Overview Introduction Theory Implementation Modifications Results Description of AdjointShapeOptimizationFoam and how to implement new cost functions Ulf Nilsson A project work in the course CFD with OpenSource software, taught by H˚ akan Nilsson. Chalmers University of Technology, Gothenburg, Sweden December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam December 10, 2013 1 / 40 Overview Introduction Theory Implementation Modifications Results Overview Ulf Nilsson I Introduction I Theory I Implementation I Modifications I Results adjointShapeOptimizationFoam December 10, 2013 2 / 40 Overview Introduction Theory Implementation Modifications Results Introduction Optimization in CFD I I Increased importance Optimization algorithm - I Simplex Evolution Strategies Gradient based ... Demanding - Number of variables - Constraints Ulf Nilsson adjointShapeOptimizationFoam December 10, 2013 3 / 40 Overview Introduction Theory Implementation Modifications Results Introduction Adjoint approach Ulf Nilsson I Gradient based method I Tool to compute sensitivity w.r.t. design variables I Well behaved objective function I Large number of design variables I Constraints, number of functions adjointShapeOptimizationFoam December 10, 2013 4 / 40 Overview Introduction Theory Implementation Modifications Results Optimization problem Objective function minimize J = J(v, p, α) (1) such that (v · ∇)v + ∇p − ∇ · (2νD(v)) + αv = 0, (2) ∇·v = 0. (3) I Gerneral cost function I Incompressible, steady state RANS equation I Porosity α I Topology optimization Ulf Nilsson adjointShapeOptimizationFoam December 10, 2013 5 / 40 Overview Introduction Theory Implementation Modifications Results Optimization problem Lagrangian relaxation Z minimize L := J + (u, q)RdΩ. (4) Ω I Lagrange multipliers, (u, q) I A penalty to violate the constraints I Adjoint velocity, u, and pressure, q I No physical meaning Ulf Nilsson adjointShapeOptimizationFoam December 10, 2013 6 / 40 Overview Introduction Theory Implementation Modifications Results Optimization problem Variations w.r.t. flow and design variables δL = δα L + δv L + δp L, (5) δv L + δp L = 0. I I I I (6) Total variation. Choose adjoint variables so that the variation with respect to flow variables vanishes. Equation of the adjoint variables and an expression for the sensitivity of L with respect to the porosity of each cell, derivations out of the scope of the project. Approximations needed to arrive at the adjoint equations. - Forzen turbulence. - Ducted flow specialization. I Integration by parts to arrive at volume contribution and boundary contribution. Ulf Nilsson adjointShapeOptimizationFoam December 10, 2013 7 / 40 Overview Introduction Theory Implementation Modifications Results Resulting equations Sensitivity ∂L = ui · vi Vi , ∂αi (7) I Expression for cell i I Vi the cell volume. I Equation of the adjoint variables and an expression for the sensitivity of L with respect to the porosity of each cell Ulf Nilsson adjointShapeOptimizationFoam December 10, 2013 8 / 40 Overview Introduction Theory Implementation Modifications Results Resulting equations Adjoint equations −2D(u)v = −∇q + ∇ · (2νD(u)) − αu − ∇·u= I ∂JΩ , ∂v ∂JΩ . ∂p (8) (9) Contribution from volumetric part of the cost function, JΩ . Ulf Nilsson adjointShapeOptimizationFoam December 10, 2013 9 / 40 Overview Introduction Theory Implementation Modifications Results Resulting equations Adjoint boundary conditions Wall and inlet boundary conditions ut = 0, (10) ∂JΩ , un = − ∂p n · ∇q = 0. (11) (12) Outlet boundary conditions q = u · v + un vn + ν(n · ∇)un + 0 = vn ut + ν(n · ∇)ut + ∂JΓ . ∂vt ∂JΓ , ∂vn (13) (14) December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 10 / 40 Overview Introduction Theory Implementation Modifications Results Resulting equations Adjoint boundary conditions v p Wall No-slip Zero gradient Inlet Prescribed value Zero gradient Outlet Zero gradient p=0 Table: Boundary conditions for the primal quantities v and p. I Only valid for specific primal boundary condition. I Contribution from both the volume and boundary part of the cost function, JΩ and JΓ respectively. I Eq. 13 and 14 used to calculate the adjoint pressure and tangential part of the adjoint velocity at the outlet. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 11 / 40 Overview Introduction Theory Implementation Modifications Results Resulting equations Summary of the theory I Introducing a Lagrange relaxation, with multipliers u and q. I Choice of adjoint variables gives adjoint equations and an expression for the sensititivity. I Lengthy derivations. I Approximations and requirements to ensure a valid method. I If the cost function satisfies Jω = 0 the dependence of J enters the solver only through the boundary conditions. I The optimization problem reduces to solving two flow equations, the primal and the adjoint. I When the sensitivity is calculated an algorithm is needed to update the porosity. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 12 / 40 Overview Introduction Theory Implementation Modifications Results Steepest descent algorithm Steepest descent pk = −∇f (xk ), (15) αn+1 = αn − ui · vi Vi δ. (16) I General search direction in the opposite direction of the gradient of the objective function. I Considering a linear problem a minimum will be found for small enough steps in the search direction. I Using the sensitivity, ∂L/∂α to update. I The step length δ. An optimization problem of its own. I Under relaxation and limits in the final implementation. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 13 / 40 Overview Introduction Theory Implementation Modifications Results Solver Solution procedure Main-loop Solve the primal system (v, p) “Frozen tubulence” Update the porosity Solve the adjoint system Steepest descent (u, q) Convergence assessment Converged End time or End convergence condition Figure 1: Block scheme of the solution procedure used in adjointShapeOptimizationFoam. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 14 / 40 Overview Introduction Theory Implementation Modifications Results Solver $FOAM SOLVERS/incompressible/ adjointShapeOptimizationFoam/ adjointShapeOptimizationFoam.C Let us study the implementation together, trying to identify the underlying theory we have covered so far. In the order it is implemented in the code. I Porosity update - Implementation of the steepest descent using under relaxation. - Correct? I The primal pressure-velocity SIMPLE corrector - How is the sink term implemented? I The adjoint pressure-velocity SIMPLE corrector - Is the current implementation done for objective functions with volumteric contribution (JΩ 6= 0)? December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 15 / 40 Overview Introduction Theory Implementation Modifications Results Solver Porosity update 94 95 96 a l p h a += mesh . f i e l d R e l a x a t i o n F a c t o r ( " alpha " ) ∗ ( min ( max ( a l p h a + lambda ∗ ( Ua & U) , z e r o A l p h a ) , alphaMax ) − a l p h a ) ; Listing 1: file adjointShapeOptimizationFoam.C αn+1 = αn (1 − γ) + γmin (max ((αn + ui · vi Vi δ) .0) , αmax ) , (17) December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 16 / 40 Overview Introduction Theory Implementation Modifications Results Solver Porosity update However the there seems to be an incorrect sign in the steepest descent implementation. The correct eq. and implementation should be αn+1 = αn (1 − γ) + γmin (max ((αn − ui · vi Vi δ) , 0) , αmax ) . 94 95 96 (18) a l p h a += mesh . f i e l d R e l a x a t i o n F a c t o r ( " alpha " ) ∗ ( min ( max ( a l p h a − lambda ∗ ( Ua & U) , z e r o A l p h a ) , alphaMax ) − a l p h a ) ; Listing 2: file adjointShapeOptimizationFoam.C December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 17 / 40 Overview Introduction Theory Implementation Modifications Results Solver Primal SIMPLE loop 103 104 105 106 107 108 109 110 111 112 113 114 // Momentum p r e d i c t o r tmp<f v V e c t o r M a t r i x > UEqn ( fvm : : d i v ( p h i , U) + t u r b u l e n c e −>d i v D e v R e f f (U) + fvm : : Sp ( a l p h a , U) ); UEqn ( ) . r e l a x ( ) ; s o l v e ( UEqn ( ) == −f v c : : g r a d ( p ) ) ; Listing 3: file adjointShapeOptimizationFoam.C December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 18 / 40 Overview Introduction Theory Implementation Modifications Results Solver Primal SIMPLE loop I fvm::Sp(alpha, U) Implicit implementation of the extra source term. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 19 / 40 Overview Introduction Theory Implementation Modifications Results Solver Adjoint SIMPLE loop 156 // A d j o i n t Momentum p r e d i c t o r 157 158 v o l V e c t o r F i e l d a d j o i n t T r a n s p o s e C o n v e c t i o n ( ( f v c : : g r a d ( Ua ) & U ) ) ; 159 // v o l V e c t o r F i e l d a d j o i n t T r a n s p o s e C o n v e c t i o n 160 // ( 161 // f v c : : r e c o n s t r u c t 162 // ( 163 // mesh . magSf ( ) ∗ ( f v c : : sn Grad ( Ua ) & f v c : : i n t e r p o l a t e (U) ) 164 // ) 165 // ) ; 166 167 zeroCells ( adjointTransposeConvection , i n l e t C e l l s ); 168 169 tmp<f v V e c t o r M a t r i x > UaEqn 170 ( 171 fvm : : d i v (− p h i , Ua ) 172 − adjointTransposeConvection 173 + t u r b u l e n c e −>d i v D e v R e f f ( Ua ) 174 + fvm : : Sp ( a l p h a , Ua ) 175 ); 176 177 UaEqn ( ) . r e l a x ( ) ; 178 179 s o l v e ( UaEqn ( ) == −f v c : : g r a d ( pa ) ) ; Listing 4: file adjointShapeOptimizationFoam.C December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 20 / 40 Overview Introduction Theory Implementation Modifications Results Solver Adjoint SIMPLE loop I Similar to the primal system. I No additional terms containing information about the cost function, i.e. current implementation treats cost functions of the type JΓ = 0 December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 21 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Adjoint boundary conditions The bad results when the sign in the steepest descent algorithm is changed indicates additional problems with the current solver. Since the actual solver seems to agree with the theory, what remains to be examined is the boundary conditions. First the boundary condition for a specific cost function need to be calculated. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 22 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Power dissipation Z J := − 1 (p + v 2 )v · n dΓ. 2 (19) Γ I Only boundary contribution. I Energy loss, due to pressure drop and kinetic energy. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 23 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Inlet boundary conditions ut = 0, un = − (20) ∂JΩ , ∂p n · ∇q = 0. ut un n · ∇q =( 0, = 0 vn (21) (22) at wall, at inlet, (23) = 0. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 24 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Inlet boundary conditions I Use existing conditions - Prescribed value - No slip - Zero-gradient I Could be useful to implement a inlet boundary condition for the adjoint velocity, if the velocity profile of the primal velocity at the inlet is not easily described. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 25 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Outlet boundary conditions q = u · v + un vn + ν(n · ∇)un + 0 = vn ut + ν(n · ∇)ut + ( q 0 ∂JΓ , ∂vn (24) ∂JΓ . ∂vt (25) = u · v + un vn + ν(n · ∇)un − 21 v 2 − vn2 , = vn (ut − vt ) + ν(n · ∇)ut . (26) December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 26 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Outlet boundary conditions I Use eq. 26 to prescribe a value to the adjoint pressure I Use eq. 26 to prescribe a value to the tangential component of the adjoint velocity ut = ν −∆ uneigh,t − vp,n vp,t , ν vp,n + ∆ (27) December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 27 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Implementation of pressure condition 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Member F u n c t i o n s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ // v o i d Foam : : a d j o i n t O u t l e t P r e s s u r e F v P a t c h S c a l a r F i e l d : : u p d a t e C o e f f s ( ) { i f ( updated ( ) ) { return ; } const f v s P a t c h F i e l d <s c a l a r >& p h i p = p a t c h ( ) . l o o k u p P a t c h F i e l d <s u r f a c e S c a l a r F i e l d , s c a l a r >("phi" ) ; const f v s P a t c h F i e l d <s c a l a r >& p h i a p = p a t c h ( ) . l o o k u p P a t c h F i e l d <s u r f a c e S c a l a r F i e l d , s c a l a r >("phia" ) ; const f v P a t c h F i e l d <v e c t o r >& Up = p a t c h ( ) . l o o k u p P a t c h F i e l d <v o l V e c t o r F i e l d , v e c t o r >("U" ) ; const f v P a t c h F i e l d <v e c t o r >& Uap = p a t c h ( ) . l o o k u p P a t c h F i e l d <v o l V e c t o r F i e l d , v e c t o r >("Ua" ) ; o p e r a t o r ==(( p h i a p / p a t c h ( ) . magSf ( ) − 1 . 0 ) ∗ p h i p / p a t c h ( ) . magSf ( ) + ( Up & Uap ) ) ; fixedValueFvPatchScalarField : : updateCoeffs ( ) ; } Listing 5: file adjointOutletPressureFvPatchScalarField.C December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 28 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Implementation of velocity condition 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Member F u n c t i o n s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ // // Update t h e c o e f f i c i e n t s a s s o c i a t e d w i t h t h e p a t c h f i e l d v o i d Foam : : a d j o i n t O u t l e t V e l o c i t y F v P a t c h V e c t o r F i e l d : : u p d a t e C o e f f s ( ) { i f ( updated ( ) ) { return ; } const f v s P a t c h F i e l d <s c a l a r >& p h i a p = p a t c h ( ) . l o o k u p P a t c h F i e l d <s u r f a c e S c a l a r F i e l d , s c a l a r >("phia" ) ; const f v P a t c h F i e l d <v e c t o r >& Up = p a t c h ( ) . l o o k u p P a t c h F i e l d <v o l V e c t o r F i e l d , v e c t o r >("U" ) ; s c a l a r F i e l d Un ( mag ( p a t c h ( ) . n f ( ) & Up ) ) ; v e c t o r F i e l d UtHat ( ( Up − p a t c h ( ) . n f ( ) ∗ Un ) / ( Un + SMALL ) ) ; v e c t o r F i e l d Uan ( p a t c h ( ) . n f ( ) ∗ ( p a t c h ( ) . n f ( ) & p a t c h I n t e r n a l F i e l d ( ) ) ) ; v e c t o r F i e l d : : o p e r a t o r =( p h i a p ∗ p a t c h ( ) . S f ( ) / s q r ( p a t c h ( ) . magSf ( ) ) + UtHat ) ; // v e c t o r F i e l d : : o p e r a t o r =(Uan + UtHat ) ; fixedValueFvPatchVectorField : : updateCoeffs ( ) ; } Listing 6: file adjointOutletVelocityFvPatchVectorField.C December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 29 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Analyzing the implementation Listing 5 gives an implementation of the pressure condition according to q = (un − 1)vn + u · v. (28) 1 q = u · v + un vn + ν(n · ∇)un − v 2 − vn2 , 2 (29) compare to Listing 6 gives an implementation of the velocity condition according to up,t = vp − vp,n . up,n + SMALL (30) compare to ut = ν −∆ uneigh,t − vp,n vp,t , ν vp,n + ∆ (31) December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 30 / 40 Overview Introduction Theory Implementation Modifications Results Boundary conditions of the adjoint variables Analyzing the theory I Not equal to the theory. I Another cost function, total pressure loss. I Approximations or derivations done makes the cost function hard to identify. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 31 / 40 Overview Introduction Theory Implementation Modifications Results Analyzing the theory I Changing the sign of the steepest descent implementation. I Implementing the cost functions according to derived equations. December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 32 / 40 Overview Introduction Theory Implementation Modifications Results Adjoint pressure boundary condition I I Similar to the existing implementation A few additional terms - Velocity in the neighbouring node - Effective viscosity const s c a l a r F i e l d & d e l t a i n v = p a t c h ( ) . d e l t a C o e f f s ( ) ; // d i s t a n c e ˆ( −1) between p a t c h and n e i g h b o u r i n g node . // c r e a t e t h e o b j e c t n e e d e d t o g e t t h e v i s c o u s i t y : const i n c o m p r e s s i b l e : : RASModel& r a s M o d e l = db ( ) . l o o k u p O b j e c t <i n c o m p r e s s i b l e : : RASModel>(" RASProperties " ) ; // n u e f f from t h e t u r u l e n c e model , r a s M o d e l : s c a l a r F i e l d n u e f f = rasModel . nuEff ( ) ( ) . boundaryField ( ) [ patch ( ) . index ( ) ] ; // N e i g h b o u r i n g node ’ s v e l o c i t y ( n o r m a l component ) : s c a l a r F i e l d U a n e i g h n = ( Uap . p a t c h I n t e r n a l F i e l d ( ) & p a t c h ( ) . n f ( ) ) ; Listing 7: file myAdjointOutletVelocityFvPatchVectorField.C December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 33 / 40 Overview Introduction Theory Implementation Modifications Results Adjoint velocity boundary condition I Vector fields instead of scalar fields // p a t c h I n t e r n a l F i e l d t o g e t t h e a d j o i n t v e l o c i t y o f n e i g h b o u r i n g node . v e c t o r F i e l d U a n e i g h = Uap . p a t c h I n t e r n a l F i e l d ( ) ; // I t s t a n g e n t i a l and n o r m a l components v e c t o r F i e l d Uaneigh n = ( Uaneigh & normal )∗ normal ; v e c t o r F i e l d Uaneigh t = Uaneigh − Uaneigh n ; Listing 8: file myAdjointOutletVelocityFvPatchVectorField.C December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 34 / 40 Overview Introduction Theory Implementation Modifications Results Case settings The boundary conditions of the primal and adjoint variables are set according to the table below. More detailed information and m4 script of the “box” example case can be found in the provided files. u q Wall Prescribed value, 0 Zero gradient Inlet Prescribed value, un = vn Zero gradient Outlet adjointOutletVelocityPower adjointOutletPressurePower December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 35 / 40 Overview Introduction Theory Implementation Modifications Results Power dissipation pitzDaily porosity field December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 36 / 40 Overview Introduction Theory Implementation Modifications Results Power dissipation pitzDaily value of the objective function 0.006 ”valueObjFunc.xy” 0.005 J 0.004 0.003 0.002 0.001 0 0 500 1000 1500 2000 2500 3000 Iteration step December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 37 / 40 Overview Introduction Theory Implementation Modifications Results Power dissipation pitzDaily value of the objective function, without porosity update 0.006 ”valueObjFunc.xy” 0.005 J 0.004 0.003 0.002 0.001 0 0 500 1000 1500 2000 2500 3000 Iteration step December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 38 / 40 Overview Introduction Theory Implementation Modifications Results Power dissipation Pipe bend example December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 39 / 40 Overview Introduction Theory Implementation Modifications Results Power dissipation Thank you for listening! Questions December 10, 2013 Ulf Nilsson adjointShapeOptimizationFoam 40 / 40
© Copyright 2025