Pflanzenschutz-Nachrichten Bayer 60/2007, 1 71-84 How to achieve conformity with the dose expression and sprayer function in high crops H. Koch 1 Introduction The term dose indicates a specific quantity or amount of a substance and is in general use in medicine and plant protection. The form and size of dose is extremely important when carrying out and later assessing the field trials as well as for professional applications. Initially plant protection products (PPPs) are tested on a small scale, i.e. small plot field trials; later on a much larger and extensive scale, i.e. farms and orchards to determine the efficacy of the substances to protect crops against pests, weeds and diseases. The test results, collected and analysed over a period of several years, provide the information necessary for registration purposes. The data must reflect the prac- tical situation in the field. Only then, and after successful registration is the substance released for general use as a crop protectant. The registration process results in the label instructions, which are legally binding for the user. A clear understanding of all aspects of PPP dosing is needed in order to ensure consistency in decision making. Comparison of label instructions for PPPs authorised in different European countries reveal remarkable differences in dose expression (Table 1). While in arable crops the dose unit is kg or liter (L) per hectare ground area, different dose expressions are used in high crops. This is quite surprising as any application leads to effective initial deposits on the treated crop. The European and Mediterranean Plant Protection Organisation has Table 1: In high crops, recommended doses of plant protection products are expressed using different units throughout Europe. Country Crop Unit used for dose expression France Grapevine kg/ha Portugal, Greece, Grapevine g/100 L Spain, Italy, Switzerland Germany Grapevine kg/ha, differentiation according to growth stage Norway Fruit Germany Fruit kg per m crown height and hectare Switzerland Fruit kg or L per 10,000 m³ tree row volume Belgium Fruit kg or L per 10,000 m² leaf wall area kg per 100 m row length 71 72 Pflanzenschutz-Nachrichten Bayer 60/2007, 1 published the present dose units established in European countries for any kind of PPP application and lists the different possibilities for high crops without any preference or recommendation (EPPO, 2005). Discussion and harmonisation in European registration procedures is necessary in order to improve mutual data exchange for PPP registration and ensure complete and identical information for growers. Crop-adapted dosing of agrochemicals, i.e. dose adjustment, is discussed in many publications (Siegfried et al., 1995; Walklate et al., 2003; Furness, 2003; Godyn et al., 2005; Gil et al., 2005; Viret et al., 2005). These authors focus on the question how to adjust the product quantity to different canopy sizes and crop densities. The work is based on the concept that foliar application must result in similar deposits independent of crop size or canopy density. Dose expression models based on different dose units may lead to varying results and complicate dose adjustments. A consistent and generally applicable dose expression model requires the use of a single and distinct dose unit. It is necessary to discuss and deal with dose expression and dose adjustment as two related but distinct issues (see Frießleben et al., this issue, page 85). The focus of this paper is on the dose unit and a common dose expression model, while dose adjustment, i.e. the determination of a cropadjusted dose, will not be considered. 2 From hand held spray lances to machine operated sprayers Over a very long period PPPs were applied with hand held spray lances delivering a large spray volume, often beyond run-off. Dosing was in the form of a spray concentration and the label stipulated the quantity of the product required to prepare a certain concentration (%) in 100 L of water. The delivered spray volume was not considered or limited, meaning that the achieved hectare-rate was the result of the application and the individual behaviour of the person spraying. The maximum initial deposit of the applied PPP on the plant surface was directly related to the retention capacity of plants/leaves and the product concentration in the spray fluid (Koch and Weisser, 1998). It was limited by the retention capacity and the basic element to avoid phytotoxic reactions. Ground losses due to run-off from the canopy were not considered. The delivered spray volume and chemical quantity was unpredictable and depended very much on the operator and in consequence could vary by more than 100 %. Hand held spray lances are still in use, although today the majority of orchards and vineyards are sprayed with machine operated air blast sprayers. There are four major reasons why the spray concentration is not the appropriate dose form: 1. The applied water volume is far below the point of run-off and water is considered as the carrier for the product. 2. Reduction of the water volume means an increase in the concentration of the product in order to maintain the quantity at the original level. This shows that the concentration is no longer relevant as a dosing factor. 3. If machine operated sprayers are used, the water volume and the quantity of the product must be determined prior to the application. The sprayer must be calibrated. Pflanzenschutz-Nachrichten Bayer 60/2007, 1 4. A concentration does not comply with the definition of a dose as it does not relate the quantity to a treated unit. 3 Sprayer function – the calibration formula The key to the appropriate dose expression is the sprayer function which ensures delivery and distribution of a certain volume of spray liquid. In vineyards Water volume (L/10 000 m²) = and fruit plantations spraying machines are used. They have to be adjusted before application by checking flow rate and travel speed in relation to the intended spray volume. These dosing factors are described in the algorithm of the calibration formula. Any machine operated sprayer works according to the algorithm of the calibration formula (BBA, 2005): nozzle flow rate (L/min) × number of nozzles × 600 working width (m) × travel speed (km/h) This algorithm describes the functional principle of sprayers and is the mathematical background of spray computers. The factor 600 is needed to convert the different units. The formula must be in equilibrium for each single nozzle (Koch and Spieles, 1990; Koch et al., 1998) as well as for a spray boom as a whole. It is Fig. 1: The treated area is the virtual area defined as spraying height (see arrow) multiplied by spraying length (the distance travelled by the sprayer). It is independent of the presence or absence of a canopy. 73 74 Pflanzenschutz-Nachrichten Bayer 60/2007, 1 important to keep in mind that sprayers are calibrated and adjusted in absence of targets which shows the principle of indirect dosing in plant protection (Koch, 2005a). The rationale of the calibration formula is the relation of the spray volume to the area of 10,000 m² which is called the treated area (Koch, 2005b; Frießleben and Koch, 2005; Frießleben and Koch, 2006). The delivery and dosing process is independent of the presence of targets or a canopy, which is apparent when we consider that a sprayer does the same delivery work with or with out plants (Fig. 1). The virtual plane of 10,000 m² is the area parameter in the calibration formula. It is defined as the area that is over-sprayed by working nozzles and oriented between working nozzles and targets. Dosing in this sense comprises solely the delivery process which has to be considered apart from the processes of droplet transportation and particle distribution. The calibration formula applies independent of air assistance which of course would have an influence on these processes. 4 Definition of “treated area” As explained before, agrochemicals delivered with spraying machines are not dosed to individual plants or leaves but to a virtual treated area of 10,000 m². We need to keep in mind that the treated area is defined as the area between working nozzles and targets. In the situation of broadcast field spraying this area is identical to the hectare ground area. In many other situations the difference between ground area and treated area is easy to demonstrate. Band spraying (herbicides in sugar beet or orchards) is clearly not an application to the total hectare ground area, but just to a certain portion of it, revealing the difference between ground area and treated area. The working nozzles define the over-sprayed area. In the same way sensor-equipped sprayers illustrate that the treated area is defined by the area that is covered by working nozzles (Fig. 1 and 2). Sensor sprayers illustrate the principle: one nozzle – one band (Koch and Weisser, 2000). Each nozzle is aligned to a sprayed band or a distinct sector of the Fig. 2: Sensor-equipped sprayer for high crops demonstrating the sprayed band for each single nozzle: Treated area without sensor function is row length × canopy heigth (m²). Treated area with sensor function is reduced by sectors where the nozzles are closed. Pflanzenschutz-Nachrichten Bayer 60/2007, 1 treated area. In other words, the calibration formula applies for the individual nozzle as well as for the nozzle boom. Orchard and vineyard geometry is characterised by a fruit wall (Morgan, 1981) with application systems where the application is not directed to the ground but more or less horizontal or even upwards. The working nozzles overspray a vertically oriented plane defined by row length and spray swath height. The calibration formula does not contain any requirements about the orientation of nozzles and the spraying direction. This allows the interpretation that the sprayed area may be a horizontally oriented area as in the field sprayer situation or a vertically oriented area as in high crops. The following aspects show why the treated area is the relevant reference unit: • Different row distance means different ground area per unit row and results in varying PPP quantities per unit row when constant rates per hectare are assumed. • Row distance in grapevine usually varies between 1.60 m to more than 3 m, outlining the variation of spray time in a plantation (Fig. 3 and Tab. 2). In the Champagne, France, row distance can be as little as 1 m. • In vineyards grown on bench terraces with rows on contour lines the ground area is difficult to determine (Fig. 3). • A constant rate per hectare does not consider the variability of row distance and row length per hectare. • There is a relation between delivered product quantity per 10,000 m² treated area and mean deposits (ng/cm²) (Fig. 4). Fig. 3: Different row distances in vineyards (here examples from the Middle Rhine Valley, Germany) demonstrate the variation of row length and spray time per hectare ground area. The ground area of vineyards planted on bench terraces is a further aspect of row length variation. 75 Pflanzenschutz-Nachrichten Bayer 60/2007, 1 76 Table 2: Relation between row distance, spray time and spray volumes per hectare ground area in vineyards. Spray volume per hectare varies, but remains constant in relation to the leaf wall area (LWA). a Row distance (m) Row length/ha (m) Spray time/ha (min) Spray volume (L/ha) 1.7 1.8 2.0 2.2 3.0 5.800 5.500 5.000 4.500 3.000 58 55 50 45 30 421 400 363 327 218 Spray Leaf wall area, volume both sides (L/10,000 m² (m²/ha) LWA) a 6.960 6.600 6.000 5.400 3.600 605 606 605 605 605 the leaf wall is located between 80 and 200 cm above ground 2.5 Mean 90th percentile 10th percentile Initial deposit (ng/cm²) 2.0 1.5 1.0 0.5 0 0 50 100 150 200 250 300 350 400 450 500 550 600 650 Delivered dose rate (g/10,000 m² leaf wall area) Fig. 4: Relation between delivered dose rate (expressed in g/10,000 m² leaf wall area) and initial deposit (ng/cm²) on the lower leaf side of grapevines (26 deposit measurements). Regression lines represent the 10th and the 90th percentile and the mean of 120 individual leaf deposits per measurement. Pflanzenschutz-Nachrichten Bayer 60/2007, 1 This demonstrates: Row length is the relevant factor for travel distance and spray time, explaining varying product quantities per hectare ground area for crops of the same height. Row length and canopy height define the treated area (10,000 m² in the calibration formula). 5 Relation between product quantity (kg/10,000 m² treated area) and spray deposit (ng/cm² leaf surface) Measurements of deposits on the lower leaf side of grapevines are influenced by, among other things, plant variety, growth stage, and weather conditions, and are therefore highly variable, but a linear relation can be demonstrated between the product delivered per 10,000 m² treated area (leaf wall area) and measured deposits on leaves, expressed in ng/cm² (Fig. 4). The slope of the regression depends on the target-specific retention behaviour. The same relation can be observed in apple orchards (Koch and Weisser, 1995). treated area and resulting deposits in corresponding height zones which form the vertical overall distribution pattern. Single nozzle distribution measurements in orchards show that a uniform vertical distribution profile is the result of appropriate nozzle orientation (Koch et al., 1998) over the leaf wall extension. The vertical profiles in Fig. 5 show initial deposits on leaves over the canopy height between 50 and 180 cm above ground. On the left, the product quantity delivered to the upper leaf zone (120-180 cm) is much higher than in the grape zone (50-100 cm). This profile is the result of wrong nozzle orientation. With appropriate nozzle orientation, a uniform deposition targeted to the leaf wall height can be obtained (Fig. 5B). This example explains the dosing principle and illustrates that the product quantity delivered to a distinct canopy zone (expressed as kg/10,000 m²) subsequently determines the deposition (ng/cm²) in this zone. 7 Discussion 6 The vertical distribution profile over leaf wall height The explained concept relates the delivered dose to the treated area (kg/10,000 m²). The quantity of product which passes the treated area at a given position determines the deposits on targets behind the treated area (ng/cm²) as shown in Fig. 4. The calibration formula applies for a single nozzle as well as for the nozzle boom as a whole. Each nozzle covers a sprayed band and the vertical distribution pattern is composed of the bands created by the working nozzles. Sprayer configuration, here nozzle position and nozzle size, affect the delivered dose passing the Dose expression means the format of the product dose and does not consider the crop adapted determination of the product quantity. In Europe the PPP dose in high crops is expressed in different formats, using parameters such as product weight, spray liquid volume, row length, crown height, tree row volume or leaf wall area (see Table 1). This leads to confusion in testing, registration, label information and application. Problems arise from the relation of spray liquid volume, product quantity and ground area. The required dose in relation to the ground area is calculated and 77 Pflanzenschutz-Nachrichten Bayer 60/2007, 1 A B 180 Top zone 160 140 120 100 Grape zone Height (cm above ground) 78 80 60 40 Mean Sprayer side Opposite side Left side of leaf wall Right side of leaf wall 20 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Leaf deposit as a fraction of the dose applied to 10,000 m² leaf wall area (%) Fig. 5: Examples of vertical distribution profiles in grapevines demonstrating different levels of deposition as a result of different doses per 10,000 m² in corresponding height zones. Each dot represents a single leaf. Solid lines represent the running mean over height. A: Wrong nozzle orientation; more product is delivered to the upper leaf zone than to the grape zone. B: Correct nozzle orientation. used in field tests which usually are single row applications. The ground area is identified as treated row length multiplied with the row distance. While the row length determines spray time and delivered spray volume, the row distance is the most relevant factor for the application of PPP, because its variation leads to an altered product quantity. But in today’s orchard or vineyard applications the row distance is not considered. In different structured plantations constant dose rates per hectare ground area cannot result in constant deposits without re-adjusting the sprayer, especially the travelling speed and flow rate. The prevailing type of application of agrochemicals in Europe is foliar spray application. Spraying machines work according to the calibration formula and deliver the spray liquid to an area, called the treated area, which is defined as the virtual area between working nozzles and targets. Hence, the dosing process is an indirect process. Sprayers deliver the spray liquid containing the product to the treated area. Deposits on targets behind this treated area depend on the quantity of product Pflanzenschutz-Nachrichten Bayer 60/2007, 1 passing the treated area at each position. Uniform distribution at any position of the treated area is needed in order to achieve homogeneous deposits. Consequently, the volume of the spray liquid and product quantity should not be related to the ground area (expressed as kg or L/ha ground area) but to the leaf wall (kg or L/10,000 m² leaf wall area). Sprayer calibration and adjustment covers the determination of flow rate including nozzle selection, pressure adjustment and determination of travel velocity and working height for high crops. The introduction of the treated area related dose form would offer the following advantages: • A dose form which expresses the product quantity (in kg or L) in relation to the treated area (10,000 m²) would be consistent with any kind of spray application. It would apply to broadcast field spraying as well as to herbicide band spraying and to high crops as explained above. It would even be applicable in grapevine training systems like the pergola, where the crop is overhead and which is typical in Southern Tyrol, Italy. • The treated area oriented dose form recognises the necessities of sprayer function and sprayer calibration documented in the algorithm of the calibration formula. • It would allow a better exchange of data between EU member states. This aspect is of major importance with respect to expected EU regulations on mutual recognition of PPP authorisation. • It would allow a clear dose determination in single row situations as typical in PPP testing, like efficacy and residue trials or field tests on side effects on beneficial organisms. • It would allow growers to calibrate and adjust their sprayer consistent with product label instructions. • Growers would be able to compare their application results. • The advantage of standardised data leaves open any kind of necessary crop adjusted dose determination with respect to biological efficacy. Within the registration process the hectare ground area is established as a general reference unit. At present any dose/effect interpretation, analysis of residues, fate, risk, etc. is based on the quantity of active ingredient applied per hectare. It is necessary to ensure a link between the treated area related dose form needed for the professional user and the traditional ground area related dose form which is needed for authorisation purposes. A change from hectare rates to leaf wall rates would not cause problems in the decision making because it is easy to recalculate data from one dose form into the other one when the parameters row length per hectare and leaf wall height are documented. Considering the variation of relevant parameters of vineyard geometry (row length, canopy height) a constant hectare rate is not appropriate. Using constant hectare rates principally results in different deposits and effects. The proposed treated area related dose form offers consistency in PPP authorisation and agriculture. In field trials at present the product quantity is calculated in relation to the ground area which guarantees constant hectare rates independent of the variation of row distance and row length per ha. Depending on the row distance different quantities of the tested PPP are applied to a single row which leads to different deposits 79 80 Pflanzenschutz-Nachrichten Bayer 60/2007, 1 (ng/cm² leaf surface) as shown in Fig. 4. Growers treat vineyards, varying in row distance, without adapting travel speed and flow rate. This practice results in varying hectare rates but causes similar deposits as is concluded from the dosedeposit relation explained in Fig. 4. This evident difference could be solved by introducing the leaf wall related dose form. Future label instructions should provide growers with the following information: • Registered product quantity, e.g. 1 kg/ 10,000 m² treated area or leaf wall area. • Range of recommended water volume, e.g. 200 to 400 L/10,000 m² treated area or leaf wall area. Belgium has already converted the dose expression of PPP used in fruit production into kg or L/10,000 m² leaf wall area. More information can be obtained at www.phytoweb/fgov.be. 8 Summary How to achieve conformity with the dose expression and sprayer function in high crops In plant protection, a dose indicates a specific quantity or amount of a crop protectant. Dose expression means the unit in which this dose is expressed. For plant protection products which are authorised in European countries, different units are used in high crops such as: kg/ha, g/100 L, kg per 100 m row length, kg per meter crown height and ha, kg/ha adjusted with respect to growth stage, kg/10,000 m² leaf wall area or kg per unit tree row volume. It is proposed to harmonise the dose expression in accordance with sprayer function. The basic algorithm of the function of spraying machines is the cali- bration formula, demonstrating the indirect dosing process in plant protection. The sprayer delivers a certain volume of spray liquid to the so-called treated area, whereby sprayer function is expressed as L/10,000 m². The product quantity does not affect this process. The treated area is the virtual area between working nozzles and the canopy. The initial deposit on targets behind the treated area is correlated to the quantity of product passing the treated area. It would be consequential to define the dose unit for plant protection products in the same way and determine it as kg or L/10,000 m². Belgium has already converted the dose expression for products registered for orchards to the leaf wall area model. Standardization would improve the mutual recognition of data between registration authorities and presents an opportunity to improve and achieve a more efficient interpretation of test results and commercial applications. A standardised dose expression is a prerequisite for a sound and crop-adapted dose determination. This applies to the investigation of efficacy and residues as well as professional fruit and grapevine production. Zusammenfassung Wie kann die Dosiervorgabe in Raumkulturen in Übereinstimmung mit der Sprühgerätefunktion gebracht werden Im Pflanzenschutz meint der Begriff Dosis, oder Aufwandmenge, eine genaue Menge eines Pflanzenschutzmittels. Die Dosiervorgabe ist die Einheit, in der diese Dosis angegeben wird. Für Pflanzenschutzmittel, die in Europa in Raumkulturen zugelassen sind, werden sehr unterschiedliche Dosiervorgaben verwendet, Pflanzenschutz-Nachrichten Bayer 60/2007, 1 z. B. kg/ha, g/100 l, kg pro 100 m Reihenlänge, kg pro Meter Kronenhöhe und ha, kg/ha angepasst an Wachstumsstadien, kg/10.000 m² Laubwand oder kg bezogen auf das Kronenvolumen. Es wird vorgeschlagen, Dosiervorgaben zu vereinheitlichen. Als Grundlage wird die Gerätefunktion gesehen, die im Algorithmus der Dosiergleichung beschrieben ist und das Prinzip der indirekten Dosierung im Pflanzenschutz verdeutlicht. Pflanzenschutzgeräte bringen Spritzflüssigkeit auf die behandelte Fläche aus. Die Gerätefunktion wird in l/10.000 m² angegeben. Für diesen Prozess ist die Produktmenge unerheblich. Die behandelte Fläche ist die gedachte Fläche zwischen den geöffneten Düsen und dem Bestand. Der Initialbelag auf den Zielobjekten ist abhängig von der Stoffmenge, die die Behandlungsfläche durchtritt. Konsequenterweise sollte man die Dosiervorgaben bei Pflanzenschutzmitteln in gleicher Weise definieren und sie in kg oder l/ 10.000 m² ausdrücken. Belgien hat die Dosiervorgabe für Produkte im Obstbau bereits auf das Laubwandflächenmodell umgestellt. Eine Vereinheitlichung würde den Datenaustausch zwischen Zulassungsbehörden verbessern. Versuchsergebnisse und gewerbsmäßige Anwendungen könnten wesentlich besser verglichen werden. In diesem Sinne ist eine einheitliche Dosiervorgabe eine Voraussetzung für ein fundiertes Dosiermodell, mit dem man die tatsächlich in einer Behandlungssituation erforderliche Präparatemenge bestimmen kann. Das gilt gleichermaßen für das Versuchswesen bzw. die Mittelprüfung im Rahmen der Untersuchung von Wirksamkeit und Rückständen, wie auch insbesondere in der Praxis des Obst- und Weinbaus. Résumé Comment obtenir la conformité au niveau de l’expression des doses et de la fonction des pulvérisateurs dans les cultures hautes En protection des plantes, une dose indique une quantité spécifique d’un agent protecteur des cultures. Par expression des doses, on entend l’unité dans laquelle cette dose est exprimée. En ce qui concerne les produits de protection des plantes dont l’usage est autorisé dans les pays européens, on se sert d’unités différentes telles que: kg/ha, g/100 l, kg par rangée d’une longueur de 100 m, kg par mètre de hauteur de cime d’arbre et par ha, kg/ha ajusté en fonction du stade de croissance atteint, l/10.000 m² de surface de parois foliaires ou kg par volume unitaire de rangées d’arbres. Il est proposé d’harmoniser l’expression des doses selon la fonction des pulvérisateurs. L’algorithme fondamental de la fonction des pulvérisateurs est la formule d’étalonnage, démontrant le procédé du dosage indirect dans la protection des plantes. Le pulvérisateur distribue un certain volume de liquide à pulvériser sur la zone dite traitée, alors que la fonction du pulvérisateur est exprimée en l/10.000 m². La quantité de produit n’affecte pas ce procédé. La zone traitée est la zone virtuelle entre les jets en action et la cabine. Le dépôt initial sur les cibles, derrière la zone traitée, est lié à la quantité de produit traversant la zone traitée. Il serait conséquent de définir l’unité des doses pour les produits de protection des plantes de la même manière et de la déterminer en kg ou en l/10.000 m². La Belgique a déjà converti l’expression des doses selon le modèle de la surface des parois foliaires pour les produits homologués pour les vergers. La normalisa- 81 82 Pflanzenschutz-Nachrichten Bayer 60/2007, 1 tion devrait améliorer la reconnaissance mutuelle des données entre les autorités chargées de l’homologation; en outre, elle offre la possibilité d’améliorer et d’obtenir une interprétation plus efficace des résultats des tests et des applications commerciales. Une expression normalisée des doses est une condition requise pour une détermination des doses fiable et adaptée aux cultures. Cela s’applique à la recherche de l’efficacité et des résidus tout aussi bien qu’à la production professionnelle des fruits et des vignes. Resumen Cómo lograr conformidad con la expresión de dosis y función del aspersor en cultivos altos En protección de plantas, la dosis indica una cantidad específica de un protector de cultivo. La expresión de dosis significa la unidad en que esta dosis está expresada. Para los productos de protección de plantas que están autorizados en países europeos, se usan diferentes unidades en cultivos altos, tales como: kg/ha, g/100 l, kg por 100 m de surco, kg por metro de altura de copa y ha, kg/ha ajustado en función al estadio de crecimiento, l/10,000 m² de área de muro foliar o kg por unidad de volumen de surco de arbol. Se propone armonizar la expresión de dosis en acuerdo con la función del aspersor. El algoritmo básico de la función de las máquinas de aspersión es la fórmula de calibración, demostrando el proceso indirecto de dosificación en la protección de plantas. El aspersor entrega cierto volumen de caldo al tal llamado área tratada, donde la función del aspersor es expresada como l/10,000 m². La cantidad de producto no afecta a este pro- ceso. El área tratada es el área virtual entre las boquillas activas y la canopia. El depósito inicial sobre objetivos detrás del área tratada se correlaciona a la cantidad de producto que pasa por el área tratada. Sería consecuencial definir la unidad de dosis para productos de protección de plantas en la misma forma y determinarla en kg o l/10,000 m². Bélgica ya ha convertido la expresión de dosis para productos registrados para frutales al modelo de área de muro foliar. La standardización mejoraría el reconocimiento mutuo de datos entre las autoridades de registro y presenta una oportunidad para mejorar y obtener una interpretación más eficiente de los resultados de ensayo y de aplicaciones comerciales. Una expresión standardizada de dosis es un prerequisito para una determinación de dosis sana y adaptada al cultivo. Esto vale tanto para la investigación de eficacia y residuos como para la producción profesional de frutas y uvas. Резюме Как привести указание по норме расхода в пространственных культурах в соответствие с функцией устройства для опрыскивания В области защиты растений под дозой или нормой расхода понимают точное удельное количество средства защиты растений. Для средств защиты растений, допущенных в Европе к применению в пространственных культурах, оно указывается в весьма разных единицах измерения, например, кг/га, г/100 л, кг на 100 м длины ряда, кг на м высоты кроны и га, кг/га в увязке со стадиями развития растения, кг/10000 м2 лиственной стены или кг на объем кроны. Pflanzenschutz-Nachrichten Bayer 60/2007, 1 Предлагается унификация единиц измерения норм расхода. В качестве основы принимается функция устройства для опрыскивания, которая описывается в алгоритме уравнения дозировки и выражает принцип косвенной дозировки в защите растений. Устройствами для опрыскивания раствор препарата наносится на обрабатываемую поверхность. Функция этого устройства указывается в л/10000 м2. Количество продукта не имеет существенного значения для данного процесса. Обрабатываемая поверхность равна воображаемой поверхности между открытыми соплами и растениями. Первоначальный осадок препарата на целевых объектах зависит от количества вещества, проходящего через обрабатываемую поверхность. При последовательном подходе нормы расхода средств защиты растений следовало бы определять единым образом, выражая их в кг или л на 10000 м2. Бельгия уже перевела нормы расхода препаратов в плодоводстве на модель лиственной стены. Унификация способствовала бы обмену информацией между органами по лицензированию, обеспечивалось бы существенное улучшение сопоставления опытных результатов, хозяйственных аппликаций. В этом смысле единая единица измерения нормы расхода является предпосылкой для обоснованной дозировочной модели, позволяющей определение фактического количества препарата, требуемого в конкретной ситуации обработки. Это имеет большое значение как для опытных работ и испытания средств в рамках исследования действующих веществ и ос- татков, так и в практике плодовод-ства и виноградарстве. 9 References BBA (2005): Guideline for sprayer adjustment – sprayers used in vineyards (in German) http://www.bba.bund.de/cln_044/nn_925828/Share dDocs/10_FA/Publikationen/Pflanzenschutzgeraete/forschung/handhabungspruehgeraeteweinbau_ pdf.html EPPO (2005): Efficacy evaluation of plant protection products. Dose expression for plant protection products EPPO Bulletin 35, 563-566 Frießleben, R., Koch, H. (2005): Dose expression in plant protection product field testing in high crops – need for harmonisation Book of Abstracts 8th Workshop on Spray Application Techniques in Fruit Growing, Barcelona, 31-32 Frießleben, R., Koch, H. (2006): The need for international harmonization of dose rate expression in high crops with a special focus on viticulture (in German) Mitt. Biol. Bundesanstalt für Land- und Forstwirtschaft, 400, 167 Furness, G. O. (2003): Distance calibration and a new pesticide label format for fruit trees and grapevines in Australia Proceedings of the 7th workshop on spray application techniques in fruit growing, Cuneo, 29-297 Gil, E., Escobar, C., Planas, S., de Miquel, E. (2005): Pesticide dose adjustment in vineyard: Relationship between crop characteristics and quality of the application Book of Abstracts, 8th workshop on spray application techniques in fruit growing, Barcelona, 19-20 Godyn, A., Durochoski, G., Holownicki, R., Swiechowski, W. (2005): A method of verification of spray volume to crop structure Book of Abstracts, 8th workshop on spray application techniques in fruit growing, Barcelona, 11-13 Koch, H. (2005a): Indirect dosing – fundamental principle in pesticide application Book of Abstracts 8th Workshop on spray application techniques in fruit growing, Barcelona, 27-30 83 84 Pflanzenschutz-Nachrichten Bayer 60/2007, 1 Koch, H. (2005b): Single nozzle behaviour, sprayer function and unit of water volume and product dose in orchard spraying Annual Review of Agricultural Engineering of the Polish Academy of Sciences 4/1, 159-168 Koch, H., Weisser, P. (2000): Sensor-equipped orchard spraying – efficacy, savings and drift reduction Aspects of Appl. Biol. 57, 357-362 Koch, H., Weisser, P. (1998): Quantitative aspects of spray fluid retention Proc. IUPAC, 2D 024, IUPAC, 3.-7.8.1998, London Koch, H., Weisser, P. (1995): Principal aspects of spray liquid retention and initial deposit formation on targets in plant protection (in German) Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 102, 203-210. Koch, H., Weisser, P., Funke, H.-G., Knewitz, H. (1998): Characteristic of the distribution pattern of single nozzles in air assisted orchard spraying (in German) Nachrichtenblatt Deut. Pflanzenschutzd. 50, 30-36 Manuscript received: January 23rd, 2007 Koch, H., Spieles, M. (1990): Dosing of Plant Protection Products in fruit production with respect to training systems (in German) Erwerbsobstbau 32, 141-147 Morgan, N. (1981): Minimising pesticide waste in orchard spraying Outlook on Agriculture 10, 342-344 Siegfried, W., Holliger, E., Raisigl, U. (1995): Eine neue Methode zur Bestimmung der Brühe- und Präparatemengen im Obstbau (in German) Schweiz. Z. Obst-Weinbau, Heft 6/95, 144-147 Viret, O., Siegfried, W., Wohlhauser, R. (2005): Crop adapted spraying in viticulture. Leaf volume dependant fungicide dosage for a precise and ecological application Book of Abstracts, 8th workshop on spray application techniques in fruit growing, Barcelona, 23-26 Walklate, P. J., Cross, J. V., Richardson, G. M., Baker, D. E., Murray, R. A. (2003): A generic model of pesticide dose expression: Application to broadcast spraying apple trees Annals of Applied Biology 143, 11-23 Dr. Heribert Koch e-mail: heribert.koch@dlr.rlp.de Dienstleistungszentrum Ländlicher Raum Rheinhessen-Nahe-Hunsrück Rüdesheimerstr. 68 D-55545 Bad Kreuznach Germany
© Copyright 2025