 ω ω> = 2 ω ω< = ω> = 2 ω 5 ω n=1 n=0 1 monopole mode, nr = 1, l = 0: + 49 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = Andreas Hemmerich 2015 © Variation of harmonic trap potential (Th-F Limit) Vtrap(r,t) = d α + α 2 + ωi2 - 2 g a i m i dt i m ω (t)2 x2 + ω (t)2 y2 + ω (t)2 z2 x y z 2 = 0 (1) d a - (α + α + α + α ) a = 0 x y z i i dt i (2) ⇒ v(r,t) = 1 2 ∇ αx(t) x2 + αy(t) y2 + αz(t) z2 Hydrodynamic GP-Equation in CHL a0 = ρ(r,t) = a0(t) - ax(t) x2 - ay(t) y2 - az(t) z2 15N 8π 2 5 (axayaz)1/5 normalization Consider Th-F- radii Ri(t), i = x,y,z Ri(t): 0 = a0(t) - ai(t) Ri(t)2 Ri(t) = ⇒ Ri(t) = R0(0) bi(t) , Ri(0) = 2µ m ωi,02 Study excitations with Ansatz: 50 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 a0(t) ai(t) ⇒ (1),(2) ωi,02 d2 b + ω 2 b – = 0 i i dt2 i bibxbybz term1: linear, accounts for instantaneous curvature of potential term2: non-linear, only depends on initial curvature; accounts for conversion of collisional energy into kinetic energy and vice versa ωi(t)2 ≡ ω i,02 + δ i,02 Sin(Ω t) Andreas Hemmerich 2015 © EXAMPLE consider axial symmetric trap: b⊥ ≡ bx = by , ω⊥ ≡ ωx = ωy consider non-adiabatic release: ⇒ ω i (t) = ω i,0 , i = ⊥,z 0 d2 b = 1 ⊥ dτ2 b3⊥ bz d2 b = λ2 z dτ2 b2⊥ b2z for t < 0 for t > 0 τ ≡ ω⊥,0 t ω λ ≡ ωz,0 ⊥,0 solution for λ << 1 (cigar shaped condensate) : b⊥(τ) = 1 + τ2 bz(τ) = 1 + λ2 τ arctan τ - ln 1 + τ2 aspect ratio : λ 1 + τ2 R⊥(τ) = Rz(τ) 1 + λ2 τ arctan τ - ln 1 + τ2 asymptotic value for τ→∞ : R⊥(τ) Rz(τ) = 2 πλ 1 ms λ = 0.03 6 λ = 0.1 4 λ = 0.3 2 0 51 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 0 100 200 τ ≡ ω⊥,0 t 300 Andreas Hemmerich 2015 © Experiment: 25 ms expansion non-adiabatic expansion of harmonic potential for g = 0 (ideal gas) : L⊥(τ) = L⊥,0 1 + λ2 τ 2 Lz(τ) = Lz,0 Final RF 644 kHz 1 + τ2 aspect ratio : L ⊥(τ) L z(τ) 1/2 = 1 + τ2 1 + λ2 τ 2 λ 604 kHz L ⊥(τ) L z(τ) asymptotic value for τ→∞ : = 1 λ1/2 595 kHz λ = 0.1 6 540 kHz Th-F Limit 4 Ideal Gas 2 0 495 kHz 0 100 200 τ ≡ ω⊥,0 t 300 480 kHz Fit: Thomas- Fermi for condensed fraction, Gauß for thermal fraction 52 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Single Vortex Solutions y z r = (x,y,z) Ψ(r,t) ≡ Φ(r) e x φ ≡ µ t v(r) ⇒ ρ( x2 + y2 ,z) e i S(x,y) y S(x,y) ≡ κ arctan( x ) Φ(r) y -i ≡ 1 2 x2 κ + y2 2 2 1 mv 2 = κ 2 2m x + y2 ∇ y arctan( x ) = m -y x 0 x κ 2π δ(x)δ(y) = m v(r) velocity field diverges at x,y -> 0, thus the density must approach zero at the vortex line. Estimation of vortex core radius ζ: κ = m ζ ! v(ζ) = c = gρ m → ζ = 2 κξ healing length v(ζ) = sound velocity total angular momentum: L = r≡ x2 + y2 dz 2π rdr n(r,z) r mv(r) 53 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = dz 2π rdr n(r,z) r mv(r) = dz 2π rdr n(r,z) κ = N κ Andreas Hemmerich 2015 © Multi-Vortex Solutions two vortices (κ1and κ2) with same sense of rotation at distance d: two vortices (κ1and κ2) with opposite sense of rotation at distance d: kinetic energy: kinetic energy: d >> 0 -> Ekin ∝ κ12 + κ22 d = 0 -> Ekin ∝ (κ1 + κ2)2 d >> 0 -> Ekin ∝ κ12 + κ22 d = 0 -> Ekin = 0 d energy conserved -> d constant energy conserved -> d constant dissipation -> vortices repell vortices can form lattices dissipation -> vortices attract & anihilate 54 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 d Andreas Hemmerich 2015 © harmonic potential ωx = ωy : Hydrodynamic GP-Equation: 1 ∇2 ρ ρ κ2 x2 + y2 = 2m Vtrap - µ + gρ 2 η << 1, κ = 1 right hand side diverges ρ = 0 for x2 + y2 → 0 thus + Lim η >> 1, κ = 0 x 2+ y 2 → 0 x2 + y2 << ξ2 : 1 ∇2 ρ ρ x2 + y2 0 2 κ x2 + y2 ≈ >> ξ2, ⇒ ρ ∝ x2 + y2 κ2 η >> 1 : Th-F density distribution 0 = Vtrap - µ + gρ Solutions of hydrodynamic GP-equation exist only for integer κ 0 1 2 4 3 x / L0 5 6 η >> 1, κ = 1 vortex solution has reduced maximum density as compared to corresponding ground state: → for η >>1, excitation of vortices stabilizes BEC with attractive interaction excitation of N vortices with κ=1 costs less kinetic energy than excitation of one κ=N vortex: → vortex lattices Experiment: vortex lattice NIST 55 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Interference of two Bose-Condensates Which state describes BEC ? Make BEC Can a BEC interfere with itself ? Split & Wait Can two independent BECs interfere ? Drop Optical Pumping Laser (mark a slice of atoms) Lens CCD Camera M. Andrews et al., Science 275, 637 (1997). 56 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Toy model for bosons in a single mode in a single well States: |Σi ≡ C0 |0i + C1 |1i + C2 |2i + ... |C0|2 + |C1|2 + |C2|2 + ... Field Operator: Ψ(x) ≡ α(x) a = 1 α(x) ≡ |α(x)| exp( iφα(x)) + Ψ(x) = α(x)* a+ dx |α(x)|2 = 1 [a,a+] = 1 a+|ni = (n+1)1/2 |n+1i a|ni = n1/2 |n-1i Particle Number: Density: Ψ+(x)Ψ(x) dx = a+a + ρ(x) ≡ hΣ| Ψ(x) Ψ(x) |Σi = |α(x)|2 hΣ| a+a|Σi = |α(x)|2 ∑ n |Cn|2 n 57 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Hamiltonian for bosons in a single mode of a single well H = 2 d3r ψ+(r) [ - ∆ + V(r) ] ψ(r) 2m single mode expansion + g 2 d3r ψ+(r)ψ+(r) ψ(r) ψ(r) , g = 4π 2 A m ψ(r) = a α(r) H ≈ Va a+ a on-site trap energy WV + Ua a+a (a+a – 1) on-site collisions WU g 2 2 [ - ∆ + V(r) ] α(r) 2m Note: the mode geometry is not a dynamical variable. It merely appears via the two numbers Va, Ua 58 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Interference of two Bose-Einstein Condensates (two particles): Before Splitting: Total number of particles = 2 After Splitting: State: |Σi ≡ C11 |1,1i + C20 |2,0i + C02 |0,2i |C11|2 + |C02|2 + |C20|2 = 1 |n,mi ≡ |ni ⊗ |mi Field Operator: Ψ(x) ≡ α(x) a + + Ψ(x) = α(x)* a+ Particle Number: β(x) b + β(x)* b+ α(x) ≡ |α(x)| exp( iφα(x)) β(x) ≡ |β(x)| exp( iφβ(x)) Ψ+(x)Ψ(x) dx = a+a + b+b dx α(x) β(x)* = 0 + ρ(x) ≡ hΣ| Ψ(x) Ψ(x) |Σi Density: = dx |α(x)|2 = dx |β(x)|2 = 1 |α|2 (|C11|2 + 2 |C20|2) + |β|2 (|C11|2 + 2 |C02|2 ) + √2 (C20* C11 + C02 C11*) α* β + √2 (C20 C11* + C02* C11) α β* 59 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © = |α|2 (|C11|2 + 2 |C20|2) + |β|2 (|C11|2 + 2 |C02|2 ) + √2 (C20* C11 + C02 C11*) α* β + √2 (C20 C11* + C02* C11) α β* = (|C11|2 + 2 |C20|2) |α(x)|2 + (|C11|2 + 2 |C02|2 ) |β(x)|2 + √2 (C20* C11 + C02 C11*) ≡ C exp( iφγ) , 2 |C| |α| |β| cos(φγ + φβ(x) – φα(x)) C = interference contrast interference pattern arises only, if interference contrast C ≡ √2 |C20* C11 + C02 C11*| ≠ 0, i.e. only, if particle number in each condensate is uncertain Example: mode functions are counterpropagating plane waves φα = –kx, φβ = kx → Fock State: ρ(x) = → interference term ~ √8 |α| |β| C cos(φγ + 2kx) each condensate prepared in Fock-state |1,1i : → C20 = C02 = 0 , C11 = 1 |α(x)|2 + |β(x)|2 density ρ(x) independent of φα , φβ, i.e. no interference pattern in density distribution 60 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Two-Particle Correlation: ρ(x1,x2) ≡ αi ≡ α(xi) , βi ≡ β(xi) , i =1,2 + + hΣ| Ψ(x1) Ψ(x2) Ψ(x2) Ψ(x1) |Σi = 2 |C20|2 |α1α2|2 + 2 |C02|2 |β1β2|2 + 2 C20* C02 α1*α2* β1β2 + 2 C20 C02* α1α2 β1*β2* + √2 C20* C11 α1*α2* (α1β2 + α2 β1 ) + √2 C20 C11* α1 α2 (α1β2 + α2 β1 )* + √2 C02* C11 β1*β2* (α1β2 + α2 β1 ) + √2 C02 C11* β1 β2 (α1β2 + α2 β1 )* + |C11|2 | α1β2 + α2 β1 |2 Fock State: each condensate is prepared as a Fock state, i.e., C20= C02 = 0, C11= 1, ρ(x) = |α|2 + |β|2 ρ(x1,x2) = | α(x1)β(x2) + α(x2) β(x1) |2 mode functions are counterpropagating plane waves, i.e., α ≡ |α0| exp( –ikx), β ≡ |β0| exp( ikx) ρ(x1,x2) = 4 |α0|2 |β0|2 cos2( k(x2–x1) ) → experiment yields interference pattern in density, however with random spatial phase J. Javanainen, S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996). 61 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Split Bose-Einstein condensates with 2 particles and defined relative phase: Single atom: 1 2 2 Two atoms: ⊗ L eiφ + α(x) R β(x) evaluate product 1 2 L eiφ + R φ = 1 2 |Li⊗|Li ei2φ + |Ri⊗|Ri + |Li⊗|Ri eiφ + |Ri⊗|Li eiφ = 1 2 |Li⊗|Li ei2φ + |Ri⊗|Ri 1 2 |2,0i ei2φ µ=1 + 1 2 |Li⊗|Ri + |Ri⊗|Li 2 eiφ symmetrize for bosons = + |1,1i 2 eiφ + |0,2i Phase state |φi maximizes interference contrast : C11 = 1 2 C02 = 1 2 C20 = 1 2 eiφ √2 |C20* C11 + C02 C11*| = 1 maximal → ei2φ 62 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ρ(x) ≡ hφ| Ψ+(x) Ψ(x) |φi = | α(x) eiφ + β(x) |2 Andreas Hemmerich 2015 © Dynamics of split Bose-Einstein condensates: H = 2 d3r ψ+(r) [ - ∆ + V(r) ] ψ(r) 2m Expansion with respect to basis α(r) and β(r) : H ≈ neglect collisions involving different sites J a+ b + J* a b+ g 2 d3r ψ+(r)ψ+(r) ψ(r) ψ(r) α(r) ψ(r) = a α(r) + b β(r) + tunnelling WJ + Va a + a + Vb b + b + , 2 A g = 4π m β(r) Ua a+a (a+a – 1) on-site trap energy WV + Ub b+b (b+b – 1) on-site collisions WU on-site energy WUV g 2 d3r |α(r)|4 g 2 d3r |β(r)|4 Ua ≡ J ≡ 2 d3r α(r)* [ - ∆ + V(r) ] β(r) 2m Va ≡ 2 d3r α(r)* [ - ∆ + V(r) ] α(r) 2m real Vb ≡ 2 d3r β(r)* [ - ∆ + V(r) ] β(r) 2m real 63 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Ub ≡ real = κ eiξ Andreas Hemmerich 2015 © Two Particles: States of defined relative phase are stationary states of Tunnelling Operator WJ: Eigenstates: Eigenvalues: = J a+ b + J* a b+ , J ≡ |e+i = 1 2 |2,0i ei2ξ + |1,1i 2 eiξ + |0,2i = |ξi |e–i = 1 2 |2,0i ei2ξ – |1,1i 2 eiξ + |0,2i = |ξ+πi |e0i = 1 2 |2,0i ei2ξ – |0,2i WJ λ+ = +2κ λ- = –2κ λ0 = 0 κ eiξ Fock-states are stationary states of on-site energy WUV: WUV = → 64 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 a+a (Ua a+ a + (Va – Ua) ) + b+b (Ub b+ b + (Vb – Ub) ) |2,0i , |1,1i , |0,2i λ20 = 2 (Va + Ua) λ11 = Va + Vb λ02 = 2 (Vb + Ub) Andreas Hemmerich 2015 © Stationary states of Hamilton Operator: U ≡ Ua = Ub , V ≡ Va = Vb , J ≡ κ eiξ H = WJ – 2U a+a b+b (U + |e±i 1 ≡ |2,0i ei2ξ + |1,1i 2 + |λ±|2 / 2κ2 |e0i Eigenvalues: 1 2 ≡ total particle number = λ± 2κ eiξ + |0,2i |2,0i ei2ξ – |0,2i λ± = - U ± λ0 ≡ a+a + b+b contributes energy offset: N (U N + (V–U)) Two Particles (V=0) Eigenstates: + (V–U)) , U2 + 4κ2 2U –2|κ| U/|κ| << -1 → groundstate: |e-i ≈ ≈ 0 → groundstate: U/|κ| 0 Limiting cases: (κ < 0) U 2|κ| λ+(U) + 2U 1 2 |2,0i ei2ξ + |0,2i “cat” state |e–i = |ξi U/|κ| >> 1 → groundstate: |e–i λ-(U) + 2U phase state C = |1,1i Fock state 1 Interference contrast for |e±i: C = √2 |C20* C11 + C02 C11*| = 65 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 4|κ| |λ±| 4κ2 + |λ±|2 = 2|κ| U2 + -5 5 U/|κ| 4κ2 Andreas Hemmerich 2015 © Temporal evolution of coherence: split α(x) β(x) prepare arbitrary |Σ(t=0)i wait during time t : J=0, H = WUV merge On site energy per particle in each condensate: λ11, λ20, λ02, eigenvalues of WUV: λ20 = 2 (Va + Ua) λ11 = λ02 = 2 (Vb + Ub) |2,0i Va + Vb 66 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 |1,1i Andreas Hemmerich 2015 © Time Evolution of |Σi: |Σ(t=0)i ≡ C11 |1,1i + C20 |2,0i + C02 |0,2i |Σ(t)i = C11 exp(-i λ11t /) λ20 = 2 (Va + Ua) λ11 = λ02 = 2 (Vb + Ub) |1,1i + C20 exp(-i λ20 t /) |2,0i + C02 exp(-i λ02t /) |0,2i Va + Vb U ≡ Ua = Ub , V ≡ Va = Vb → λ20 – λ11 = λ02 – λ11 = 2U exp(i λ11t /) |Σ(t)i = C11 |1,1i + C20 exp(-i 2U t /) |2,0i + C02 exp(-i 2U t /) |0,2i → C(t) ≡ √2 |C20(t)* C11(t) + C02(t) C11(t)*| = √2 |C20* exp(i 2U t /) C11 + C02 exp(-i 2U t /) C11*| with Cij ≡ |Cij| exp(γij ) C(t) 1 for → Interference contrast |C(t)| decays and revives periodically. 0 2U t π + γ0 * For large particle numbers the decay of |C(t)| becomes increasingly fast * The revival time scales with 1/ U. For large traps U is small and the revival time for |C(t)| exceeds the typical life time of the condensate due to three-body collisions 67 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Relative Phase of two Split Bose-Einstein Condensates with N Particles in Total: Single atom: 1 2 L eiφ + α(x) R β(x) Symmetrization N N atoms: ⊗ µ=1 1 2 L eiφ + ν, N – ν φ R ≡ evaluate product symmetrize for bosons Two BECs with relative phase φ : 68 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 φ ≡ 1 2 N/2 { L ⊗ ... ⊗ ν - times N Σ ν=0 eiνφ N ν L ⊗ R ⊗ ... ⊗ R } (N – ν) - times ν, N – ν Andreas Hemmerich 2015 © Properties of |φi and |n,mi : |φi is eigenstate of tunneling operator WJ = State |φi yields maximal interference contrast: J a+ b + J* a b+ + φ Ψ(x) Ψ(x) φ = , J ≡ κ eiφ N 2 | α eiφ + β |2 Example: counterpropagating plane waves, i.e., α ≡ |α| exp(-ikx), β ≡ |β| exp(ikx) ρ(x) = (|α|– |β|)2 + 4 |α| |β| cos2( kx – φ/2) |n,mi is eigenstate of on-site energy WUV = a+a (Ua a+a + (Va – Ua)) + b+b (Ub b+b + (Vb – Ub)) Only second order interference for independent BECs (each described by a Fock-state): + m,n Ψ(x) Ψ(x) m,n + + m,n Ψ(x1) Ψ(x2) Ψ(x2) Ψ(x ) m,n 1 no interference term = m |α|2 + n |β|2 = m(m-1) |α1α2|2 + n(n-1) |β1β2|2 + m n | α1β2 + α2 β1 |2 Example: counterpropagating plane waves, i.e., α ≡ |α| exp(-ikx), β ≡ |β| exp(ikx) ρ(x1,x2) = m(m-1) |α|4 + n(n-1) |β|4 + 4 m n |α|2 |β|2 cos2( k(x2–x1) ) 69 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Time evolution of two independent (no tunnelling) BECs with relative phase φ : t=0: φ N 1 ≡ 2 N/2 Σ N ν eiνφ ν=0 ν, N – ν P(ν, N) = 1 2 N ν N/2 peaks around ν = N/2 Expand energy of state ν, N – ν E(ν, N – ν) = around ν = N/2 : E(ν) + E(N – ν) = ω0 = ξ = ω0 + ξ (ν – N/2)2 + O(ν4) 2 E(N/2) d2E(ν) dν2 = ν = N/2 dµ dν ν = N/2 State with initial relative phase φ after evolving during a time t: N φ(t) ≡ exp(– iω0t) Σ exp(– iξ t (ν – N/2)2 + iνφ ) P(ν, N) ν, N – ν ν=0 70 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © ψ States with defined relative phase ψ : ≡ N 1 2 Σ N/2 N ν eiνψ ν=0 ν, N – ν phase distribution of |φ(t)> : N ψ φ(t) = Σ P(ν, N)2 exp(– iξ t (ν – N/2)2 + iν(φ – ψ) ) ν=0 P(ψ) = ψ φ(t) 2 π ≈ 2 N >> 1 Δψ2 exp – (ψ – φ)2 2 use Laplace formula for P(ν, N) Δψ(t) Δψ2 = 1 + N ξ2 t 2 N J. Javanainen, M. Wilkens, Phys. Rev. Lett. 78, 4675 (1997). Note: time evolution yields phase decoherence: width Δψ doubles for ξ t = 3 N–1 width Δψ = π for ξ t ≈ π N–1/2 complete revival occurs for ξ t = 2 π Example: Th-F-Limit in harmonic trap: ξ = 72 125 1/5 ωV N 3/5 71 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 A0 L0 2/5 µ A = ωV 15 N 0 2 L0 2 5 N ≈ 106 L0 ≈ 10-5 m A0 ≈ 10-8 m ωV Revival time: τ ≡ ξ-1 ≈ 100 s ≈ 2π 102 s-1 Andreas Hemmerich 2015 © Probability to measure the phase ψ for the state φ(t) at time t: P(ψ, t) = ψ φ(t) 2 N Σ = 2 P(ν, N)2 exp(– iξ t (ν – N/2)2 + iν(φ – ψ) ) ν=1 Plots of P(ψ, t) for N = 20, φ = 0 1 0.1 1 1 0 0 0 –1 0 72 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 –1 Andreas Hemmerich 2015 © Basic Definitions in a Lattice: unit cell Bravais-lattice a = primitive vector Wigner-Seitz unit cell Bravais-lattice: R = {R | R = n1a1 + n2a2 + n3a3 , ni ∈ Z } reciprocal lattice: K = {K | eiKR = 1 for all R ∈ R } basis of K : K = {K | K = n1b1 + n2b2 + n3b3 , ni ∈ Z } 73 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 bi = 2π aj x ak a1(a2 x a3) Andreas Hemmerich 2015 © First Brillouin Zone: Bragg planes Bravais lattice Wigner-Seitz unit cell Bragg Scattering: reciprocal lattice Wigner-Seitz unit cell = 1st Brillouin zone ( FBZ ) Elastic scattering: | kin | = | kout | constructive interference: kin - kout ∈ K kin kout 74 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 K ∈K Bragg plane bisects K-vector perpendicularly Andreas Hemmerich 2015 © Brillouin zones in square lattice 1 2 3 4 5 6 n-th Brillouin zone: all k-vectors between n-th order and (n-1)-order Bragg-planes 75 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Bloch-states, Wannier-states 2 H = - ∆ + V(r) , V(r + R) = V(r) 2m Assumption: Eigen states ψk(r), k ∈ FBZ exist, with (a) ψk(r) = eikr uk(r), uk(r) = uk(r+R) (b) ψk(r+R) = eikR ψk(r) (c) ψk(r) = ∑ eikR W(r-R) ψk(r) Bloch functions δkk’ = W(r) Wannier function δRR’ = d3r W*(r-R) W(r-R’) R proof (b): proof (c) → (a): Define TRψ(r) ≡ ψ(r+R) ⇒ [TR,TR’] ⇒ ψ(r+R) = TRψ(r) = c(R) ψ(r) ⇒ d3r ψk(r)* ψk’(r) = [TR,H] = 0 with c(R+R’) = c(R)c(R’) k ∈ FBZ : c(R) = eikR , normalizability ⇒k define uk(r) ≡ e-ikr ψk(r) = ∑ e-ik(r-R) W(r-R) R real define: ψk+K(r) ≡ ψk(r) proof (a) → (b): straight forward proof (b) → (c): ψk(r) = ψk+K(r) ψR(r) = 1 N ⇒ ψk(r) = ∑ d3k e-ikR ψk(r) FBZ R eikR ψR(r) = 1 N (b) , N ≡ Number of unit cells d3k ψk(r-R) = ψR=0(r-R) FBZ Define W(r) ≡ ψR=0(r) 76 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Some useful relations H ≡ – 2 ∆ + V(r) , ψk(r) = eikr uk(r), H ψk(r) = εk ψk(r) 2m 2 (∇ + ik)2 2m (a) Hk uk(r) = εk uk(r) , Hk (b) ∇ψ (r) = k ψ (r) + eikr ∇ u (r) k k k i i ≡ – + V(r) i.e., crystal momentum ≠ momentum (c) 1 dεk = dk proof (a): H ψk(r) = - eikr proof (c): εk+q ≈ εk + q d3r ψk*(r) (a) , Hk+q = – dk 1 = Lim q (εq+k – εk) q→0 77 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 hvi - eikr ( 2 (∇ + ik)2 uk + V uk ) = - eikr Hk uk 2m 2 2 (∇+ik+iq) 2 + V(r) ≈ Hk – i q (∇ + ik) m 2m + O(q2) 2 εk+q ≈ εk + huk| q (-i∇ + k) |uki m 1st order perturbation theory: dεk ≡ 2 (∇2 uk + k(i∇) uk - k2 uk) + V ψk(r) = 2m dεk dk ∇ψk(r) im = 2 m d3r uk*(r) (-i∇+k) uk(r) = d3r ψk*(r) 2 ∇ψk(r) im Andreas Hemmerich 2015 © Band structure (perturbation picture) H = H0 + V(r) , H0 = - 2 2m ∆ , V(r) ∑ = e-iKr VK K∈K eigenstates and eigenvalues of H0 : hk’| V(r) |ki = ∑ |ki = V VK A(k,k’,K) , K∈K ⇒ hk’| V(r) |ki ≈ ∑ -1/2 eikr, εk = 2k2 2m A(k,k’,K) = V , V = volume of lattice -1 d3r ei(k-k’-K)r ≈ δk-k’,K V VK δk-k’,K K∈K k,k’ ∈ n.BZ ⇒ the only non-vanishing matrix element hk’| V(r) |ki arises for k = -k’ = n K0/2 , where K0 ∈K with K0/2 pointing to edge of 1.BZ . At the edge of the n.BZ the counterpropagating waves eikr and e-ikr with k = n K0/2 are coupled by Bragg-scattering, thus yielding an energy splitting: 2h-nK0/2 | V(r) |nK0/2 i = 2VnK 78 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 0 Andreas Hemmerich 2015 © Band Structure 1D εq 2 |V3K| ε2,k 2 |V2K| ε1,k ε0,k 3.BZ 2.BZ 2 |VK| 1.BZ 1.BZ 0 V(r) = ∑ 2.BZ K/2 q 3.BZ K 3K/2 e-iKr VK K∈K Note: At edge of FBZ 79 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 1 dεk dk parallel to Bragg-plane Andreas Hemmerich 2015 © Band Structure of 2D Square Lattice P-band S-band 80 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Semiclassical equations of motion consider wavepacket with gk centered around k with a spread Δk << FBZ d3k gk ψk(r) ψ(r) = Δ k << FBZ dk = F dt 1 dεk = dk d3r ψ*(r) (A) ∇ ψ (r) im ≡ (B) v note: replacement of momentum by crystal momentum in (A) accounts for effect of periodic potential essential precondition: Force F sufficiently small such that no interband transitions occur Landau Zener condition (LZ): 1.BZ |h1,k| d |0,ki| << 2 |VK| dt k=K ε1,k (A) dk F = dt 2 |VK| ε0,k 0 K/2 q 81 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 |h1,k| dtd (LZ) ⇒ |0,ki| k=K = d |0,ki| |h1,k| dk k=K dk dt F << 2 |VK| d |0,ki| |h1,k| dk k=K Andreas Hemmerich 2015 © Effective Mass Tensor: 1 dε k = dk 1 dε k dk k=k0 + M k0 -1 (k - k0) + ... ≡ M k0 -1 1 dεk dk consider k-values e.g. at center and edge of FBZ where k=k0 1 d2ε k 2 dkidkj ≈ k=k0 M k0 effective mass tensor 0 ε1,k 2 |VK| ε0,k 0 K/2 q 1.BZ ⇒ note: at edge of FBZ M k0 a ≡ M k0 d v dt = d k dt ≡ F Bragg-scattering yields negative effective mass 82 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Example : 1D optical lattice {R|R=n λ ,n∈ 2 4π , n ∈ K = {K|K=n λ R = FBZ = Z } Z } ω0 2π , [ - 2π λ λ ] Use Wannier representation of Bloch function: ⇒ ω0 εk = d3r ψk*(r) ∆ [ - 2m 2 ∑ eikR W(r - R) ψk(r) = + Vlatt (r) ] ψk (r) R = ∑ d3r W*(r - R)W(r - R’) = δRR’ ik(R-Rʼ) A RR' e R' R A RR' 83 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 , ≡ 2 d3r W *(r - R) [ - ∆ + Vlatt (r) ] W (r - R ' ) 2m Andreas Hemmerich 2015 © Special Case: keep only next-neighbour tunneling ⇒ λ ε(k) = ε0 - 2|J| cos(k 2 - χ) v J ≡ ε0 ≡ − = |J| λ sin(k λ - χ) 2 2 ∆ + V (r) W (r + λ ) * d3r W (r) [ ] latt 2 2m ≡ tunneling rate - |J| eiχ 2 d3r W *(r) [ - ∆ + Vlatt (r) ] W (r) 2m on-site energy ε(k) ε0 + 2|J| ε0 - 2|J| χ=0 0 2π λ k 1.BZ 84 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Adiabatic Loading of Lattice εk [ω] εk [Erec] 25 3 16 2 9 1 Occupation Probability -5-4 -3 -2 -1 1 2 34 5 p [2π/λ] 4 1 1 0 shallow wells k [2π/λ] 1 k [2π/λ] 0 deep wells Adiabatic Cooling adiabatic reduction of well depth harmonic oscillator theory A. Kastberg et al., PRL 74. 1542 (1995) 85 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Bloch Oscillations: → accelerate optical standing wave: ω = ω0 + ω t standing wave moves with velocity: F= in accelerated frame this corresponds to the action of a constant force: Semiclassical equations of motion ⇒ k(t) = F t = ω- ω0 ωλ λ = t 4π 4π mω λ 4π mω λ t 4π (*) F ω(t) wavepacket v = ω0 ψ(r) oscillates with Bloch-frequency: 1 d ε - 2|J| cos(k λ - χ) 2 dk 0 ΩBloch = λF 2 = 2 mω λ = 8π = |J| λ λ sin(k 2 - χ) = (*) |J| λ sin(ΩBloch t - χ) π ω ω rec Note: - Bloch frequency does not depend on potential depth - increase of potential depth 86 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 → decrease of tunneling rate J → decrease of oscillation amplitude Andreas Hemmerich 2015 © momentum distribution in accelerated frame for different acceleration times mean velocity in accelerated frame plotted versus acceleration time U0 = 1.4 ER U0 = 2.3 ER U0 = 4.4 ER U0 = 2.3 ER 87 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Bosons in an optical lattice Vlatt (r) V trap(r) (Mean field description) Heisenberg Equation: i ∂ Ψ(r,t) = ∂t Ψ(r ,t) , H = – 2 ∇ 2 + Vext (r) + 2m dr' Ψ +(r' ,t) U(r' – r)Ψ(r' ,t) Ψ (r,t) contact potential, Bogoliubov approx. in Wannier basis: U(r’ - r) = g δ(r’ - r) ψ(r) = ∑ αR W(r - R) , αR = complex amplitude R d3r W *(r - R) W (r - R ') ⇒ = δRR' discrete GP-Equation: i ∂ α ∂t R = - ∑ R' K RR' αR' KRR' = – Λ R 1 R2 R 3 R = 88 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 g + ∑ R 1,R 2,R 3 Λ R1 R2 R3 R α R1αR2α*R3 2 d3r W *(r - R) [ - ∆ + Vext (r) ] W (r - R ') 2m d3r W (r-R 1 )W (r-R 2 ) W*(r-R 3 ) W *(r-R) Andreas Hemmerich 2015 © Vlatt(r) 1D optical lattice inside trap potential Vtrap(r) ρ(r) single particle on-site energy of lattice scaled to zero at minimum of Vtrap(r) approximations: - only on-site collisions - next-neighbour tunneling i ∂ αn ∂t K = – en = Λ 89 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 = = - K α n-1 - K *α n+1 + e n + Λ α n d3r W *(r) ∆ [ - 2m 2 + Vlatt (r) ] W (r + 2λ ) λ λ d3r W *(r - n 2 ) Vtrap(r) W (r - n 2 ) g d3r |W(r)| ≈ 2 ≡ αn κe Vtrap(n iχ ,κ>0 λ ) 2 4 Andreas Hemmerich 2015 © αn = π n e i φn ⇒ ∂ φ ∂t n = κ πn-1 πn cos(φn-1 − φn + χ) ∂ π ∂t n = 2κ πn πn-1 sin(φn − φn-1 − χ) ∑ define center of mass coordinate: ξ(t) ≡ + κ ∑ πn − 1 (e + Λ π ) n n 2κ π π n n+1 sin(φn+1 − φn − χ) – πn n n π n+1 π n cos(φn+1 − φn − χ) ⇒ ∂ ∂t ∑ πn = 0 n n ∂ ξ(t) ∂t = 2κ ∑ n πn π n+1 sin(φn+1 − φn − χ) ∑ πn n phase locking ansatz: Δφ = φn+1 − φn independent of n 2 mean crystal momentum of wave packet: k ≡ λ Δφ 90 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ⇒ ( πnπn+1 ≈ πn2 ) ∂ ξ(t) ∂t ≈ 2κ sin(Δφ − χ) Andreas Hemmerich 2015 © ∂ φ ∂t n κ ≈ −1 ∂ Δφ(t) ≈ ∂t π n-1 π n cos(Δφ − χ) ∑ n + κ πn (en+1 − en) ∑ πn − π n+1 πn cos(Δφ − χ) Λ = − λ 2 n π n ∂Vtrap (n λ ) 2 ∂x ∑ πn n ∑ πn n − Λ λ 2 ∑ n ≈ Note: − λ 2 λ 2 h ∂V∂xtrap (n λ2 ) i πn ∂ρ λ (n 2 ) ∂x ∑ πn n n = 1 (e + Λ π ) n n ∑ πn (πn+1 − πn) n ∑ − − Λ λ 2 ∂ρ h ∂x i hFi Λ dependence neglected upon assumption of small density gradient 91 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Connection to Semiclassical Model for Single Particle: k ≡ 2 Δφ λ , a ⇒ λ 2 ≡ , ε(k) ∂ ξ(t) ∂t ≈ ∂ k(t) ∂t ≈ ≡ 2κ (1 - cos(ka− χ)) 1 ∂ ε(k) ∂k 1 hFi zero force : ∂ ξ(t) ∂t Δφ ≈ 2κ sin(Δφ − χ) const = constant force : ∂ ξ(t) ∂t ≈ Δφ(t) ≈ DC Josephson-effect hFi = f 2κ sin(Δφ − χ) AC Josephson-effect = Bloch-oscillation φ0 + Ω t Ω 92 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ≡ λf 2 coincides with Bloch-frequency Andreas Hemmerich 2015 © harmonic potential/linear force : en = hFi ∂ ξ(t) ∂t ≈ 1 2 m ω 2 ( 2λ )2 n2 = - mω2 λ 2 ξ 2κ sin(Δφ − χ) ∂ Δφ(t) ≈ ∂t − m ω2 λ 2 ( 2) ξ small amplitude oscillations ( χ = 0 ) : ∂ ξ(t) ∂t ≈ ∂ Δφ(t) ≈ ∂t ⇒ 2κ Δφ − m ω2 λ 2 ( 2) ξ harmonic oscillation with frequency Ω2 = 2κ m ω2 λ 2 ( 2) 93 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ⇒ Ω = π κ ω Erec Andreas Hemmerich 2015 © Bosons in an optical lattice Vlatt (r) (Beyond mean field) V trap(r) Three leading energy contributions expected: tunneling between adjacent lattice sites (hopping term) on-site potential energy (trap potential) on-site collisional energy General expression of Hamilton-Operator: H = d3r ψ+(r) [ - 2 ∆ + Vlatt(r) + Vtrap(r)] ψ(r) 2m Expansion in terms of Wannier basis of lowest band: + g 2 d3r ψ+(r)ψ+(r)ψ(r)ψ(r) , ψ(r) = ∑ R g = 4π2A m bR W(r - R) W(r) = lowest band Wannier function, [bR+, bR’] = δRR’ ⇒ H = ∑ R,R’ bR+bR’ 2 d3r W*(r - R) [ - ∆ + Vlatt(r)] W(r - R’) 2m + g 2 ∑ + bR1+ bR2+ bR3 bR4 ∑ bR+bR’ d3r W*(r - R) Vtrap(r) W(r - R’) R,R’ d3r W*(r - R1) W*(r - R2) W(r - R3) W(r - R4) R1,R2,R3,R4 94 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Approximations: First term: ∑ 2 d3r W*(r - R) [ - ∆ + Vlatt(r)] W(r - R’) 2m bR+bR’ R,R’ Single well energy scaled to zero, i.e., d3r W*(r - R) [ - 0 = 2 ∆ + Vlatt(r)] W(r - R) 2m Only next neighbor tunelling, i.e., sum extends only over R, R' , where a = R-R' is a primitive vector. Next neighbor tunelling ⇒ Second term: J ≡ − First term 2 ∆ + Vlatt(r)] W(r - a) 2m d3r W*(r) [ - = ∑ –J a,R ∑ bR+bR’ is chosen real, independent of a. bR+ bR+a + bR bR+a+ d3r W*(r - R) Vtrap(r) W(r - R’) R,R’ No tunneling contribution from trap potential, only on-site contribution ⇒ Second term = ∑ R 95 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 eR ≡ d3r Vtrap(r) |W(r - R)|2 ≈ Vtrap(R) eR bR+bR Andreas Hemmerich 2015 © g 2 Third term: ∑ bR1+ bR2+ bR3 bR4 d3r W*(r - R1) W*(r - R2) W(r - R3) W(r - R4) R1,R2,R3,R4 Only on-site collisional energy contribution ⇒ Third term = 1 2 U ≡ U ∑ R g d3r |W(r)|4 bR+bR (bR+bR – 1) In summary: find Bose-Hubbard Hamiltonian H = –J ∑ a,R bR+ bR+a + bR bR+a+ + ∑ R eR bR+bR + 1 2 U Note: increase of well depth yields more localized W(x) and less overlap with W(x-R) 96 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ∑ R bR+bR (bR+bR – 1) → increase of U, decrease of J Andreas Hemmerich 2015 © Bose-Hubbard Hamiltonian coupled to a particle reservoir: Grand canonical potential: Hµ ≡ H – µN = –J ∑ a,R bR+ bR+a + bR bR+a+ + ∑ R (eR – µ) bR+bR + 1 2 U ∑ R bR+bR (bR+bR – 1) Flat trap potential (eR = 0), no tunnelling (J = 0), on-site terms only: Eigenstates are Fock states |{nR}i ≡ | ...,nR,...i with nR atoms at nR-th site, M = numer of sites, N = numer of particles: → |{nR}i E{nR} = + nR (n!)-M/2 ∏ bR = ∑ nR (nR-1) R |4iR 3U |3iR U |2iR 0 |1iR, |0iR |0i R U 2 6U – nR µ Ground state: E0 = M n (n-1) U2 |{n}i = – n µ , n = N/M (n!)-M/2 ∏ bR +n Minimize E{nν} with constraint ∑ nR = N R |0i R Energy gap: | ...,n,n,...i → | ...,n-1,n+1,...i , ΔE(n) = [ (n-1)(n-2) + (n+1) n - 2 n(n-1) ] U2 = U Ground state separated from closest excited state by a gap U → 97 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Mott-Insulator Andreas Hemmerich 2015 © Flat trap potential (eR = 0), tunnelling only, no on-site terms (U = 0, µ = 0): ψ(r) = ≡ –J ∑ a,R ∑ W(r-R) bR bR+ creates a single particle in Wannier mode W(r-R) ∑ ψk(r) Bk Bk+ creates a single particle in Bloch mode ψk(r) R ψ(r) = H k2 FBZ Bk = M-1/2 ∑ bR e-ikR , R bR+ bR+a + bR bR+a+ ψk(r) = M-1/2 ∑ eikR W(r-R) R single atom wave function of ground state (Bloch state with k=0): ψ0(r) = M-1/2 ∑ W(r-R) R B+ ≡ M-1/2 ∑ R bR + creates a single particle in Bloch mode ψ0(r) commutation relations: [B, B+] = 1 N atoms in mode ψk=0(r) comprising M lattice sites: |ni ≡ (N!)-1/2 B+ N |0i , n ≡ N/M n = average number of atoms per site 98 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Gutzwiller Approximation: | n i is a product of coherent states at each lattice site +N B 1 = N ∑ M R bR + 1 = ∑ M N/2 s1,...,sM s1! s + s1 N! . . . b+ M b 1 M ... sM! N! = N s1+...+sM = N N/2 N M ∑ s1 + s1 b1 ... s1! s1,...,sM N M sM + sM bM sM! s1+...+sM = N (use generalized binomial formula) N! ≈ N,M → |ni = 1, N M (N!)-1/2 B M ≈ N,M → e-N/2 1 N!1/2 |0i ≈ 1 ∏ ∑ µ=1 s=0 NN/2 (N/M)s/2 s!1/2 (use Stirling formula: ln(k!) ≈ k ln(k) – k 1 | n iR ≡ |siR e- n /2 N N/2 = n = const +N ∑ s=0 → n s/2 |siR s!1/2 ≡ s!-1/2 bR+ s |0iR 99 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 M M 1 ∏ ∑ µ=1 s=0 1 ∏ ∑ µ=1 s=0 (N/M)s/2 s! s b+µ M |siµ = k!/kk ≈ e-k ) ∏ µ=1 e-(N/M)/2 N M s +s bµ s! |0i 1 ∑ s=0 N!1/2 = NN/2 (N/M)s/2 s!1/2 M 1 (N/M)s/2 ∏ ∑ µ=1 s=0 |siµ = s!1/2 |siµ ∏ | n iR R (Gutzwiller Approximation) = coherent state with average number of n atoms at site R = Fock state with exactly s atoms at site R Andreas Hemmerich 2015 © M. Fisher et al., Phys. Rev. B 40, 546 (1989) Phase diagram U >> J ⇒ Ground state = Fock-state: relative phases maximally uncertain, no number fluctuations, energy gap → Mott insulator U << J ⇒ Ground state = coherent state: relative phases maximally certain, Poisson number fluctuations, no energy gap → superfluid µ/U Mott phase 2nd order phase transition Superfluid phase 3 n=3 hni = 3 n=2 hni = 2 hni = 2 – ε 2 1 n=1 hni = 1 + ε hni = 1 zJ/U 0 zJc /U = 3 - 8 z = number of next neighbours 100 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © D. van Oosten et al., Phys. Rev. A 63,053601 (2001) Calculation of Phase Boundary Hµ ≡ H – µN = –J ∑ b i+ b j 1 2 + U i hi,ji mean field ansatz: bi = hbii + bi – hbii , bi+ bj ni (ni – 1) – ∑ i µ ni bi – hbii sufficiently small correction bi+ bj = (bi+ – hbii*) hbji + hbii* (bj – hbji) + hbi+ihbji ⇒ ∑ ≈ hbi+i bj + bi+hbji – hbi+ihbji + (bi+ – hbii*) (bj – hbji) neglect = ψ* bj + bi+ψ – |ψ|2 assume hbii = ψ independent of lattice site (spatially uniform order parameter ψ) two possible kinds of solutions: ψ ≠ 0 → defined relative phase for different sites, superfluidity ψ = 0 → no relative phase for different sites, Mott insulator insert into Hamiltonian: ⇒ Hµ = H(0) H(1) + = ∑ H(0)i H(1)i + i H(0)i = H(1)i = 1 2 U ni (ni – 1) – µ ni – J z ( ψ* bi + ψ bi+ ) + J z |ψ|2 z ≡ number of next neighbours (z = 2 in 1D, z = 4 in 2D square lattice, etc.) 101 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © rescaling: hµ ≡ Hµ / J z = h(0) h(1) + = ∑ h(0)i i h(0)i = h(1)i = 1 2 U ni (ni – 1) – h(1)i + µ ni + U ≡ U/J z |ψ|2 µ ≡ µ/J z – ( ψ* bi + ψ bi+ ) find ni = g such that eigenbasis of h(0)i : Fock states |nii form eigenbasis ε(0)(ni) = ground state of h(0)i : ⇒ 1 2 U ni (ni – 1) – µ ni + |ψ|2 all ni are equal ni = g ; for given µ, determine g such that ε(0)(g) is minimal: ε(0)(g+1) – ε(0)(g) = U g – µ > 0 ε(0)(g–1) – ε(0)(g) = µ – U (g-1) > 0 ⇒ U (g-1) < µ < U g ε(0)(g) = 1 2 determines value of g as closest integer larger than µ/U U g (g – 1) – µ g + |ψ|2 g µ/U g-1 |nii = |gi 102 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Consider h(1)i as a perturbation of h(0)i and apply perturbation theory up to 2nd order to find ground state energy ε(g) = ε(0)(g) + ε(1)(g) of total Hamiltonian h(0)i + h(1)i : 1st order correction is zero because hg| h(1)i |gi = hg| ψ* bi + ψ bi+|gi = 0 2nd order corection: ε(1)(g) = |hg| h(1)i |ni|2 ∑ n≠g = = ⇒ ε(g) = = |ψ*hg| bi |g+1i|2 ε(0)(g)– ε(0)(g+1) |ψ|2 (g+1) µ–Ug U g (g – 1) – µ g = ε(0)(g)– ε(0)(n) + + |ψ|2 ∑ | ψ*hg| bi|ni + ψhg| bi+|ni |2 ε(0)(g)– ε(0)(n) n≠g + |ψhg| bi+ |g-1i|2 ε(0)(g)– ε(0)(g-1) |ψ|2 g U (g-1) – µ 1 + (g+1) µ–Ug + g U (g-1) – µ A(0)(g,U,µ) + A(2)(g,U,µ) |ψ|2 103 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Landau theory of 2nd order phase transitions: ε ε = A(0) + ⇒ ⇒ A(2)(g,U,µ) = A(2) = 0 phase boundary 1 + , A(4) > 0 |ψ| |ψ| A(2) positive ψ = 0 → insulator A(4) |ψ|4 + ... ε ε |ψ| 0 = A(2) |ψ|2 + (g+1) µ–Ug + A(2) negative ψ ≠ 0 → superfluid g U (g-1) – µ 0 = U2 g(g-1) + µ2 + Uµ (1-2g) + U + µ ∼2 0 = µ ∼ ∼ ∼ + µ (1 – 2g + J) + g(g-1) + J ∼ µ ≡ µ/U ∼ J ≡ zJ/U 104 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © discriminant: ∼ ∼ 1 2 (2g – 1 – J) ± 0 1 4 (2g – 1 – J)2 – g(g-1) – J = 1 4 ∼ ∼ ∼ (2g – 1 – J)2 – g(g-1) – J ∼ ⇒ µ = ∼ ∼ ⇒ J2 + 2J (2g+1) + 1 = 0 ∼ ⇒ Jc = 2g+1 – g=1 g=2 ∼ ⇒ Jc = 3 – (2g+1)2 – 1 81/2 ∼ µ Mott phase Superfluid phase 3 ∼ ⇒ Jc = 5 – 241/2 g=3 2 g=2 1 g=1 ∼ J 0 ∼ Jc = 5 - 24 105 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ∼ Jc = 3 - 8 Andreas Hemmerich 2015 © Optical Lattice in external trap Mott Insulator Phase: Superfluid Phase: external trap potential Vtrap(x)/U J=0 chemical potential µ/U µ = µ0 - V(x) , µ0/U = 3.5 µ/U ∈ [3,4] n=4 [2,3] [1,2] [0,1] n=3 n=2 n=1 n=3 n=2 n=1 J>0 n=4 106 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Detection of momentum spectra in an optical lattice → Prepare BEC in the microtraps of periodic light shift potentials (Optical Lattice) → Manipulate atoms in lattice during a variable time t → Rapidly switch off potential and let BECs ballistically expand → Absorption Image Ballistic expansion Absorption Laser 107 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Momentum distribution CCD Camera Andreas Hemmerich 2015 © Inter-site coherence yields Bragg maxima in momentum spectra ky kx 108 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Momentum distribution Consider mean number of particles at momentum k: hψ+(k) ψ(k)i ψ(r) = ∑ R bR W(r-R) ψ(k) = 1 3/2 ( ) 2π d3r e-ikr ψ(r) W(k) = 1 3/2 ( ) 2π d3r e-ikr W(r) ⇒ hψ+(k) ψ(k)i = |W(k)|2 ∑ hbR+bR’i eik(R-R’) = |W(k)|2 hNi + hNi ≡ |W(k)|2 hNi + ∑ eikR S(R) R≠0 diffuse background 109 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 eik(R-R’) R,R’ R≠R’ R,R’ = ∑ hbR+ bR’i , S(R) ≡ ∑ hbR’+ bR-R’i ∑ hbR+ bRi R R’ can be strongly k-dependent with sharp resonance structure depending on S(R), which crucially depends on the state used to evaluate the expectation value. Andreas Hemmerich 2015 © Superfluid state: | n i = ∏ | n iR R ⇒ ⇒ h n |bR+bR’| n i = h n |bR+| n iR h n |bR’| n iR’ S(R) = ∑ hbR’+ bR-R’i = = n n M = hNi R’ ⇒ hψ+(k)ψ(k)i = |W(k)|2 hNi + ∑ eikR S(R) = |W(k)|2 hNi 1 + ∑ eikR R≠0 R≠0 hψ+(k)ψ(k)i can be large for all reciprocal lattice vectors within support[W(k)] Mott-Insulator State: (n!)-M/2 ∏ bR+ |{n}i = n |0i R ⇒ h{n}|bR+bR’|{n}i = n δRR’ ⇒ S(R) = ∑ hbR’+ bR-R’i R’ ⇒ hψ+(k)ψ(k)i = |W(k)|2 = n δR,0 ⇒ ∑ eikR S(R) = 0 R≠0 hNi 110 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Example: simple cubic lattice configuration space wave fronts, which can propagate in lattice K = (2k,2k) K = (2k,0) λ K = (4k,2k) momentum space (reciprocal lattice) +2k 2D projection 0 -2k -2k 0 +2k 4k 111 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Experiment: Greiner et al., Nature 419, 51 (2002) prepare lattice, slowly ramp-up well depth, ballistic expansion 112 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 coherence can be restored Andreas Hemmerich 2015 © Phase decoherence for large U Energy of |siR: Es = U 2 ⇒ e-n/2 = ∑ s hn(t)|bR|n(t)iR = ∑ s!1/2 s n s/2 |siR |siR exp(-iEst/) s!1/2 e-n n s/2 n1/2 ∏ | n iR , ψ(r) = R 3U |3iR U |2iR 0 |0iR, |1iR ∑ s ns s! |hn(t)|bR|n(t)iR|2 n = 0.5 exp(-isUt/) U > 0 ⇒ amplitude of matter wave field ψ(r) collapses and revives ! |ni = |4iR s(s-1) |n(t=0)iR = | n iR = e-n/2 |n(t)iR 6U ∑ R bR W(r-R) mean field: hn(t)|ψ(r)|n(t)i = hn(t)|bR|n(t)iR mean density: |hn(t)|ψ(r)*ψ(r)|n(t)i|2 = n n=3 1 2π 2 U t ⇒ ∑ W(r-R) R ∑ W(r-R) R Greiner et al., Nature 419, 51 (2002). Experimental steps: slowly ramp-up well depth, stop shortly before phase transition, sudden further increase of well depth to increase U, wait, ballistic expansion 113 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Imaging single atoms in an optical lattice (M. Greiner, Harvard) 114 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Configuration space image of Mott insulator (M. Greiner, Harvard) 115 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Orbital optical lattices Can we access orbital degrees of freedom in optical lattices? + - lowest band 116 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 higher bands Andreas Hemmerich 2015 © Bipartite optical lattice Interference of two standing waves E(x,y) = z I0 (cos(kx) + cos(ky) eiφ) I(x,y) = I0 ( cos2(kx) + cos2(ky) + 2 cos(φ) cos(kx) cos(ky) ) Laser cold atoms 2λ φ = 0° φ < 90° 117 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 φ = 90 ° φ > 90° φ = 180° Andreas Hemmerich 2015 © S-band lattice: dependence on θ 0.46 Lattice 118 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 1.BZ θ [π] 0.5 0.54 Lattice 1.BZ Andreas Hemmerich 2015 © Populating higher bands A B A B A B A B A A B A B A B A B A 119 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 ΔV Andreas Hemmerich 2015 © Mapping of Brillouin zones: → Slowly ramp down lattice potential → Ballistic expansion → Absorption Image 120 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Energy minima in anisotropic 2nd band 1 -1 1 1 -1 1 -1 1 1 A λ -1 1 1 B 1 1 -1 A 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 2λ 1 1 -1 -1 1 -1 -1 -1 1 -1 0 1 Bloch-function at condensation point 121 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Condensation at energy minima of 2nd band 1 ms 122 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 3 ms 6 ms 13 ms Andreas Hemmerich 2015 © Higher order Bragg peaks 2λ e2 e1 ±(1,-2) ±(3,-2) ±(1,0) ±(3,2) ±(1,2) (-3,2) (-1,0) (-1,2) (-3,-2) (1,2) (-1,-2) (3,2) (1,-2) (1,0) (3,-2) 123 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Energy minima in isotropic 2nd band → Deep wells support P-orbits 1 -1 Px ± i Py maximizes volume and hence minimizes local collision energy → Shallow wells support S-orbits 1 -1 -1 1 1 + + i -i 1 -1 -i = 1 -1 i 1 = -1 → Tunneling maximized by matching phases at tunneling junctions k -i 1 1 -1 -i i 1 i -1 -1 i 1 i i -1 -i -i -i -1 2λ -1 i 1 -1 -i 1 1 i -i -i 1 i i i -i -i -1 1 i -i 1 1 -1 -i -1 i i -i -1 -1 i 1 i 1 1 -1 -i 1 -i -1 -i 124 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 -1 1 -1 i Andreas Hemmerich 2015 © Tuning lattice distortion 125 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Tuning occupation of local p-orbits via change of ΔV 126 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © Interaction stabilizes complex-valued order 10 9 8 7 6 5 4 3 2 1 0 20 2.0 40 1.5 60 1.0 0.5 80 0.0 127 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 © 128 Universität Hamburg, Bose-Einstein Condensation, SoSe 2015 Andreas Hemmerich 2015 ©
© Copyright 2025