1. Optical properties 2. How to measure optical properties 4. Complex tissues

Origins of optical
contrast in tissues
Steven L. Jacques
jacquess@ohsu.edu
http://omlc.ogi.edu
Depts. of Biomedical Engineering and
Dermatology
Oregon Health & Science University, Portland OR, USA
1. Optical properties
2. How to measure optical
properties
3. Light transport
4. Complex tissues
Optical transport
in tissues
• Primary unscattered light
- coherence, polarization
• Secondary multiply scattered light
- transition to diffusion
- diffusion of light
Monte
MonteCarlo
Carlosimulation
simulation
of
ofphoton
photonmigration
migration
air
tissue
5mmx5mm
esophagus @ 630 nm wavelength
1
µ s (1-g) = 1 mm
Monte Carlo
W
cm2
per W
incident
power
z [mm]
r [mm]
1
µ s (1-g) = 1 mm
W
cm2
per W
incident
power
z [mm]
r [mm]
optical fiber
in scattering
medium
1
µs(1-g)
2
Irradiance E [W/cm ]
Α1
E
Α1 Α 2
E
θ
A1 = A2 cos θ
Fluence rate F
2
[W/cm ]
mirror
E
mirror
Estd
Pdetected.std
F
P
+ milk/ink
Clear water
add water to match
front boundary
+matching
0.56 mm]
Simple 1-D approximation that applies
to a broad flat-field beam of
irradiance (Eo [W/cm2])
The backscatter term k [dimensionless]
k
To a first approximation, the total diffuse reflectance Rd
behaves as if there were a single pathlength L = 7δ for
photons, where δ is 1/e the optical penetration depth.
Rd
≈ e−Aδµ a = e
total
−
A
3(1+N ' )
1
0.9
A=7
A=8
0.8
€
0.7
R total
0.6
0.5
0.4
0.3
0.2
0.1
-2
10
0
10
2
10
N' = µs'/µa
4
10
6
10
Residuals
0.05
0
-0.05 -2
10
0
10
2
10
N' = µ '/µ
s
a
4
10
6
10
Fluence rate = speed of light x photon concentration
F=cC
[cm / s])(44 ps)
ps)
(c [cm/s])(44
2
-2
cm
11W
W / cm
€
1 cm
1 cm
1 cm
En λ
= 1.1×1010 photons / cm 3
Cph =
c hc
En λ 1000
=
= 1.8×10−13 moles / liter
c hc N av
for λ = 488 nm, n = 1.33
€
fluence rate
concentration
F =
= ccC
C
F
[W cm-2]
[J cm-3]
[cm/s]
speed of light
time-resolved diffusion
diffusivity,
C(r
C(r,t),t)== UU
oo
[J cm-3]
[J]
χ = cD [cm2/s]
2
r
2
−r
/(4cDt ) )
exp
(e 4cDt
3/ 2
(4(4!cDt)
πcDt)3/2
[cm-3]
Fick’s 1st Law of diffusion
∂C
J = −χ
∂x
Diffusivity
[cm2/s]
€
χ = cD
1 1
D=
'
3 µa + µs
Fick’s 2nd Law of diffusion
2
∂ C
∂C
=χ x
∂t
∂x
€
time-resolved fluence rate
2
−r /(4cDt
)
r2
exp ()
−µ a ct
4cDt
F(r,t) = c Uo o
3 /exp(-µ
2
act)
(4!cDt)3/2
e
F(r ,t) = cU
(4 πcDt)
[W cm-2] [cm/s][J]
[cm-3]
C(r,t)
e
absorption
F(r,t)
F(r,t)
radiant exposure
∞
H(r) =
∫
H(r) =
∞
F(r,t) dt
∫
c C(r,t) exp(-µ ct) dt
a
0
0
[J cm-2]
€
[W cm-2]
−r /δ
[s]
exp(- µea/D r)
H
(r
)
=
U
o
= Uo
2
4!Dr
4 πµ aδ r
€
frequency
[W]
[J] [s-1]
P=U f
Po = Uo f
o
€
in the limit
ff ∅
→∞∞
00
Uo ∅
U
→
o
steady-state fluence rate
−r /δ
e
exp(- µa/D r)
F(r
)
=
P
F(r) = Po o 4 πDr
4!Dr
[W cm-2] [W]
€
[cm-2]
F(r)
F(r)
Frequency-domain Diffusion Theory:
Isotropic point source in infinite medium
source: f = 400 MHz, So = 1 W, Mo = 1.0
medium: µa = 1.0 cm-1, µs(1 - g) = 10.0 cm-1, nt = 1.33
S(t) = S0 (1+ M 0 sin(ωt))


e −2rk "
F(r ,t) = S0  Tss(r )+ M 0
sin(ωt − k'r )
4 πDr


€
= S0Tss(r )(1+ M 0 e −r (2k "−1/δ ) sin(ωt − k'r ))
e −r /δ
Tss(r ) =
4 πDr
€
Modulation M = M 0e−r(2k"−1/δ )
€
Phase
€
P = k'r
where
1/ 2


2 1/ 2


1 
ω 
k" =
1+ 
+ 1


δ 2   µ a c  



2 1/ 2
1   ω  
k' =
1+ 
  −


δ 2   µ ac  

€
where
a
=
cos( b)
δ
1/ 2
a

1
=
sin( b)

δ

2 1/ 4
 

ω

a = 1+ 

  µ c 
a


 ω 
1
b = arctan

2
 µ ac 
ω
µ ac
€
= #cycles per photon lifetime
Origins of optical
contrast in tissues
Steven L. Jacques
jacquess@ohsu.edu
http://omlc.ogi.edu
Depts. of Biomedical Engineering and
Dermatology
Oregon Health & Science University, Portland OR, USA
1. Optical properties
2. How to measure optical
properties
3. Light transport
4. Complex tissues