Utility systems How to satisfy the energy requirements of a process MER François Maréchal LENI - ISE-STI - EPFL francois.marechal@epfl.ch FM_07/ 2000 Le système énergétique industriel Environnement Air Energie Transformation de l'énergie Matières Premières Eau Supports de production Energie Produits Sous-produits Procédés Traitements des rejets Rejets et déchets Air Eau Sol Traitement Laboratoire d!énergétique industrielle LENI -ISE-STI-EPFL grid R˙ r ,yw ,fw w=1 nw ! grid grid grid i(1 + + (C1w yw ) + (1 + i)nyears − 1 Grand composite curves i)nyears w=1 600 600 nw ! (ICFw y w=1 ect to the heat balance of the550 temperature intervals 550 Cold composite curve Hot composite curve Hot Utility : 6854 kW Hot utility w=1 400 n ! i=1 350 Self sufficient "Pocket" 500 450 ˙ r+1 Q˙ − + R − R˙ r400= K 0 i,r Heat recovery T(K) 450 fw Q˙ − w,r + T(K) nw ! 500 400 350 cooling utility 300systems 0.2 300 Methodology for designing integrated utility Ambient temperature 5 Cold utility : 6948 kW 250 0.2250 0 Methodology for designing integrated utility systems ricity consumption: 0 2000 4000 6000 8000 10000 12000 5000 10000 15000 20000 25000 30000 refrigeration nw ! w=1 Refrigeration : 1709 kW Q(kW) Q(kW)techniques aim at identifying the maximum The process integration energy recovery that could be obtained by counter-current heat exchange between the hot and the cold streams of the proFM_07/ 2000 cess. This technique, based on the assumption of a minimum temperature difference between the cold streams (∆T + min), allows the calculation of the so-called minimum en−the hot and + (MER) targetprocess for the system. The identification of the pinch point, the point w ergy requirement grid where the hot and cold composite curves of the process are the closest, is further used to design the heat recovery heat exchanger network structure. Using the concept of the hot and cold composite curves, it is possible to compute graphically the MER. Mathematically, the minimum energy requirement is computed by solving the heat cascade model (1). This model is a one degree of freedom linear programming problem that computes the the energy required to balance the energy required by the cold streams with the hot streams for each temperatures of the problem. The Grand composite curve is the plot of this heat requirement as a function of the temperature. − E˙ fw E˙ + E˙ ≥0 ricity exportation Linear programming formulation − nw ˙ ! E min+ Rn +1 grid + R ˙ ˙ − E˙ process =0 fw Ew + Egrid − subject to heat balance of the temperature intervals ηgen w=1 n ! Qi,r + Rr+1 − Rr = 0 ence of technology w i=1 (1) r r Rr ≥ 0 ∀r = 1, ..., nr (2) ∀r = 1, ..., nr + 1 (3) ∀w=1,...,nw f minw yw ≤ f max with fn the number of specified process streams; w ≤ w yw yw ∈{0,1} nr Rr the number of temperature intervals; the energy cascaded from the temperature interval r to the lower temperature intervals in the time period p; the heat load of the reference level of process stream i in the temperature interval r; Qir > 0 for hot streams and ≤ 0 for cold streams; modynamic feasibility of the heat recovery and utility syste Q ir The heat cascade constraints (2) is the equation system that is solved by the problem table + ≥ 0, E˙ grid ≥ 0An alternative set of equations (4) may be used to compute the heat cascade. This method. formulation has the advantage of involving only one R per equation, each of the equation being related to one temperature in the temperature list. From the analysis of the pinch point ˙ demonstrated 0, R˙ n = 0,itR 0 that the list of temperatures (and therefore of equations) may location mayrbe≥ FM_07/ 2000 r r+1 be reduced in this case to the list of inlet temperature conditions of all the streams. By saying that, we assume that the fluid phase changing streams are divided into streams segments. ∀ Utility definition Type of utility (e.g. : Hot stream) inlet conditions (T, P) (fuel type, combustion , operation) T Outlet conditions (T,P) (environment, operation) H 3 characteristics : - H-T diagram (from GCC analysis) - Cost as a function of flowrate - Flowrate : to be determined to satisfy the FM_07/ 2000 Utility integration T(°C) Counter current analogy Hot utility -cold process 220 Heat sink T Zone 1 200 T GCC = cold stream 180 P 160 H Q H Q 140 Self sufficient zones Exchange process -> process 120 Zone 2 100 D 80 E 60 Ambient T F 40 Zone 3 GCC = hot stream 0 Heat source 200 600 H(kW) Counter current analogy Hot process -cold utility T P T Q H Q H FM_07/ 2000 Multiple utilities Identify the temperature levels Qhmin T (°C) T1 Q1 Q2 T2 T3 PINCH H (kW) FM_07/ 2000 Hot Utility : combustion O2 (air) Fuel : CxHyOzSsNn xC + xO2 + = xCO2 y y yH + O2 = H2 O 4 2 nN + nO2 = nNO2 sS + sO2 = sSO2 y z& # x + + n+s" % 4 2 ( * (1 + ) ) * (0.21O + 0.79N ) a 2 2 % ( 0.21 % ( $ ' Heat Flue gases y z& y z& # # x + + n+s" x + + n + s" % ( % 4 2 * (1 + ) ) * (0.79N ) + 4 2 ( * () ) * (0.21O ) + xCO + y H O + nNO + sSO a 2 a 2 2 2 2 % ( % ( 0.21 0.21 2 2 % ( % ( $ ' $ ' Combustion tf Qfuel = LHV + "25 m˙ fuel cp fuel dT = LHV + m˙ fuel cp fuel (tf # 25) T Fuel Adiabatic temperature of combustion Useful heating value Lower Heating Value O2 (air) ta Qair = "25 m˙ aircpair dT = m˙ aircpair (ta # 25) Stack temperature Tc T0=25°C Tc ˙ fumées cp fumées (tc # 25) Qpertes = "25 m˙ fuméescp fumées dT = m Environnement ! Eléments spéciaux Conversion du soufre : contrôle cinétique ! 0.95 * sS + 0.95 * sO2 = 0.95* sSO2 " 3$ 0.05 * sS + 0.05 * # % sO2 = 0.05* s * SO3 2 0.05 * s * SO3 + 0.05* s * H 2O = 0.05* s * H 2 SO4 Affinités avec l!eau => temperature de condensation + élevée (+70°C) Problèmes de corrosion NOx = NO, N2O, NO2 différentes formes contrôlées par la cinétique (vitesse) donc par T et conditions de mélange Imbrûlés = combustible non brulés => cendres et poussières, perte de pouvoir calorifique. Fuels containing S avec SO3 (ppm) 29.863 =- 27,712 + 4,331 S(%) + O (%) 2 SO3(ppm) S(%) O2(%) la teneur en ppm de SO3 dans les fumées; le pourcentage massique de soufre dans le combustible; le pourcentage molaire de O2 dans les fumées; limite de validité: Tra 0,5 1 <S(%) <5 <O2(%) <4 [H2O] Tch2o !Tc Tra P Temperature de rosée acide = Tch2o + !Tc = 273.15+ 100 avec S(%) - 3,707 O (%)! + 54,396 LOG(O2(%)) 2 4 !SO3(ppm)! ![H2O]!P + 49,7041 ( H O!(%) )0.1173 2 la fraction molaire de H2O dans les fumées; le point de rosée de la vapeur d'eau dans les fumées; l'avance à la condensation; la température de rosée acide des fumées (°K); la pression dans la cheminée (bar). FM_07/ 2000 30 Contents Fuels example Table 5: Values for some typical fuels LHV Tad Tstack Air Cost CO2 ◦ ◦ kJ/kg K K kgair /kg e/GJLHV kgCO2 /GJ CH4 50000 2646.5 374 17.1 55 Natural gas 39680 2270 374 13.9 7.67 55 Light fuel oil 45316 2425 440 14.4 6.9 70 Heavy fuel oil 44500 2423 441 14.3 4.67 71 Coal (lignite) 25450 2111 438 7.29 2.53 81 Wood 18900 2185.43 374 7.9 5 0 Biogas 13358 2077 374 4.63 0 Natural gas composition: 87% Methane, 13% N2 Light fuel oil: C-86.2% mass, H-12.4% mass, S-1.4% mass Heavy fuel oil: C-86.1% mass, H-11.8% mass, S-2.1% mass Lignite: C-56.52%, H-5.72%, O-31.89%, N-0.81%, S-0.81%, Ash-4.25% Wood (wt) composition: C-49.5%, H-6% , O-44.6% → C1 H1,4 O0,7 , CO2 neutral 50%CO2 and 50% CH4 , CO2 neutral Cost 2004, European market Air preheating : outlet temperature calculation When combustion is considered, the air preheating plays the role of a chemical heat pump, it is used to pump waste heat available below the pinch point and make it available above the pinch point (by an increase of the adiabatic temperature of combustion). The effect of air preheating is however limited to the preheating of the stoechiometric air flow. When the Values for different fuels LHV (kJ/kg) Gaz naturel Gaz de cokerie Distrigaz Mer du Nord Gaz de charbon Essence Vaporizing oil Diesel Kérozène Fuel léger Fuel lourd Anthracite Bitume Lignite 39680 2780 44945 47900 27270 47798 46105 45867 46924 45316 44500 33220 31520 25450 s O2 (kg/kg) 13,879 0,696 15,693 16,735 8,557 15,003 15 14,583 14,826 14,454 14,264 11,53 10,21 7,23 Tads0 (K) 2270 1688 2290 2292 2373 2431 2389 2426 2429 2425 2423 1819 1954 2111 Tch (K) LHVu (kJ/kg) 374 346 374 374 376 438 438 439 438 440 441 434 435 438 "LHVu 38163 2685 43225 46047 26246 44665 43023 42838 43850 42303 41507 30256 28929 23488 -3,82% -3,43% -3,83% -3,87% -3,75% -6,55% -6,69% -6,60% -6,55% -6,65% -6,73% -8,92% -8,22% -7,71% FM_07/ 2000 CO2 Impact DPCU Gaz naturel Gaz de cokerie Distrigaz Mer du Nord Gaz de charbon Essence Vaporizing oil Diesel Kérozène Fuel léger Fuel lourd Anthracite Bitume Lignite -3,82% -3,43% -3,83% -3,87% -3,75% -6,55% -6,69% -6,60% -6,55% -6,65% -6,73% -8,92% -8,22% -7,71% CO2 (LHV) 55 186 57 55 58 65 69 69 67 70 71 100 86 81 CO2 (LHVu) 57 193 59 58 60 70 74 74 72 75 76 109 94 88 DCO2 3,97% 3,56% 3,98% 4,03% 3,90% 7,01% 7,16% 7,07% 7,01% 7,12% 7,21% 9,80% 8,96% 8,35% !CO2 (LHV) 0,00% 239% 3,54% 1,26% 5,19% 19,53% 25,77% 25,71% 22,88% 27,08% 29,29% 81,53% 56,84% 48,39% !CO2 (LHVu) 0,00% 238% 3,55% 1,31% 5,11% 23,02% 29,63% 29,45% 26,47% 30,92% 33,31% 91,69% 64,35% 54,64% FM_07/ 2000 ! Utilities definitions Utility cost : C(CHF/s) = cost(CHF/kg) * flow(kg/s) T(K) Tad QMER Increasing flow Infeasible Tstack Q(kW) -20 0 20 40 60 Corrected temperature domain FM_07/ 2000 Useful heating value of a fuel [ ] LHVu = cp f * T 0 " Tstack : Useful heating value ad cp f # LHV (T 0 ad " T0 ) in kW ,T = 25°C (kg fuel °C) 0 m˙ gc cp f # cpgc * m˙ fuel LHVu LHV ˙ fuel * LHVu " Q˙ mer Real losses = m Intrisic Losses = 1" FM_07/ 2000 ! Utilities definitions Different utility heat loads For the same MER !!! Tad2 Tad1 Q2 Q1 T(K) Utility 1 : C1 = cost 1 * flow 1 Utility 2 : C2 = cost 2 * flow 2 Q(kW) -20 0 20 40 60 Energy available or excess FM_07/ 2000 Intégration de la combustion Effet de la préchauffe Pour un même débit de combustible : plus d’énergie au-dessus du pincement 2500 o2=10% Stoechiometrique Préchauffe de l’air Combustion du méthane Excès d’air : moins d’énergie disponible 2000 1500 T (°C) 1000 T pincement 500 Cheminée 0 -10000 0 10000 20000 30000 Q (kJ/kg) 40000 50000 60000 Condensation FM_07/ 2000 Cogeneration : gas turbines Gaz % ( ' * ˙ Qmerk * max ' m˙ fuel = ' * k ' "GTth * LHV fuel % (* min * * ToT # max T , Tk + $Tmin /2 f * )* stack ' (ToT # T min ) '& & ) stack ( E˙ = "GTe * m˙ fuel * LHV fuel )) ( ! ToT Air T(K) ! P1 H P2 "GTe = 30 # 38% T min "GTt stack ! 0 20 40 60 Energy available or excess = 55 # 47% "GT = 85% Q(MW) -20 gc S Inv = 1000 - 2500 CHF/kWe Size = 50000 - 1000 kWe FM_07/ 2000 ! Gas Turbine : fixed size Fuel m˙ fuel PC + m˙ fuelGT * (1" #GT e ) ToPC = T0 + m˙ fuel PC m˙ fuelGT * (1" #GT e ) + (Tad " T0 ) (ToT " T0 ) ToPC Q˙ GT = m˙ fuelGT * LHV fuel * "GTth ! ! ! ToGT Air Q˙ = m˙ fuel PC *UHV fuel + m˙ fuel PC * LHV fuel * ("GTth ) T(K) ! E˙ = "GTe * m˙ fuelGT * LHV fuel ! P1 H ! T ! P2 "GTe = 30 # 38% min stack -20 "GTt Q(MW) 0 20 40 60 gc S = 55 # 47% "GT = 85% Energy available or excess FM_07/ 2000 ! Systèmes de cogénération ηel ∗ ηel ηel 1 ηth ηth ∗ ηth from the grid ∗ ηel by combustion ∗ ηth Marginal efficiency : Electricity/(additional fuel) marg ηel = E˙ m ˙ f uel − m ˙ th,equiv f uel ∗ ηel ηth ∗ ηel = = ∗ −η (1 − ηηth ηth ∗ ) th th Energy savings : equivalent energy consumption ∗ ηth ∗ ηth + ηel ∗ ηel∗ − 1 ∗ ηth ∗ ηth + ηel ∗ ηel∗ LABORATOIRE D!’ENERGETIQUE INDUSTRIELLE___ _________ ______________________________________________ ___Février 2002 Systèmes de cogénération LABORATOIRE D!’ENERGETIQUE INDUSTRIELLE___ _________ ______________________________________________ ___Février 2002 Systèmes de cogénération th el CO2 50% 35% 55 Energy savings Fuel Natural gas Light Fuel Oil Heavy Fuel Oil Coal (anthracite) Coal (Lignite) LHV (GJ/kg) 47900 45316 44500 33220 25450 CO2 (kg/GJLHV) 55.00 70.00 71.00 100.00 81.00 [nuth] 95% 92% 91% 89% 90% [nuel equiv] 55% 42% 42% 40% 40% Fuel el\fuel th Natural gas Light Fuel Oil Heavy Fuel Oil Coal (anthracite) Coal Natural gas 13.99% 15.24% 15.67% 16.54% Light Fuel Oil 26.45% 27.37% 27.68% 28.32% Heavy Fuel Oil 26.45% 27.37% 27.68% 28.32% Coal (anthracite) 28.64% 29.50% 29.80% 30.40% Coal (Lignite) 28.64% 29.50% 29.80% 30.40% LABORATOIRE D!’ENERGETIQUE INDUSTRIELLE___ (Lignite) 16.10% 28.00% 28.00% 30.10% 30.10% _________ ______________________________________________ ___Février 2002 Systèmes de cogénération Economie de CO2 Using the CO 2 production factor of each fuel, the CO 2 production without cogeneration would have been : $# ' # th* th el* el th el m˙ *CO2 = Ffuel * " CO + Ffuel * " CO = m˙ fuel * LHV fuel * & th* * " CO + *e * " CO ) 2 2 2 2 % #th # el ( th where " CO 2 is the CO 2 production factor in el " CO 2 is the CO 2 production factor in kgCO2 kgCO2 kJLHV for the fuel subsituted in the boiler kJLHV for the fuel subsituted in the electricity production relative CO2 reduction is therefore : m˙ * CO 2 * m˙ CO2 * m ˙ CO 2 where " CO2 $ # th ' #e th el & * * " CO2 + * * " CO2 ) * " CO2 # *th * # *el * " CO2 %# # el ( = th = 1* * th el $ # th ' #el * # th * " CO + # *th * #e * " CO #e th el 2 2 & * * "CO2 + * * " CO2 ) % # th #el ( is the CO 2 production factor in LABORATOIRE D!’ENERGETIQUE INDUSTRIELLE___ kgCO2 kJLHV for the fuel used in the cogeneration system _________ ______________________________________________ ___Février 2002 Systèmes de cogénération Economie de CO2 % ( $ " CO2 # th* * " thCO2 * th* th * th ' ˙ ˙ F fuel * " CO2 # F fuel * " CO2 & $th ) $ th * " CO2 # $ th * " CO2 el CO2 = = = E˙ $e $*th * $e % kgCO2 ( ' GJ el *) & Fuel el\fuel th Natural gas Light Fuel Oil Heavy Fuel Oil Coal (anthracite) Coal Natural gas 13.99% 24.70% 25.69% 39.68% Light Fuel Oil 36.98% 42.93% 43.50% 51.97% Heavy Fuel Oil 37.58% 43.42% 43.98% 52.32% Coal (anthracite) 52.77% 56.19% 56.53% 61.72% Coal (Lignite) 44.90% 49.50% 49.95% 56.71% LABORATOIRE D!’ENERGETIQUE INDUSTRIELLE___ (Lignite) 31.25% 46.77% 47.20% 58.49% 52.54% _________ ______________________________________________ ___Février 2002 Systèmes de cogénération System cost • • Fuel cost Electricity – selling – or bill reduction • • • Maintenance Operating time Annualized investment 1 ˙+ + ˙ cost = (M˙ f uel cf uel − E˙ − c− grid + E cgrid − Qcq ) · time + Cmaint + I τ LABORATOIRE D!’ENERGETIQUE INDUSTRIELLE___ _________ ______________________________________________ ___Février 2002 0.8 Conclusions 59 Cost estimation ˙ e electrical power in [kW] Aeroderivative gas turbines - W ˙ e ) + 0.8687, W ˙ e ≤ 845 [kW ] [−] ηgen = 0.015 · ln(W ˙ e ) + 0.9611, W ˙ e > 845 [kW ] ηgen = 0.0013 · ln(W ˙ e ) − 0.0684 ηelec . [−] ηel = 0.0439 · ln(W ˙ e−0.0587 ηheat [−] ηth,echap = 0.838 · W N Ox [mg/m3 N ] 80 CO [mg/m3 N ] 50 ˙ e0.8503 , W ˙ e < 50000[kW ] Turbine [e] Cturbine = 1564. · W ˙ 0.7791 , W ˙ e > 50000[kW ] Cturbine = 2977. · W e Lifetime [hour] 48000 ˙ Heavy duty gas turbines - We electrical power in [kW] ˙ e ) + 0.8687, W ˙ e ≤ 845 [kW ] ηgenerator [−] ηgen = 0.015 · ln(W ˙ e ) + 0.9611, W ˙ e > 845 [kW ] ηgen = 0.0013 · ln(W ˙ e ) + 0.1317 ηelec . [−] ηel = 0.0187 · ln(W −0.0315 ˙ ηheat [−] ηth,echap = 0.7058 · We N Ox [mg/m3 N ] 50 CO [mg/m3 N ] 50 ˙ e0.7338 , W ˙ e < 50000[kW ] Turbine [e] Cturbine = 4786. · W ˙ 0.7791 , W ˙ e > 50000[kW ] Cturbine = 2977. · W e Lifetime [hour] 55000 ˙ e electrical power in [kW], Q ˙ th heat recovery boiler heat load in [kW] Auxiliaries - W ηgenerator Reference cost [e] Cref = Recovery boiler [e] Connection Charges Instrumentation Civil engineering Engineering Others Maintenance [e] [e] [e] [e] [e] [ctse/kWh] We ) · Cref Cboiler = (125.5 − 0.4 · 1000 ˙ th [kW ])0.8462 Cboiler = 0.2436 · (Q ˙e W Cconn = (0.09318 − 0.00011 · 1000 ) · Cref ˙e W Cins = (0.0494 − 0.0047 · ln( 1000 )) · Cref ˙e W CG.C. = (0.1232 − 0.0005 · 1000 ) · Cref ˙e W Ceng = (0.1211 − 0.000735 · 1000 ) · Cref ˙e W Cdiv = (0.1403 − 0.0142 · ln( 1000 ) · Cref ˙ −0.3081 Cmaint = 8.15 · W Cturbine ˙ e W (0.0503·ln( 1000 )+0.3208) ˙ e Table 14: Aeroderivative and heavy duty gas turbines FM_07/ 2000 Cogeneration engines Fuel Inv = 800 - 4000 CHF/kWe Size = 10000 - 100 kWe E˙ = "ENG e * m˙ fuel ENG * LHV fuel Tcg " 500°C Q˙ cg = "ENG t * m˙ fuel ENG * LHV fuel cg ! ! Tc T(K) ! ! Air V1 H V2 T min " 120°C Tcg stack Q˙ c = "ENG t * m˙ fuel ENG * LHV fuel c Tc " 80 # 90°C ! ! ! "ENG e = 30% S "ENG t = 30% c ! -20 Q(MW) 0 20 40 60 Energy available or excess "ENG t gc = 25% "ENG total = 85 # 90% FM_07/ 2000 ! Combined heat and power Example : Rankine cycle Carnot : E˙ = Q˙ ∗ (1 − Heat source T Vaporisation Tvap ) Tcond Heat source Turbine E Vapo Condensation Pompe Condens Heat sink W Heat sink H FM_07/ 2000 Steam network and restricted matches fuel H Process 1 Cooling system C Process 2 FM_07/ 2000 Combined heat and power T Q1+W Q2 Q˙1 + W˙ + Q˙ 2 = Q˙ Hotu + W˙ MER W Q1 ! Q3 W Q3-W Q4 Coldu Q˙ 3 " W + Q˙ 4 = Q˙ MER " W˙ FM_07/ 2000 ! Combined heat and power Q+W TQ ˙ Hotu + W˙ + Q˙ MER ! W Q Coldu Q˙ MER + Q˙ FM_07/ 2000 ! How to integrate mechanical power production ? Above the pinch point : 1 thermal kW = 1mechanical kW T F10+W F9-Q ! 0 !!! Below the pinch point : 1 cold utility kW = 1 mechanical kW F10+(Q+W) F10 Q+W Across the pinch point: Energy penalty W F7 F8 F8 F8-Q Q F6 Q+W F9 F9 F7 F7 F6 F6 0 W F5 F5 F4 F4-Q-W F3 F2 Q+W F2-W F3+Q F2+Q Q F1-W F1 Q F4+Q W F3-Q-W ! 0 !!! F5+Q F1+Q The constraint limits the flowrate FM_07/ 2000 Choose the appropriate pressure levels • Exploit the self sufficient zones to maximise the mechanical power production : insert rectangles T(K) flowrate Max 650 Tv Q˙ 600 115 bar 550 Max Expansion ! ! Ratio # T " 273% P=$ 100 & 58 bar 500 35 bar 450 7,7 bar 400 1,0 bar 1,5 bar Tc 350 300 4 0 5000 10000 15000 20000 Tv E˙ Carnot = Q˙ * (1" ) Tc 25000 30000 35000 Q(kW) ! ! FM_07/ 2000 Estimate the mechanical power production • Above the pinch point: A is the area of the integrated rectangles = "Q#"$ $ ' & T " Tc ) A E˙ = q˙c & T v )=T v & v " (Tv " Tc )) " (Tv " Tc ) % #c ( #c • Below the pinch point A is the area of the integrated rectangles = "Q#"$ $T #T ' A E˙ = q˙v" c & v c ) = "c % Tv ( Tv FM_07/ 2000 Heat pump and refrigeration Cold utility (cooling water) T CONDENSATION HIGH TEMPERATURE E˙ k ! EXPANSION VALVE COMPRESSOR EVAPORATION LOW TEMPERATURE E˙ k Process stream Q ! Laboratory of Industrial EnergySystems LENI -ISE-STI-EPFL FM_08/2002 Heat pump T Q ˙ Hotu " (Q˙ + W˙ ) MER ! W Q+W Q Coldu Q˙ MER " Q˙ FM_07/ 2000 ! Heat pump T Q˙ Hotu " (W˙ ) 0.5 Solvingtheenergyconversionproblemusingmathematicalprogramming 37 MER T W ! Above pinch point Heat supplement from W Q+W Q Q+W High temperature recompressed stream fmvrhigh W pinch temperature fmvrhigh Low temperature stream : fmvrlow W Below pinch point fmvrlow Q+W Q Coldu Q˙ MER + W˙ Q Heat below the pinch Figure16:Mechanicalvapourrecompression FM_07/ 2000 ! Theequality represents thesituationpresentedonfigure 16where thestreamis partly recompressed,theremainingpart beingcooleddownatlowertemperature. It should benotedthat theheatloadofthehightemperature streamis higherthantheoneofthecolderonebecause it includesthemechanicalpowerofcompression. Thetargettemperature ofthehightemperature streamis identicalto theoneofthecolderstream. theadiabatic valvebeingconsidered afterliquid sub-cooling. Theusefulheatoftherecompressedstreamis therefore lowerthan Definition des niveaux de recompression 700 Grand composite curve 650 600 550 500 T(K) 450 Emec 400 350 300 250 0 10000 20000 30000 40000 50000 60000 Q(kW) FM_07/ 2000 Integrating MVR Above the pinch point: Wmec = hot utility T Below the pinch point : Wmec = hot utility !!! F10-W F9+Q Q+W Accross the pinch point: Wmec => energy savings: W+Q F10 F10-(Q+W) F9 F9-(Q+W) W F7 F6 ! 0 !!! F8 F8+Q Q F7-(Q+W) F7 F6 F6 F5 F5-Q Q+W 0 F5 W F4 F4+Q+W F3 F3+Q+W F2 F2+W F1 F1+W Q+W F4-Q W Q F3-Q Q ! 0 !!! F2-Q F1-Q FM_07/ 2000 Refrigeration T 36 Contents 340 Process & cooling water refrigeration 320 Qr+W Ambient T T(K) Qc W 300 280 Qr 260 Coldu Q˙ c + Q˙ r + W˙ = Q˙ MER + W˙ -2000 -1500 -1000 -500 0 500 1000 Q(kW) Figure 15: Integrated composite curve of a single stage refrigeration cycle FM_07/ 2000 0.5.4 Heat pumps When appropriately placed heat pumping systems should drive heat from below to above the pinch point. Several types of heat pumping systems may be considered (mechanical vapour recompression, mechanically driven heat pumps or absorption heat pumps). Table 15 give some useful thermoeconomical values for the evaluation of the industrial heat pumping systems. The optimal integration is determined by first identifying the streams or the temperature levels for which heat pumping is envisaged. The simulation of the heat pump system using process modelling tools defines the hot and cold streams characteristics that are added to the system integration model and the optimal flowrate for each of the levels will be computed by solving the MILP problem. When mechanical vapour recompression (MVR) is used, a hot stream at lower temperature (mvrlow ) is replaced by another hot stream (mvrhigh) with a higher temperature and a mechanical power consumption Wmvr . From the Grand composite curve analysis, it may happen that only part of the stream will be recompressed. This situation will be represented by considering as variable the fraction used in the two streams (resp. fmvrlow and fmvrhigh) and by adding the following constraints (35). ! Refrigeration cycle integration Single stage cooling fmvrhigh + fmvrlow ≤ 1 (35) C/W T Three stages cooling + condensation A Tamb B C/W C D 2 E F 1 2 (a) B 4 3 B' D C/W 7 T Tamb 7 6 5 D' C F 1 2 A 3 B (f) 5 (e) 4 C D 2 E F 1 2 1 8 E 8 4 (c) A H (b) Two stages cooling T Tamb 4 Qr 1 3 6 2 1 Qr (d) H FM_07/ 2000 H Combined heat and power : important rules Producing mechanical power Appropriate placement : Never accross the pinch Above : 1 thermal kW for 1 mechanical kW Below : 1 kW cold utility becomes 1 mechanical kW Use self sufficient zones Using mechanical power Take heat below the pinch and sent it back above Use if: Hot utility at low temperature Cold utility at high temperature Small temperature difference FM_07/ 2000 Utilities 1100 T(K) 1000 900 800 700 Gas turbine ? Fuels ? Gas engines ? Enriched air ? Preheating ? Steam ? Liquid Fuel ? Natural gas ? PSA ? VSA ? Membrane ? Cryogenic ? Temperature ? Pressure ? Turbine ? 600 500 400 300 200 Heat pumps ? Organic Rankine Cycles ? Water ? Refrigerant ? Pressure ? Air ? 0 2000 4000 8000 Compressor ? 6000 Compressor ? Absorption ? refrigeration ? 10000 12000 Q(kW) FM_07/ 2000 Energy balance of a temperature interval Integrating heat producers and consumers Sharing energy by counter current heat exchange Excess of energy from the upper intervals Ri+1 T *i+1 Energy for the hot streams in interval i fj qji fj qji Energy for the cold streams in interval i T* i Ri Energy to the lower intervals For each utility stream fj Unknown flowrate-> Use YES/NO ? -> : Continuous variable y j :Interger variable 1/0 FM_07/ 2000 Optimalisation Minimum cost of energy requirement (MCER) Mixed Integer Linear Programming (MILP) min Ri, f j, yj Submit to : nu Cost =& C1jyj+ C2jf j j=1 Heat balance nc Ri+1+ & fj qji j =1 Utility f min,j yj ' f j (1) Hot stream j in interval i Cold stream j in interval i n f - & f j qji - Ri =0 j =1 (2) ' f max,j yj 2nd principle Ri! 0; R1=0; Rni+1=0 yj % {0,1} ideal HEN model FM_07/ 2000 Combined mechanical power production Linear constraints Mechanical power consumption nu & w w fw ( w + Wel - Wp ! 0 w=1 Process requirement (3.1) Electricity import Production from the utilities(W w > 0 ) - Export of electricity Electricity export nu & w w fw ( w + Wel - Welv - Wp = 0 w=1 (3.2) - Operating cost buy nu Cost = & (C1w y w + C2w fw ) + Cel Wel - Celv Welv Welv w=1 sell FM_07/ 2000 Use of integer variables 1 integer variable for each flowrate yj = 0 : the utility j is not used yj = 1 : the utility j is used f min,j yj ' f j ' fmax,j yj if yj =0 => f min,j 0 ' f j ' f max,j 0 j is not selected => 0 ' f j ' 0 => f j =0 j is selected if yj =1 => fmin,j ' f j ' f max,j Linear constraint Linear cost : Costj = C1j yj + C2j f j if yj =0=> Costj = C1j 0 + C2j 0 =0 if yj =1=> Costj = C1j + C2j f j j is not selected j is selected FM_07/ 2000 (1) MILP formulation Operating cost Fixed maintenance Subject to Electricity consumption Investment Electricity production Technology selection Feasibility Laboratory of Industrial EnergySystems LENI -ISE-STI-EPFL FM_08/2002 Targeting the optimal integration : model • MILP formulation Gas turbine g : hot stream from ToT to Tstack unknown Fuel Electricity Part load efficiency Operating cost Investments Laboratory of Industrial EnergySystems LENI -ISE-STI-EPFL FM_08/2002 Linear cost function : MILP formulation Cost C2*f C2 = Cost(f max ) − Cost(f min ) f max − f min C1 = Cost(f min ) − C2f min C1*y f fmin fmax Laboratory of Industrial EnergySystems LENI -ISE-STI-EPFL FM_08/2002 Combustion model Post combustion O2 balance Post comb Heat above Trad Air Fuels Air Enriched air Heat from Trad to stack Air Fuels Enriched air Preheating Fuels Enriched air Laboratory of Industrial EnergySystems LENI -ISE-STI-EPFL FM_08/2002 Air preheating : chemical heat pumping 2500 Qcnv o2=10% Stoechiometrique Qrad Préchauffe de l’air 2000 Qprh Qprh 1500 Trad T (°C) 1000 500 0 -10000 0 10000 20000 30000 40000 50000 60000 Q (kJ/kg) FM_07/ 2000 Gas Turbine : fixed size T(K) Qpc Trad Fuel ToPC ! ToGT ! Air P1 H P2 T ! "GTe = 30 # 38% min stack -20 "GTt Q(MW) 0 20 40 60 gc S = 55 # 47% "GT = 85% FM_07/ 2000 ! Outlet temperature calculation Stream Add linear constraints Compute the temperature a posteriori Laboratory of Industrial EnergySystems LENI -ISE-STI-EPFL FM_08/2002 Outlet temperature calculation 500 450 Qi+2 Qi+1 fi+1 To 400 T(K) fi Ti+2 Ti+1 Ti 350 300 250 0 200 Laboratory of Industrial EnergySystems LENI -ISE-STI-EPFL 400 600 Q(kW) 800 1000 FM_08/2002 the integer variable used to select the segment i yi Figure 17:17: Integrated composite :boiler,refrigeration refrigerationand andcooling cooling system Figure Integrated compositecurve curveofofthe theheat heat pump pump system system :boiler, system The linearization by segments is also applicable for performances indicators of technologies like power and efficiency of a gas turbine. The linear formulation may in this case be extended to account for piece-wice linearized of non linear functions. 0.5.5 Handling Handlingnon nonlinear linearcost cost functions functions 0.5.5 0.5.6 Using range the exergy losses as anisobjective function In the problem formulation,linear linearcost costare are needed. needed. When covered In the problem formulation, When the thewhole whole rangeofofsizes sizes is covered model, a piece-wiselinearisation linearisation technique technique may used totorepresent non linear cost to the linear nature of the problem, the use of the energy cost as an objective function may by by thethe model, a piece-wise may be beDue used represent non linear cost Sdifficulties b [26]. When the cost of fuel and electricity is such that the electrical reveals function. The genericinvestment investmentcost costfunction function C(S) C(S) = ∗∗some ((Sref bebeapproximated S ) bwill function. The generic =C Cref ) will approximated ref efficiency ofSaref cogeneration unit is attractive without the use of heat (i.e. when the electrical by a set of segments (figure 18) defined by the following set of constraints (36) in the linear W˙ (36) in Cthe(e/kJ) by•a setpiecewize of segments (figure 18) defined by the following set of ofconstraints linear linearisation efficiency the unit ηel = LHV ˙ is greater than C (e/kJ )) there is an economical interest optimisation problem. to produce electricity even without cogeneration). In this case, the linear programming prooptimisation problem. Non linear cost function LHV el e el cedure leads to a situation where the cogeneration unit is used at its maximum. This situation nsegments ! nsegments C(S max ) − C(S max ) C(S max ) − C(S max ) not occur when the investment cost are properly iconsidered or when the cost of i−1 imax usually does i−1 max max max max max Si−1 ) ∗of yenergy ∗Sp C= ! {(C(Smax ) −tomax C(S ) i }Neverthe) − C(S )the∗different i + areC(S i−1 ) −C(Si−1 i i−1 i efficiency. forms coherent with respect the electrical max max max max S − S S − S ∗ S ) ∗ y + ∗Spi } C= {(C(S ) − i−1 imax i−1 i max i−1 price of thei different forms i−1 max max i=1 less, the relative of energy− will influence the technology selection S − S S S i−1 i i−1 i i=1 nsegments ! nsegments S= Spi ! S= Spi i=1 max max yi ∗ Si=1 i−1 ≤ Spi ≤ yi ∗ Si max max yi y∗i S∈i−1 ≤ Spi ≤ yi ∗ Si {0, 1} yi ∈ {0, 1} 16000 ∀i = 1, ..., nsegments ∀i = 1, ..., nsegments 14000 (36) 12000 with C(S) cost ofinthe equipment of size S Simax the Theinstalled maximum size segment i Spi the size of the equipment in segment i yi the integer variable used to select the segment i Cost 0.5 Solving the energy conversion problem using mathematical programming 10000 with C(S) the installed cost of the equipment of size S (36) 39 8000 6000 4000 max S max S i The linearization by segments is also applicable for performances2000indicators ofi!1technologies like power and efficiency of a gas turbine. The linear formulation may in this case be extended to account for piece-wice linearized of non linear functions. 0 Sp 0 100 i 200 300 400 500 Size Laboratory of Industrial EnergySystems 0.5.6LENIUsing the exergy losses as an objective function -ISE-STI-EPFL FM_08/2002 Figure 18: piecewize linearisation of cost function (exponent 0.75) Due to the linear nature of the problem, the use of the energy cost as an objective function may reveals some difficulties [26]. When the cost of fuel and electricity is such that the electrical efficiency of a cogeneration unit is attractive without the use of heat (i.e. when the electrical (e/kJ) W˙el efficiency of the unit ηel = LHV is greater than CCLHV )) there is an economical interest ˙ el (e/kJe to produce electricity even without cogeneration). In this case, the linear programming procedure leads to a situation where the cogeneration unit is used at its maximum. This situation usually does not occur when the investment cost are properly considered or when the cost of the different forms of energy are coherent with respect to the electrical efficiency. Neverthe: balanced hot will andinfluence coldthecomposite curves less, the relative Results price of the different forms of energy technology selection T(K) 1100 Multiple pinch points optimal use of the cheapest utility 16000 1000 14000 900 combustion 800 12000 Cost 700 10000 600 exothermal reactor 8000 500 steam consumption 6000 steam production 400 4000 300 water cooling 2000 200 0 0 max Air S cooling i!1 max S i 5000 0 10000 15000 20000 Q(kW) Spi 200 100 300 25000 400 30000 35000 500 Size Figure 18: piecewize linearisation of cost function (exponent 0.75) FM_07/ 2000 Balanced Grand composite curve T(K) 1100 1000 Understand the results ? 900 800 700 600 500 400 300 200 0 1000 2000 3000 4000 Q(kW) 5000 6000 7000 FM_07/ 2000 Evaluate : the Integrated Composite Curves Hot and cold streams Sub-set B : complement n k n Bw nB r=k w=1 i=1 RB k = R ref + & ( & f w q wr + & Q ir ) Sub-set A n k n Aw nA r=k w=1 i=1 RA k = R ref - & ( & f w q wr + & Q ir ) - R n k +1 T n k n Bw RBkp = 0 => Rref = - & ( & r=kp w=1 nB f w q wr +& Qir ) i=1 Q FM_07/ 2000 8000 ICC for utility system integration T(K) 1100 Process Utility system 1000 Furnace 900 800 700 600 500 400 air cooling 300 200 -2000 0 2000 4000 6000 Q(kW) water 8000 10000 fridge 12000 14000 FM_07/ 2000 ICC for the integration of the fumes T(K) 1100 Other systems Furnace 1000 900 800 700 600 500 400 300 200 -1000 0 1000 2000 3000 Q(kW) 4000 5000 6000 7000 Excess of heat in the fumes FM_07/ 2000 ICC for refrigeration cycle integration 50 T(K) 340 Process & cooling water refrigeration 320 "process" "Fridge system" 1100 1000 T(K) 900 800 300 280 700 600 260 500 -2000 -1500 -1000 -500 0 500 Q(kW) 400 Figure 13: Integrated composite curve of a single stage refrigeration cycle 300 200 -1000 Contents 0 1000 2000 3000 4000 5000 Q(kW) 6000 7000 8000 FM_07/ 2000 ICC of the steam network T(K) 1100 Other systems Steam network 1000 900 800 Energy supplement 700 600 500 400 Steam production Steam cons. 300 200 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 Q(kW) Mechanical production FM_07/ 2000 1000 Heat exchanger placement audit Systematic drawing of the ICC of the existing heat exchangers Heat exchange through the pinch point 700 Penality 650 MER Existing Heat Exchanger 600 550 Rest of the process cf remaining problem T(K) 500 450 400 350 300 250 -2000 0 2000 4000 6000 Q(kW) 8000 10000 12000 FM_07/ 2000 Heat exchanger placement audit Heat exchanger below the pinch point 600 T(K) MER 550 500 Penalty of heat exchanger 450 400 Heat exchanger Overall process 350 Remaining 300 250 -1000 Q(kW) -500 0 500 1000 1500 2000 2500 3000 FM_07/ 2000 Integration of refrigeration cycles A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Content • • • Problem statement : goals and strategy Modelling the refrigeration cycle integration Application to the olefins plant refrigeration cycle – Targeting the minimum energy requirement of the plant • Reducing the refrigeration requirements – Options for improving the energy efficiency of the refrigeration system • Conclusions Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant R&D context and goals • • In the frame of a European R&D project Goal of the R&D project – Develop methodology and tools to optimise the integration of energy technologies in industrial processes – Refrigeration systems is one of the energy technologies considered • Methodology – Method development for energy technologies integration • targeting method for preliminary design in grassroot and process retrofit cases – Validation with real cases studies • Real case study :olefin plant – Results of a data reconciliation and on-line optimisation software • Prof Pierucci , Politecnicdi Milano – Interface with energy integration software • LASSC, University of Liege – Evaluation of feasibility • LASSC & Politecnico Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Problem statement : the context • The olefin plant Furnace 1 Cold Box H2, C1, C2 110 - 313 K Furnace 2 300 - 750 K Furnace 3 Quench section C3 - C4 separation Compression C3 - C4 298 - 1100 K Fuel Oil 280 - 380 K 288 - 350 K Furnace 9 Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) C5 - C6+ separation C5 - C6+ A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant The energy requirement • Compute the composite curves 120 hot and cold streams From real process data (model) Heat Requirement 1600 1400 Cracking section 1200 T(K) 1000 800 Quench 600 400 Cooling 200 0 Compression C3-C4 and C5-C6 separations Ambient temperature 0 Cold box Refrigeration Requirement 20000 40000 60000 80000 100000 120000 140000 Q(kW) Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant The refrigeration system • • • • • Multi components Multi pressure levels Methane : 1 level Ethylene : 3 levels Propylene : 4 levels Cycle T evaporator (K) METH1 136 ETH1 171,6 ETH2 199,25 ETH3 212,51 PROP1 233 PROP2 248 PROP3 277 PROP4 291 Complex systems 1 PROPC PROPC_1 2 Condenser or under cooling Evaporator Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Integrated process and refrigeration system 1 PROPC Propylene condenser : 319 K 300 T(K) ETHC Prop4 250 ETHC 291 K Prop3 Prop2 243K 2 277K Proc_1 : intermediate condenser 248K Ethc 233K Prop1 Eth3 212K 200 199K Eth2 180KMethc 279 K 365 K 171K 366 K METHI 457 kW Eth1 302 K Condenser 150 Evaporator METHP 826 kW METHC 2016 kW 137K 139 K 136 K 136 K Meth1 Q(kW) 159 K METH1 879 kW 100 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Goal and strategy • Goal : develop a preliminary retrofit step model to target : – Optimal integration of process and refrigeration system – Optimal flow-rates in the refrigeration system – Interactions between refrigeration cycles – The minimum mechanical power consumption – And to identify the major energy penalty and improvement routes • – • PROPC_1 Process and Heat exchanger network modification Quick evaluation of process changes impact (support to the engineer creativity) Method proposed : EMO : Effect Modelling and Optimisation – Based on process data and thermodynamic based models – Heat exchanger network modelling using the heat cascade constraints • – HEN modifications allowed Combined heat (fridge) and power Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) 50000 A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant EMO for one refrigeration effect : reference flow = flow in the condenser Condenser : hot stream c,r r r qcond = (hout _ comp " hout _ cond ) Tc h0 h1 )4 Compression : mechanical power w c,r n sc, r h2 )3.(1- )4) c ,r '%n s "1 ') r c,r = & $ ((1" # c ,r (Pt ))* * (hout _ comp " hsat " vap (Pn cs ,r ))) '( t =1 '+ c, r % s #1 ( " c,r (Psc ,r )* ' $ (1# " c,r (Pt ))* & t =1 ) (1-)4) )2.(1-)3).(1-)4) s"1 % ) r c,r + ,# (Ps )* &$ ((1" # c,r (Pt ))* * (hout _ comp " hsat "vap (Ps ))) s=1 ( t =1 + c ,r h3 (1-)3).(1-)4) wPROP_1= (1-!1).(1-!2).(1-!3).(h4 -h0) + !3(1-!1).(1-!2).(h3 -h0) + !2(1-!1). (h2-h0) + !1(h1 -h0) PROP1 Evaporation : cold stream c,r eva q h4 (1- )2).(1-)3).(1- )4) r out _ cond = (h c ,r sat _ vap "h Te c, r %' n s )' c ,r c ,r (Pn cs ,r )) = &$ ((1" # c,r (Pt ))* * (hsat _ liq (Pn sc,r ) " hsat _ vap (Pn sc, r )) (' t =1 +' Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) ! A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Propylene cycle model Heat load in the condenser PROPC PROPC Wmec 4 )4 Wmec 4 r cond Q )4 c,r = " f c ,r * qcond c =1 Wmec 3 Wmec 3 n rc ) .(1-) ) 3 4 (1-) 4) PROPC Mechanical power Wmec 2 PROP 3 1 (1-) 4) PROPC r (1-) 3).(1- )4 ) PROP 2 PROP 4 c =1 PROPC Wmec 4 PROPC_1 )4 Wmec 2 PROPC_1 Wmec 3 2 PROP 2_1 ) .(1-) ) 3 4 PROPC_1 Wmec 2 (1-) 4) )2 .(1-) 3).(1-) 4) )2 Wmec 2 (1-)3).(1- ) 4) Wmec 1 Wmec 1 Condenser or under cooling Evaporator (1-) 2).(1- )3).(1- ) 4) (1-) 2) PROP 1_1 Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) n rc W = " f c,r * w c,r Wmec 4 PROP 1 A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Optimisation model • Goal : to compute the optimal flow-rate in each effect nw 300 Minimise " ( ywC1w + f wC2w ) + Cel * ELi # Celo * ELo R k ,y w ,f w 250 subject to : heat balance of the temperature interval k nw "f (P1) w =1 nr n cr nr 200 n cr n ,r c,r + " " f c,r qccond,k # " " f c,r qeva,k + " Qik + Rk +1 # Rk = 0 q w wk w =1 r=1 c =1 r=1 c =1 i=1 $k = 1,...,n k 150 34941 kW r nc Wcr # " f c,r *w c,r =0 $r = 1,...,nr 100 30000 35000 40000 45000 50000 c =1 c,r f min y 55000 60000 65000 70000 Q(kW) c,r % f c,r c,r c,r c,r % f max y , y & {0,1} nw Electricity production : "f r c $c = 1,...,n ,$r = 1,...,nr nr w w =1 Wmec 4=117,63 kW !4 * ww # "Wc r + ELi # ELo = 0 Wmec 3=20,82 kW !3.(1-!4) r =1 Wmec 2=41,41 kW nw nr (1-!4) !2.(1-!3).(1-!4) consumption: " f w * ww # " Wc r + ELi ' 0 w =1 Wmec1 =21,4 kW (1-!3).(1-!4) r=1 f minw y w % f w % f maxw y w , yw& {0,1} Rk ' 0 $k = 1,...,nk + 1 $w = 1,...,nw (1-!2).(1-!3).(1-!4) PROP 1 R1 = 0, Rn k +1 = 0 Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant The integrated system : graphical representation of solution Propylene condenser : 319 K Prop4 300 Prop3 Prop2 250 1,6 Proc_1 : intermediate condenser Eth_C Flow-rate modifications Prop1 Eth3 1,4 Eth2 Methc Eth1 1,2 1 Actual 0,8 Optimised 0,6 0,4 Meth1 0 5000 10000 METH1 15000 TOTAL ETH3 ETH2 ETH1 PROP2_1 PROP1_1 PROP3 100 PROP4 PROP2 0 PROP1 0,2 20000 25000 30000 Q(kW) Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) 35000 40000 45000 50000 75000 80000 A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant The first results Actual Optimized Simulation Wmec Wmec Wmec kW kW kW PROP1 17297 12685 - PROP2 5314 4281 - PROP3 6598 4759 - PROP4 1489 377 - PROP1_1 1520 2029 - PROP2_1 0 0 32218 24131 ETH1 919 705 - ETH2 312 463 - ETH3 1378 655 Total ethylene 2609 1823 2001 746 655 655 0 0 35573 26609 Total propylene METH1 Off streams contribution TOTAL 25% 26284 - 28940 8% Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Sensitivity to refrigeration requirements saving Reducing the refrigeration requirement of 1 unit reduces the mechanical requirement of : Cycles Meth Eth1 Eth2 Eth3 Prop1 Prop2 Total 135 K 0.833 0.483 0.056 0.014 0.830 0.064 2.281 170 K 0.070 0.621 0.005 0.001 0.906 0.064 1.667 Energy saving temperature 197 K 210 K 0 0 0 0 0.525 0 0 0.484 0.835 0.810 0.059 0.057 1.419 1.351 Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) 231 K 0 0 0 0 0.750 0 0.750 246 K 0 0 0 0 0.526 0.199 0.725 A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Ethane valorisation T=270 K P=20 bar 452 Sep T=205 K P=3 bar METH T=298 K and + ETH1 P=3 bar ETH2 ETH3 To furnace PROP1 Reheater PROP2 PROP3 PROP4 Total C2H6VLV Evaporator with C2H6 recov 100% 100% 57% 54% 96% 97% 94.50% 860 kW Total saving 860 kW (FRG) => 1500 kW (MEC) Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Methane valorisation 132 K 1.35 b 147 K Preheating 633 kW 347 173 K 6.7 bar 400 K 1.35 b To furnace Cooling recovery Total saving + 633 kW mec produced by the turbine + 1414 kW mec saved in the refrigeration system + 2047 kW mec Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Hydrogen valorisation Other usage ? ! if not re-expand 298 K 10bar 130 K 10 bar 100 K Preheating 320 kW 347 Cooling recovery 173 K 32bar Total saving + 320 kW mec produced by the turbine + 764 kW mec saved in the refrigeration system + 1084 kW mec Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant After process modifications Actual Optimized Simulation Off streams Wmec Wmec Wmec kW kW kW Wmec kW PROP1 17297 12685 - 10924 PROP2 5314 4281 - 4114 PROP3 6598 4759 - 4589 PROP4 1489 377 - 357 PROP1_1 1520 2029 - 2061 PROP2_1 Total propylene 0 0 - 24131 ETH1 919 705 - 281 ETH2 312 463 - 248 ETH3 1378 655 - 343 Total ethylene 2609 1823 2001 872 746 655 655 0 0 0 - -827 METH1 Off streams contribution TOTAL 35573 26284 0 32218 26609 28940 17% 38% Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) 22045 22090 A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Interest of the proposed targeting method • • Suitable for retrofit and grassroots problems Based on the existing process performances – Offers an overall view of the energy integration including the utility system • Identify and quantify energy savings potentials (heat and power) – – – – • Optimal flow-rates in the cycle Incentive for cycles improvements in terms of costs of energy (and investment) Graphical representation => better knowledge of the system interactions Quick evaluation of the process modifications with an overall system view Study the valorisation of “off-streams” – Quick evaluation (no heat exchanger network model needed) – Sensitivity analysis • First step of process improvement : Target optimal flowrates – Use heat load distribution to identify heat exchanger network modifications – Estimate the investment and the profitability of solutions – More precise simulation needed Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) A tool for optimal synthesis of industrial refrigeration systems : Application to an olefins plant Outcome for the olefin plant test case • The refrigeration system integration has been included in an overall approach – Hot and cold utilities – Steam network integration also important • • Targeted energy savings for the refrigeration system – – – Up to 25 % of refrigeration power consumption New flow-rates targeted Heat exchanger network modifications • • After heat load distribution and heat exchanger network modelling Valorise “off-streams” – – – • gas turbine, partial oxidation gas turbine,… Exergy valorisation Expansions + refrigeration effects 12 % of additional energy savings HEN evaluation : preliminary step – – Structure modifications Requires further optimization to estimate the investment Laboratory of Industrial Energy Systems - LENI - Swiss Federal Institute of Technology (Lausanne-CH) Integration of Organic Rankine Cycles Why integrating ORC systems ? Transform low grade energy into mechanical power – Geothermal • hot source up to 150°C, size : 300 kW to 2.5 MW – Renewables • Biogas, Biomass burning, solar energy (hybrid systems) • Up to 300°C efficiency up to 20% • Sizes from 5kW (scroll) to 1MW (turbo-expander) – Use in industrial processes • Valorise low quality process / utilities waste heat • Typical pinch point location = 100°C to 150°C 2nd International Symposium on process integration, Halifax (CA) 2001 What are the questions ? • Process requirement * Composite curves H H C H Tin 773.00 373.00 523.00 493.00 Tout 393.00 373.00 523.00 493.00 • • Heat load 100.00 120.00 100.00 100.00 Grand composite curves 800 • Evaporation pressure • Condensing pressure • Superheating temperature Grand composite curve 750 700 – What are the technologies ? – Which process/cycle configuration ? 650 600 • Multiple cycles ? • Process/cycle integration ? 550 500 – What are the competing technologies ? 450 • Heat pumps ? • Steam Rankine cycle ? • District heating ? 400 350 300 0 50 100 150 200 Q(kW) 2nd International Symposium on process integration, Halifax (CA) 2001 Exergy Grand Composite Curve 0.7 0.6 0.5 Carnot factor (-) T(K) Should I integrate an ORC to my process ? If yes – What is(are) the fluid(s) ? – What are the best operating conditions ? 0.4 0.3 0.2 0.1 0 0 50 100 150 200 Q(kW) 2nd International Symposium on process integration, Halifax (CA) 2001 250 300 STEP1 : Identify the temperature levels Minimum heat transfer exergy losses Utilities = qk at Tk cst Limit the number of levels ! qk " 0 2nd International Symposium on process integration, Halifax (CA) 2001 STEP1 : Results of the levels identification • Temperature levels analysis 800 system Steam level 750 • Combinatorial • Use of bounds • Distinction between close levels Combustion is integrated 700 650 600 – High precision not required Steam levels ? 550 T(K) Difficulties – Integer variables • DTmin assumption 500 – “Intelligent” results evaluation algorithm 450 Heat pump ? 400 ORC ? 350 300 0 50 100 150 200 Q(kW) 2nd International Symposium on process integration, Halifax (CA) 2001 STEP 2 : selection ICC of the ORC with refrigerant BZ tb=353K • Benzene For each couple : ((Tvap,Qvap),(Tcnd,Qcnd)) ORC cycle for temperatures between 486.0 K and 298.1 Next T = 463.5(K) Heat load :167.2 kW(vaporisation: 116.340 kW - preheating: 50.914 kW) 800 ORC Frame Wmec process – For each fluid in the list 700 • Compute Pvapr&Pcndr 600 • Compute wmecr,qvapr, qliqr => flowr ! intersection with requirement curve " T(K) • Compute Tsuperheatingr – Vapour fraction > 0.85 – Wmecr*flowr increases 500 Organic Rankine cycle :OZ Fluid– < Max temperature :BZ tb=353K Benzene Mechanical power : 31.9451 kW Heat load : 213.22 kW (eff : 15.0%) Superheating temp : 486.0 (K) and 17.41 (bar) Vaporisation temp : 486.0 (K) Condensation temp : 353.2 (K) and 1.00 (bar) vapf 100.0 (%) Reference Flowrate: 0.495328E-02 kmol/s Inlet volumic flow: 0.862047E-02 m3/s (VR= 19.08) 400 300 0 50 100 150 200 Q(kW) – Select the n bests 2nd International Symposium on process integration, Halifax (CA) 2001 STEP 2 : Results ORC requirement between 357.77 (K) and 298.15 (K) 45 40 • List of possible fluids – Heat transfer coefficient => Dtmin/2 • Vaporisation temperature – Compute the pressure • Superheating temperature • Condensation temperature • Flowrate reference • Efficiency 35 25 20 15 10 PP2 BZ tb=415K perfluorodecaline_c10f18 CA 2nd International Symposium on process integration, Halifax (CA) 2001 tb=383K Toluene 360 TOL 340 tb=349.15K c7f14 tb=353K Benzene 320 tb=330K c6f14 300 Tboil(K) PP1 280 tb=298.98K pentafluoropropane R123PP50 tb=301K c2H1cl2f3 tb=302K c5f12 Tb=282.05K DichloroFluoro-methane R160 Tb=285.35K Chloro-ethane 260 69.15K BromoChloroDifluoro-Methane R600 Tb=273.1K N-butane 276.65K DichloroTetrafluoro-ethane R764 Tb=263.14K Sulfur dioxide Tb=263.9K Chlorodifluoro-ethane 240 R134A 0 220 tb=247. c2h2f4 5 Tb=232.35K ChloroDifluoro-methane WTOT(kW) 30 STEP 3 : Cycles calculation • For each cycle and its reference flowrate ORC composite curves 440 Ts Qbr (151.3 kW) Cost_boilerr=a*(Qbr)b => C1br + xr * C2br 420 400 1)Type selection scroll -turbo => eff,nstages 2) Compute Wr (22.46 kW) 3) Cost_turbiner=at*(Wr)bt T(K) 380 Tv 360 => C1br + xr * C2br 340 Linearising cost estimation functions 90 320 Tc 300 cost estimate linearised 80 70 60 50 280 0 50 100 Wpr (0.8 kW) Cost_pumpr 40 Qcr (134.71 kW) 150 200 Cost_condr=ac*(Qcr)bc Q(kW) => C1cr + xr * C2cr 250 30 300 20 10 0 0 50 100 150 200 2nd International Symposium on process integration, Halifax (CA) 2001 Integration of an ORC FROM the hot source : Qh Grand composite curve of an ORC 500 bz Mech. power 480 • The composite has to “fit” the process Grand Composite curve 460 T(K) 440 • Qh “Free” waste energy = W/Qh = 17.2 % = 23.72/137.7 ( 420 400 Liquid preheating By vapor desuperheating 380 360 -20 0 W 20 40 60 Q(kW) 80 100 120 To the cold source 140 Heat load saving -> Greater production *+9% 2nd International Symposium on process integration, Halifax (CA) 2001 STEP 3 : MILP superstructure model for selection nw Minimise " ( ywCo1w + f wCo2w ) + Cel * ELi # Celo * ELo R k ,y w ,f w (P2) Objective function = total cost ! Including competing ! technologies w =1 nr % yr * C1w + W * C2w )/ 1 , nw '( r r r r ) + ( yrr * C1c r + Qcr *C2c r ) ' + * . " ( y wC1w + f wC2 w ) + " & *1 $ .- w=1 r =1 ( '+ ( yrr *C1br + Qbr * C2br ) + ( yrr * C1pr + Wpr *C2pr )+'10 subject to : heat balance of the temperature interval k nw "f w =1 nr n r=1 i=1 q + " (qc k,r # qbk,r ) * f r + " Qik + Rk +1 # Rk = 0 Heat cascade constraint 2k = 1,...,nk w wk nk Qc r # " (qc k,r ) * f r = 0 2r = 1,...,nr k =1 nk Qbr # " (qbk ,r ) * f r = 0 2r = 1,...,nr k =1 ORC sizing 4 % , 3 isr r /) ' 4 .5 Pv 8 1#4 r 1' Wr # &3isr * r R *Tsr * .7 r : # 11* * f r = 0 1# 4 r Pc 6 9 ' j .10' ( + v *(Pv # Pc ) Wpr # r * fr = 0 3 pr 2r = 1,...,nr 2r = 1,...,nr f rmin yrr ; f r ; f rmax yrr ORC selection 2r = 1,...,nr nw nr ELo Electricity production : " f w * ww + " (W r # Wpr ) + 3 i * ELi # =0 3o w =1 r=1 nw nr w =1 r=1 Electricity balances Electricityconsumption : " f w * ww + " (Wr # Wpr ) + 3 i * ELi < 0 f minw y w ; f w ; f maxw y w , yw= {0,1} Rk < 0 2k = 1,...,nk + 1 Other technologies selection 2w = 1,...,n w R1 = 0,Rn k +1 = 0 2nd International Symposium on process integration, Halifax (CA) 2001 Linearising cost estimation functions 90 cost estimate linearised Cost 80 70 60 50 40 30 20 10 0 0 fmin fmax 50 100 150 2nd International Symposium on process integration, Halifax (CA) 2001 Size 200 ORC level analysis 500 system ORC levels 450 Profile 1 T(K) 400 350 Profile 2 300 0 50 100 150 200 250 300 Q(kW) 2nd International Symposium on process integration, Halifax (CA) 2001 STEP 3 : Difficulties/Limitations • • • Solving integer programming – Consistent bounds set ! Linear model – linearised cost – Estimated A • Flowrate estimation – reference • + DTmin assumption • Integer cuts – Multiple solutions – Multi objective (linear) Multiple alternatives – Multi criteria selection • Break even • Heat Exchanger Network – Structure unknown – Cost not considered • List of streams complete – Automated or Pinch design method – Complete system ! 2nd International Symposium on process integration, Halifax (CA) 2001 Result of selection : report & evaluation • Solution evaluation ORC integrated composite 1200 1100 1000 900 T(K) 800 MER : Hot = 36.8 kW Tpinch = 255 C Cold = 256.8 kW Fuel : 41.76 kW (-> 88%) curve (cycle cycle integration) Air preheating : 0.39 kW (-> 51C) Cooling water : 213.13 kW Others (ORC) -------------------------------------Mech. power Heat(kW) Wmec(kW) ORC 1 c6h6 : 157.6 21.6 ORC 2 r134a: 237.0 22.4 -------------------------------------Total : 44.0 (17%) 700 600 500 C6H6 400 R134a 300 200 -50 0 50 100 150 200 250 300 Q(kW) 2nd International Symposium on process integration, Halifax (CA) 2001 Conclusion • ORC allow to valorise industrial process waste heat – Efficiency of 7 to 17 % can be reached (according to process) – At the price of the system investment • 3 steps method for ORC integration into industrial processes – Minimum exergy losses for temperature levels – Thermodynamic based algorithm for fluid and T – MILP for ORC integration wi a holistic approach • Represent the competition with other technologies • Multi criteria evaluation -Multi-solution generation • " Preliminary step before (super-)structures thermo-economic optimisation – Time varying demand – Non linear optimisation required 2nd International Symposium on process integration, Halifax (CA) 2001 Integration of steam network 0.7 Example 51 Site scale integration T T T Total site representation Process 1 Process 2 Energy saving through process/process integration ignoring pockets with pockets FM_07/ 2000 Process 2 0.7 Example 51 Process 2 Process 1 site scale integration Energy saving through process/process integration ignoring pockets T T T with pockets Total site representation Process 2 Process 1 Process 2 Process Energy saving1through process/process integration ignoring pockets f lu eg ase s FM_07/ 2000 with pockets fuel H Role of the steam network Process 2 fuel C Cooling system f lu eg ase s Process 1 H Process 2 Process 1 4: Total site integration and steam network C Cooling system Process 1 Process 2 FM_07/ 2000 Figure 14: Total site integration and steam network Steam network model Constant T preheating ? Superheating ? What about using a gas turbine ? What about CHP ? From boiler HP T Source profile MP Sink profile LP Q FM_07/ 2000 Steam network fuel H Process 1 Cooling system C Process 2 FM_07/ 2000 Integrated Combined Heat and Power Balanced Grand Composite Curve T(K) 1000 Choose the pressure levels from Tv and Tc Estimate the CHP potential 900 using Carnot cycle approximation HT diagram of steam production ? 800 700 600 W =Ar ea * 80b VHP 1 Tv ( - ( T v - Tc) c 500 257 kJ 400 27.5b 266 kJ LP 3.3b HP 148 kJ MP 90 kJ 8.5b VMP 14.5b 300 200 100 0 Q(kJ) W(kJ ) 400 0 2000 4000 6000 HT diagram of condensation ? FM_07/ 2000 From the list of steam levels Generate a steam network superstructure With fixed steam qualities Pi, Ti => hi 1 Effects • Hot streams • Cold streams • Mechanical power Modelling Heat and mass balance Optimisation Minimum Cost Target Df14 A1 L1 DT12 DT13 Dc14 A2 2 L2 DT Dc24 23 A3 3 4 S1 Df24 S2 Df34 Dc34 S3 Ac4 Sc4 Vapor Condensate FM_07/ 2000 Effects in the steam network j-1 wij = min{ (hi - hj), ! wk(k+1) } k=i 1 wk(k+1) = ! {hk - his(Pk+1,s(Pk,hk))} where hk = h(k-1) -w(k-1)k if k = i+1,...,nv and hk = hi if k=i Df14 A1 L1 DT12 DT13 Dc14 A2 2 L2 DT23 Dc24 A3 3 Pi, Ti => hi Hot stream 700 600 T(K) De-superheating 550 S3 500 Vaporising 450 350 Preheating 300 Sc4 250 -2000 Condensing 450 Superheating 600 S2 Df34 Dc34 Cold stream 650 Ac4 4 500 700 Df24 400 650 550 S1 T(K) Mechanical power 0 2000 4000 6000 Q(kW) 8000 10000 400 350 Undercooling 300 250 -2000 0 2000 4000 6000 Q(kW) 8000 10000 12000 FM_07/ 2000 The steam network model Steam header model nco j-1 rj-1 Lj-1 + Aj + ! kij * DTij + ! Dfkj i=1 k=1 nv nco - ! DTji - ! Dcjk - Sj - Lj = 0 i=j+1 k=1 Where : hi - wij - hkj kij = hj - hkj hj-1 - hkj rj-1 = (1+ ) hj - hkj 1 4 DT13 Dc14 L1 DT12 A2 2 3 Df14 A1 L2 DT23 S1 Dc24 Pi, Ti => hi Df24 S2 Df34 A3 Dc34 S3 Ac4 Sc4 Condensate header model nv nco k-1 Drk-1+Ak + !Dcjk + ! Dfuk - !Dfki j=1 u=k+1 i=1 nv nv nv-1 - Sk - Drk - ! !{(kij - 1)*DTij} - !{(rj - 1) * Lj}= 0 i=1 j=i+1 j=1 FM_07/ 2000 12000 Targeting the optimal integration Minimise nw ! ( C1w yw + C2w fw ) + Celin Welin - Celex Welex + w=1 nco+nv nco+nv ! (C1ai yai + C2ai Ai) + ! (C1si ysi - C2si Si) i=1 i=1 Using Rk,yw,fw, Ai, yai, ysi, Si, Li, DTij, Dcij, ycij, Dfij, yfij Subject to nw nco nv nv nco n !fw qwk + ! !Dcij qcijk + ! !Dfij qfijk + ! Qik +Rk+1- Rk = 0 w=1 i=1 j=1 i=1 j=1 i=1 k=1,...,nk fminw yw " fw " fmaxw , fmincij ycij " Dcij " fmaxcij ycij , fminfij yfij " Dfij " fmaxfij yfij yw {0,1} Rk # 0 k=1,...,nk+1 R1 = 0, Rnk+1 = 0 nv-1 nv nco nv+nco 1 DTij wij - ! ! m Dfki *wpki a i=1 j=i+1 k=1 i=1 nv-1 nv nco nv+nco 1 Export ! ! DTij wij - ! ! m Dfki *wpki a i=1 j=i+1 k=1 i=1 Import ! ! + nw ! fw ww + Welin - Welex =0 w=1 nw + ! fw ww + Welin # 0 w=1 + Model of steam network FM_07/ 2000 Steam network integration Integrated composite curves of the steam network 1100 T(K) 1000 900 800 700 600 90b 500 30b 11b 6b 400 300 200 -1000 0 1000 2000 127 kW 3000 Q(kW) 4000 5000 6000 7000 436 kW FM_07/ 2000 Restricted matches : our goals • Targeting the Minimum Cost Energy Requirement taking into account the restricted matches – Energy penalty of the constraints ? – Cost of the energy penalty ? – Solve site scale problems – Find technological solutions to minimise the cost penalty of the restricted matches • choice of the heat transfer fluids • Before the HEN synthesis task – Start HEN synthesis with the complete list of streams FM_07/ 2000 The heat cascade a LP formulation mini m i s e Rk Rnk+1 Heat balance of a temperature interval nc nh Rk+1 + ! fi qik - Rk - ! fj qjk = 0 j=1 i=1 Rk " 0 ! ( R*k,Tk) k=1,...nk k=1,...nk+1 the MER heat cascade ( G r and composite curve) FM_07/ 2000 The constraints Accepted Matches Accepted Matches New variables Heat balance of a temperature interval nc nh Rk+1 + ! fi qik - Rk - ! fj qjk = 0 k=1,...nk j=1 i=1 Heat balance of a hot stream i in a restricted match ncai k=1,...,ki , i =1,...,nh ! Qijk + Rik - fi qik - Rik+1 = 0 j=1 Heat cascade of the cold stream j nh k=1,...,nk, j=1,...,nc ! Qijk " fj qjk i=1 Overall heat cascade nh k=1,...,nk ! Rik " Rk i=1 Rik ! 0 k=1,..., ki, i =1,...,nh ; Rik+1 = 0 when k ! ki ; Qijk ! 0 k=1,..., nk, i =1,...,nh, (1) (R1) (R2) (R3) j=1,...,nc FM_07/ 2000 Compute the energy penalty • Target the Minimum Cost Energy Requirement without constraints • Optimal heat cascade : R*k • Fix the flowrates • Add the restricted matches constraints • Solve the problem (P1) minimise Rnk+1 Rik , Qijk , Rk R nk+1 - R* nk+1 is the energy penalty • if penalty is acceptable goto HEN Synthesis • if not choose the heat transfer fluid FM_07/ 2000 Choose the heat transfer fluid nh Rok =& Rik i=1 Restricted matches cascade Energy MER penalty 4807 kJ 6810 kJ Grand composite curve 800 700 R hot 5250 kJ 600 Heat sink nh & Rik = Rk i=1 500 Process pinch point 400 Heat source 300 200 -6000 -4000 Rcold 15600kJ 2000 -2000 4000 6000 8000 10000 12000 FM_07/ 2000 Heat transfer fluid characteristics Process : Hot streams - - - Heat transfer fluid : cold stream - - - Heat transfer fluid hot stream Process : Cold streams Conditions to be satisfied by the heat transfer fluid 1) 2) 3) All the Rk must be positive (definition of the MER); Rnk+1 = R *nk+1 (no energy penalty is due to the use of the intermediate stream); Rok = Rk for all k =1,...,n k (the intermediate fluids solve the restricted matches constraints) FM_07/ 2000 Choose the heat transfer fluid Above the pinch point 900 T(K) Step 1 Step 2 Process GCC MER 4807 kJ RMC Rhot 5250 kJ 800 Step 3 New GCC MER 10057 kJ 700 Rhot 5250 kJ 600 Heat from hot stream 500 400 Heat to cold stream 300 200 Add cold stream Cold stream 0 2000 4000 0 2000 4000 Hot stream Q(kJ) 0 2000 4000 6000 8000 FM_07/ 2000 Choose the heat transfer fluid Hot streams Cold stream s 540 T(K) 520 Rcold 1560 kJ Rhot 5250 kJ 27.5 b 500 480 12 460 b 440 6 420 b 400 380 1.5 b Energy penalty if 1.5 b steam is used 360 -2000 -1000 0 100 0 200 0 Q(kJ) 300 0 400 0 500 0 600 0 Place the heat transfer fluid between Red and Blue lines FM_07/ 2000 Steam network and restricted matches fuel H Process 1 Cooling system C Process 2 FM_07/ 2000 Target the minimum cost of energy requirement • Add the heat transfer fluids – Hot and cold streams – Unknown flowrate • Use the MILP model – Heat cascade – Mechanical power balance – EMO models • Energy technologies • Heat transfer fluids or steam network – Restricted matches constraints • Objective function : Minimum Cost of Energy Fuels - Electricity - CHP - Investments FM_07/ 2000 Targeting the Minimum Cost Energy Requirement Minimise nw ! ( C1w yw + C2w fw ) + Celin Welin - Celex Welex w=1 Rk,yw,fw subject to nw n !fw qwk + ! Qik +Rk+1- Rk = 0 w=1 i=1 k=1,...,nk fminw yw " fw " fmaxw yw w=1,...,nw yw {0,1} Rk # 0 R1 = 0, Rnk+1 = 0 k=1,...,nk+1 Import Export nw ! fw ww + Welin - Welex=0 w=1 nw ! fw ww + Welin # 0 w=1 FM_07/ 2000 Evaluate the results Energy supplement Integrated composite curves 1100 T(K) 1000 Others Steam network 900 800 Heat transfer 700 600 Mechanical power 500 400 300 200 1000 Penalty 2000 3000 Q(kW) 4000 5000 6000 FM_07/ 2000 Example System with constraints MER : 4143,0 kW With steam network: 4560,0 kW CHP : 417,0 kWe (! = 100 %) System with constraints MER : Energy penalty : 10017,0 kW 5874,0 kW (142 % MER) System with constraints and steam network Steam network without modif. CHP : 6557,0 755,0 Energy penalty : 1659,0 Adapted steam network 4658,0 CHP : Energy penalty 418,0 97,0 kW kWe (! = 31 %) kW (40 % MER) kW kWe (! = 81 %) kW (2,3 % MER) FM_07/ 2000
© Copyright 2025