2103-231 Mechanics of Material Chapter 12. Deflection of Beams รศ.ดร.ไพโรจน์ สิ งหถนัดกิจ ภาควิชาวิศวกรรมเครื่ องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย This lecture note is prepared for my in-class lecture. It is intended to be incomplete! Failure of beam !1! @ Deflection exceed To find deflection !1! Double Q Moment !3! limit stress exceed limit . integration - Mechanics of Material method area superposition 2103-231 . Chapter 12. Deflection of Beams รศ.ดร.ไพโรจน์ สิ งหถนัดกิจ ภาควิชาวิศวกรรมเครื่ องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย This lecture note is prepared for my in-class lecture. It is intended to be incomplete! 12.1 Elastic curve Recall: M Idd M . ' ' a ' . B Original configuration O=tg= - tf TIE - E - :e ¥±#t*%n€ ¥t @= . N.A - A - . { AB = E B = ltd Deformed configuration I qy - far ) T Md Elastic curvet y=fcx ) 2 12.2 Slope and displacement by integration From calculus: radius of curvature ρ can be represent in form of parameters x and y as } y =¥÷ d#Y 1- y=f(x) : @#y]k 3 Mcx ) ' . . FI x MET Recall : ddI×¥ - wan , ddmy = ÷ ' it = date Van #dEe=nxsEIg÷y=.wa£ or EIda},.=rf tYYht9 3 12.2 Slope and displacement by integration KEEL . Thus, the differential equations for elastic curve are: d2y EI 2 = M ( x ) dx or d3y EI 3 = V ( x ) dx or d4y EI 4 = − w( x ) dx 4 12.2 Slope and displacement by integration Approach: Integrate the differential equation twice to obtained y = f (x) or y = v (x) In each integration, a constant ci is produced, so boundary, continuity or symmetry conditions are required d2y EI 2 = M ( x ) dx Boundary condition: Simple support: y y x at x n=o Wako y Fixed support #¥¥ x @ w=O , VCO )=0 IF't 5 12.2 Slope and displacement by integration Continuity condition P 1 YMH Vzct YAD = de y kra 2 Min ' ) AIK ) " = : Symmetry condition: If load is applied in the middle of the beam, it can be shown that E " = via =o 6 Example 5-28. A beam is loaded and supported as shown in the figure. Derive the equation of elastic curve, and also determine the slope and deflection at the left end. . B.d. vc4=o dva ) Mc×1+Pu=0 = - Ph EIVCM pp tva ,7 MCX ) Bt . = -1¥ -14mHz dd÷c4=o EIco)= : . .vcxi=±±fEn3tIlh+¥) 0= )=o 3 Paid - , 4=112 2 . vu : Pu #d£×=t¥+4 a MCH n - 0 % . EId↳m=mc×)= . " tax P : - PL :y-± ' 'Fa' at . to 7 . Example : //# Le a) y .net#fEn3tIrn+BIj=E,=th43in-2D- b) stpeatnro slope : --d€=¥±tp¥+kI ) .int#DFoterco=oPz,=C-zdI=t13EI 8 BC . EIY )=o KCO Kato viC¥=kt Example riche )=vzCtE ) 9.3-19 Derive the equations of the deflection curve for a simple beam AB. Also, determine the deflection δC at the midpoint of the beam. ¥otim0,setim0 h EIvEH=Mi EIvkm= %qL EIrexi.tk#+gyIgtsu+4 EIY*=tfT+8yT+4u+h eIrEm=t÷np+9¥utb Marie q¥+q± SIM oH< 12 - s -9dL+3zgLn section "cxi=Me× ' - Mz Kye ,÷qui+L me 's , ¥u< !2! = µ QL - 8 L - 8 9 Example klo vzc -0=>4--0 ) d4= 4=0 vh÷)=v!c¥ - QLY Zq LO -14L 4=4+1 48 v ,kd=kL¥ ↳=17q ¢ 4=-g±d 384 d4= 914 384 : .mx %< ){jb÷*±Cl6h3t24n4t9B jY÷±±l8htr4nt+hxi d) . z ¥n< < 10 Example µ 9.4-8 Derive the equation of the deflection curve for a simple beam AB carrying a triangularly distributed load of maximum intensity qo. Also, determine the maximum deflection δmax of the beam. Use the fourthorder differential equation of the deflection curve (the load equation). EIda±x=-qm= EIV EIR 13€ qoy # , 1=0 Mco )=o - ' . C '=tz÷tt+q÷mu , , "=t÷Y+dµ+h=mc× . '=foy E±i=Tfht+8¥u . "=t±iu Muto 't t r=tfh÷+8;thtgu+h 1 BE VCO )=o d¢=o 04=0 q¥+d,L=o : ,=qoL , .↳= -90¥ 't8÷t+↳c=o - 7qoI 360 - • : .v*=÷±ctcnw5eG¥f3%¥ ) 11 Example or , vcx ) = ( she god - 't7L4 ) loin Arg 360 LEI Determine Jmax : vin=¥±lt÷Ittto¥ -7¥ at fmx vin÷ , tygttttolhd Solve . . . H÷=o 0.5193L n= Emay - = = - VC 0.519 }L ) 0.0065229014 EI Ans - 12 we )=qU VLX " ftp.mkibp.fm MA Example 9.4-4 A beam with a uniform load has a guided support at one end and spring support at the other. The spring has stiffness k =48EI/L3. Derive the equation of the deflection curve by starting with the thirdorder differential equation (the shear-force equation). Also, determine the angle of rotation θB at support B. (Gere&Goodno) MCL )=0 13¥ ,3=KsB=kmL !1! | !2! VKO )=o !3! p R , }= - Begin with EIdd1×t=VcN= EIV ' VCL )= -481¥ 'tC4 qL= Egnh KVCL ) "= - -8212+2 Tx , 48EI gu mc↳=o , : -KI+4=o . d EIi= - -81 Gydtktrtlz ,=Kz 13 Example ' EIV EIV ¥ Was ra ' -8¥ +9ha = = -82nF totted ttf ;gf÷→ - +4 the dz=o =o : : +22 ra = . ↳ - = the tofts Its got 'E±to÷e4+g i ¥sgiY 93=44 . = q¥± } And 14 12.6 Statically indeterminate beam P : ( P µ Free body diagram Force and moment at the support can be determined from static equilibrium So, it’s statically determinate problem, no problem, everyone is happy. and M P L1 : V , : M , E Fy P :( L2 unknown eqt determined be can v a R Free body diagram R =0 , EM - ° , Need VCH one = more eq " o 15 12.6 Statically indeterminate beam Other statically indeterminate members 16 . → : sp the ) qH=q°( Example , Tris M€~Ebm 10.3-8 A fixed-end beam AB of length L supports a triangularly distributed load of maximum intensity q0. Beginning with the fourth-order differential equation of the deflection curve (the load equation), obtain the reactions of the beam and the equation of the deflection curve. Lwhkmhm [ EFy=o ] µc× n : RA RB , Rat RB [ EMA Ma My , , 8¥ = " ] !1! - Ma Metric - - , Elastic " EIV " EIV EIV EIV curve " foot - = ' = qoihe , - focktldtt - - !2! . "=-qcxi= = qqI=o - goat , nestle - . Lah ) ,nth tdilthutb 17 H auto +dpE+hu+d/° ,¥÷d+d¥+hn÷t↳fiHf° EIV ' = EIv= Example Yak ) ( go - - Jcoto 1¥ = ↳ via Reaction - 2Lz=q# diet )=o - * 4=0 v(o)=o . . . : . d . war ) Izoqol = - Koh 120 =8¥ 4 , C - - - - Fo÷ ° h3+5nL>uE+3d ) - = RA=Vco ) 44322 => = Ko ) = ' V=EIv" 4 v(↳=o RA 0 golhtdjlt Ioqol zoqol = * 1 RBIVCL m=EIr Ma = Foqol " MCO ) = ) to qoll a LEI MB = Mcb ' = - g÷y }D¥ 18 $ hem It . ' hat ' . P n Example RA 6-5 A beam is loaded and supported as shown in the figure. Determined (a) the reaction at supports A and B in terms of M and L, (b) The deflection at the middle of the span in terms of M, L, E and I. V=o Ra - MBTM Mah - = RAL Ran EId£ r= 13€ Lio vcoto vkh=o d, = ML - r¥i =0 = - 0 - !2! M MCH = Rae EIV '= Ranft Mntd EIv= VCL ) !1! - RAY +21 - M , tdptdc RA= IM 2L From !1! VIET , From @ MB=Mz ad 19 Example 20 gmo GMA GMB IVRB Pra RA=RB MBTMO . !1! - Ma - Ratio Example - !2! 10.3-10 A counterclockwise moment M0 acts at the midpoint of a fixed-end beam ACB of length L (see figure). Beginning with the second-order differential equation of the deflection curve (the bendingmoment equation), determine all reactions of the beam and obtain the equation of the deflection curve for the left-hand half of the beam. Then construct the shear-force and bending-moment diagrams for the entire beam, labeling all critical ordinates. Also, draw the deflections curve for the entire beam. M ,##µgm* :| y n PRA Moe )= . . . Mat Ran - Mo MDk+RA¥t↳ . EIKECMA KCO .mn#.+r.n/EtEIYIIIYFYLYIlEIY'=mantRa=hld ⇐#ra ,=M¥i+R±k3e4u+h - B€YEo)=o 4=o kw=0 , EIV )=O dz=0 R#i da=CMa-Mo)¥+R¥ ' 21 Example via Mats tRa¥ Malt + : CMA Mo ) - = Raf HE MAGI via , = ) Raf st C .ra.s€ Mqz MB = - t - RAI ( Ma MDL - - - Ra¥ 30 ka = = Mol = } Yfo Ifo Mandi +5€ RAP RB . 32mF } Ads 22 Example q N/m A 6-2 Determine reaction at A and B on term of q and L B Lm 2L m Va VB= =¥sql IJQLP MA=±gqe MB=÷qt cow cw 23 Example 24 Additional Note 25 Additional Note 26 Additional Note 27
© Copyright 2025