US008538778B2 (12) Ulllted States Patent (10) Patent N0.: Neville (54) (45) Date of Patent: METHODS AND SYSTEMS FOR 6,423,503 B1 INTEGRATED HEALTH SYSTEMS 6,807,531 B1 6,871,171 B1 , (75) Inventor: . . 7,211,397 B2 Thomas Neville, Incl1neV1llage, NV (Us) (73) Assignee: Soar BioDynamics, Ltd., Incline Village, NV (Us) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 477 days. (22) Filed, Mikola'c 7,593,913 B2 9/2009 Wang et al. k et al. 5/2003 Ban et al. 2003/0133903 A1 7/2003 Dang et a1. 2004/0044546 A1 * 3/2004 Moore ............................ .. 705/2 (Continued) FOREIGN PATENT DOCUMENTS EP 1399868 EP 1842139 12/2002 8/2006 (Continued) OTHER PUBLICATIONS _ _ Carter, H.B. et al., “Detection of life-threatening prostate cancer with Pnor Pubhcatlon Data Us 2010/0049546 A1 Feb 25’ 2010 prostate-speci?c antigen velocity during a Window of curability,” Journal ofthe National Cancer Institute 98(2l):l52l-l527 (2006). (Connnued) Provisional application No. 61/053,600, ?led on May Primary Examine?’ * Robert Morgan 15, 2008. Assistant Examiner * Charles P Coleman Int. Cl- (74) Attorney, Agent, orFirm * Wilson Sonsini Goodrich & Rosati G06Q 50/00 (2012.01) (52) US. Cl. (57) UISPC ......... .... ...... ... ............................. .. 705/3; 705/2 (58) 5/2007 2003/0101075 A1 Related US. Application Data (60) 7/2002 Mikolajczyk et al. 10/2004 Kanal 3/2005 Agur et al. 12/2008 Saidi eg a?’ May 15, 2009 _ Sep. 17, 2013 7,467,119 B2 (21) Appl. No.: 12/466,684 (65) US 8,538,778 B2 Fleld of Classl?catlon Search USPC for integrated healthcare. As the amount of medical informa .... ..~ ............................................ 705/2, 3 See apphcanon ?le for Complete Search hlstory' becomes more and more important to extract meaningful References Cited conclusions from the information. Statistical and computa tional methods are described herein that have been created for U.S. PATENT DOCUMENTS 5,501,983 A 3/1996 Liljaet a1. 5,594,638 A 5,660,176 A 5,937,387 A 5,989,811 A * 6,108,635 A the methods and systems for integrated healthcare. For example, a computer system is described extracts signi? 1/1997 Iliff 8/1997 Iliff 8/1999 Summerellet a1. 11/1999 non increases rapidly, including information from multiple biomarkers, analysis and management of that information _ (56) ABSTRACT Methods’ business methods’ and Systems are provided herein cance over time of PSA and fPSA biomarker tests for prostate health. Veltriet a1. ................ .. 435/614 50 Claims, 54 Drawing Sheets 8/2000 Herren et al. Treatment Timing System Flow Chart Probabilities and Early Warning from Dynamic Snmning Personal4 Pro?le Treatment Options Trsalmenl Estimate Cancer Cure Ratlo Treatment Side Effects Summarize Results Tlmlng Decisions Blopsy and Treatment Pathology Report ‘ Treatment Lead Tlml New BMW US 8,538,778 B2 Page 2 (56) Stephenson, A.J. et al., “Prostate cancer-speci?c mortality after radi cal prostatectomy for patients treated in the prostate-speci?c antigen era,” J Clin Oncol 27(26):4300-5 (2009). Stephenson, A.J. et al., “Preoperative nomogram predicting the References Cited U.S. PATENT DOCUMENTS 2004/ 0087635 A1 2004/0092807 A1 2004/0172225 2004/0243362 2005/0165285 2005/0282199 2006/0051836 2006/0088894 2006/0218010 2006/0269921 2007/0005257 2008/0033253 2008/0045811 2008/0228043 2008/0228735 2009/0006133 2009/ 0047694 2009/0054740 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 2009/0062624 A1 2009/0087860 2009/0088981 2009/0187420 2010/0168621 2012/0259555 A1 A1 A1 A1 A1 5/ 2004 Hammarsten 5/2004 Breskin et al. 9/2004 12/2004 7/2005 12/2005 3/2006 4/2006 9/2006 11/2006 1/2007 2/2008 2/2008 9/2008 9/2008 1/2009 2/2009 2/2009 3/2009 4/2009 4/2009 7/2009 7/2010 10/2012 Hochberg et al. Liebman Iliff Slawin et al. Tang et al. Wright et al. Michon et al. Segara et al. Cheng et al. Neville Iliff Kenedy et al. Kenedy et al. Weinert et al. Shuber Gudmundsson et al. 10-year probability of prostate cancer recurrence after radical prostatectomy,” J Natl Cancer Inst 98(10):715-7 (2006). Vickers, A.J. et al., “Prostate-Speci?c Antigen Velocity for Early Detection of Prostate Cancer: Result from a Large, Representative, Population-based Cohort,” Eur Urol (Aug. 7, 2009). US. Appl. No. 11/431,248, ?led May 9, 2006. US. Appl. No. 11/431,119, ?led May 9,2006. U.S. Appl. No. 11/431,157, ?led May 9,2006. U.S. Appl. No. 11/431,156, ?led May 9,2006. U.S. Appl. No. 60/914,125, ?led Apr. 26 2007. International search report dated Jan. 18, 2010 for PCT Application No. US2009/44246. D’Amico, et al. Identifying patients at risk for signi?cant versus clinically insigni?cant postoperative prostate-speci?c antigen fail 600/300 Neville ....................... .. 600/300 No. US2009/069302. Todd et al. Neville Hancock et al. Neville Neville Brant, et al. Screening for prostate cancer by using random-effects models. J. R. Statist. Soc. A (2003) 166, Part 1, pp. 51-62. Gaynor, et al. On the use of cause-speci?c failure and conditional. Journal ofthe American Statistical Association. 1993; 88(422):400 FOREIGN PATENT DOCUMENTS EP WO WO WO WO WO WO 1939777 WO-02-09568 WO-2005-119582 WO-2007-035766 WO-2007-123914 WO-2008-109797 WO-2009-050643 A1 A2 A2 A1 A1 ure. J Clin Oncol. Aug. 1, 2005;23(22):4975-9. International search report dated Apr. 22, 2010 for PCT Application 7/2008 2/2002 12/2005 3/2007 11/2007 9/2008 4/2009 409. Kwiatkowski, et al. In prostatism patients the ratio of human glan dular kallikrein to free PSA improves the discrimination between prostate cancer and benign hyperplasia within the diagnostic “gray zone” of total PSA 4 to 10 ng/mL. Urology. Sep. 1998;52(3):360-5. Dutkiewicz, et al. Serum PSA levels at 6 month after surgery, TURP or DoXazosin therapy for BPH. Dutkiewicz et al. Database Medline AN 1997243195. Mater Med Pol. Apr.-Jun. 1996;28(2):69-70. (abstract only). Fitzpatrick, et al. PSA measurement in the treatment of BPH. BJU OTHER PUBLICATIONS D’Amico, A.V. et al., “Preoperative PSA velocity and the risk of death from prostate cancer after radical pro statectomy,” N Engl J Med Int. Mar. 2004;93 Suppl 1:2-4. Hara, et al. Application of serum PSA to identify acute bacterial prostatitis in patients with fever of unknown origin or symptoms of Efstathiou, J .A. et al., “Prostate-speci?c antigen-based serial screen acute pyelonephritis. Prostate. Sep. 1, 2004;60(4):282-8. Stoltzfus, JC. Logistic regression: a brief primer. Acad Emerg Med. Oct. 2011;18(10):1099-104. doi: 10.1111/j.1553-2712.2011.01185. ing may decrease prostate cancer-speci?c mortality,” Urology X. 68(2):342-7 (2006). Wang, et al. Effects of antibiotic and anti-in?ammatory treatment on serum PSA and free PSA levels in patients with chronic prostatitis 351(2): 125-35 (2004). Han, M. et al., “Biochemical (prostate speci?c antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer,” J Urol 169(2):517-23 (2003). Kaplan, S.A. et al., “Combination therapy with doXazosin and ?nasteride for benign prostatic hyperplasia in patients with lower urinary tract symptoms and a baseline total prostate volume of 25 ml or greater,” J Urol 175 (1): 217-20 (2006). Martin, N.E. et al., “The in?uence of serial prostate-speci?c antigen (PSA) screening on the PSA velocity at diagnosis,” Cancer IIIA. Database Medline, AN 2006579735 (National Journal of Andrology, 2006, vol. 12, No. 9, pp. 787-790), Zhonghua Nan Ke Xue. Sep. 2006;12(9):787-90. (abstract only). Boddy, et al. Intra-individual variation of serum prostate speci?c antigen levels in men with benign prostate biopsies. BJU Int. Apr. 2004;93(6):735-8. Bruun, et al. Assessment of intra-individual variation in prostate speci?c antigen levels in a biennial randomized prostate cancer screening program in Sweden. Prostate. Nov. 1, 2005;65(3):216-21. 113(4):717-22 (2008). Kobayashi, et al . Intraindividual variation in total and percent free Mochtar, C.A. et al., “Prostate-Speci?c Antigen as an Estimator of Prostate Volume in the Management of Patients with Symptomatic prostate-speci?c antigen levels in prostate cancer suspects. Urol Int. Benign Prostatic Hyperplasia,” European Urology44:695-700 Komatsu, et al. Physiologic (intraindividual) variation of serum pros tate-speci?c antigen in 814 men from a screening population. Urol ogy. Mar. 1996;47(3):343-6. (2003). Mochtar, CA et al., “Prognostic role of prostate-speci?c antigen and prostate volume for the risk of invasive therapy in patients with benign prostatic hyperplasia initially managed with alpha1 -blockers and watchful waiting,” Urology. Feb. 2005; 65(2): 300-5. Mochtar, CA et al., “PSA velocity in conservatively managed BPH: can it predict the need for BPH-related invasive therapy?” Prostate. Sep. 15, 2006;66(13):1407-12. Ng, M.K. et al., “Prostate-speci?c antigen (PSA) kinetics in 2005;74(3):198-202. Lujan, et al. Prostate speci?c antigen variation in patients without clinically evident prostate cancer. J Urol. Oct. 1999;162(4):1311-3. Morote, et al. Intraindividual variations of total and percent free serum pro static-speci?c antigen levels in patients with normal digital rectal examination. Eur Urol. Aug. 1999;36(2):111-5. Nixon, et al. Day to day changes in free and total PSA: signi?cance of biological variation. Prostate Cancer Prostatic Dis. Dec. untreated, localized prostate cancer: PSA velocity vs PSA doubling 1997;1(2):90-96. time,” BJU Int (Oct. 16, 2008). O’Brien, M.F. et al., “Pretreatment prostate-speci?c antigen (PSA) Yan. Intraindividual variation of prostate speci?c antigen measure ment and implications for early detection of prostate carcinoma. velocity and doubling time are associated with outcome but neither Cancer. Aug. 15, 2001;92(4):776-80. improves prediction of outcome beyond pretreatment PSA alone in patients treated with radical prostatectomy,” J Clin Oncol Bartsch, et al. Tyrol Prostate Cancer Demonstration Project: early detection, treatment, outcome, incidence and mortality. BJU Int. Apr. 27(22):3591-7 (2009). 2008;101(7):809-16. US 8,538,778 B2 Page 3 Carter, et al. Longitudinal evaluation of prostate-speci?c antigen Partin, et al. Evaluation of serum prostate-speci?c antigen velocity levels in men with and without prostate disease. JAMA. Apr. 22-29, after radical prostatectomy to distinguish local recurrence from dis 1992;267(16):2215-20. tant metastases. Urology. May 1994;43(5):649-59. Carter, et al. Prostate-speci?c antigen velocity risk count assessment: a new concept for detection of life-threatening pro state cancer during window of curability. Urology. Oct. 2007;70(4):685-90. Carter, et al. PSA velocity for the diagnosis of early prostate cancer. A new concept. Urol Clin North Am. Nov. 1993;20(4):665-70. Fang, et al. Low levels of prostate-speci?c antigen predict long-term Pearson, et al. Longitudinal analysis of serial measurements of free and total PSA among men with and without prostatic cancer. Urol ogy. Dec. 1996;48(6A Suppl):4-9. Pearson, et al. Mixed-effects regression models for studying the natural history of prostate disease. Stat Med. Mar. 15-Apr. 15, risk of prostate cancer: results from the Baltimore Longitudinal 1994;13(5-7):587-601. Study ofAging. Urology. Sep. 2001;58(3):411-6. Schroder, et al. Early detection of prostate cancer in 2007. Part 1: PSA Freedland, et al. Risk of prostate cancer-speci?c mortality following and PSA kinetics. Eur Urol. Mar. 2008;53(3):468-77. Epub Nov. 5, biochemical recurrence after radical prostatectomy. JAMA. Jul. 27, 2007. 2005;294(4):433-9. Thiel, et al. Role of prostate-speci?c antigen velocity in prediction of Freedland, et al. Time to pro state speci?c antigen recurrence after ?nal pathologic stage in men with localized prostate cancer. Urology. radical prostatectomy and risk of prostate cancer speci?c mortality. J Urol. Oct. 2006;176(4 Pt 1):1404-8. Loeb, et al. PSA doubling time versus PSA velocity to predict high U.S. Appl. No. 13/429,641, ?led Mar. 26, 2012, Neville. U.S. Appl. No. 13/454,058, ?led Apr. 23, 2012, Neville et al. May 1997;49(5):716-20. risk prostate cancer: data from the Baltimore Longitudinal Study of Aging. Eur Urol. Nov. 2008;54(5):1073-80. Epub Jul. 2, 2008. * cited by examiner US. Patent Sep. 17, 2013 US 8,538,778 B2 Sheet 1 0f 54 Treatment Timing System Flow Chart Probabilities and Early Warning from Dynamic Screening Personal Pro?le lnput Relevant Information + Treatment Select Treatment Options + Select Years of Early Warning Project Treatment Timing Treatment Effectiveness , Estimate Cancer Cure Ratio Project Probability of Death Project Probability of Progressing Cancer Treatment Side Effects Estimate Side Effect Risks Calculate Life Score Impacts Calculate Life Score Summarize Results Timing Decisions + Biopsy and Treatment Pathology Report Treatment 41' Lead Time New Biopsy FIG. 1 US. Patent Sep. 17, 2013 Sheet 2 0f 54 US 8,538,778 B2 Probability of Progressing Cancer and Cure Ratio i Treatment Life Timing —> Scenarios Personal Outcome Simulator 4- Pro?le i Life Score Graphs for Timing Scenarios 2 Maximum Life Score SLciofre -- Life Score 0 Treatment Biopsy -7 -6 4 -3 -2 -5 Confined Progression -1 O 1 2 3 4 5 6 Penetrating Progression Years Before (-) and After Transition Point (+) 3 US. Patent Sep. 17, 2013 US 8,538,778 B2 Sheet 3 0f 54 Minimum Life Score impact SLIcmiopfraect WWmSide Effects LS Impact —Cancer Death LS impact —-—Totai Life Score Impact 0 Treatment Biopsy -6 -5 -4 -3 —2 Confined Progression —1 O 1 2 3 4 5 Penetrating Progression Years Before (-) and After Transition Point (+) FIG. 4 US. Patent Sep. 17, 2013 Sheet 4 0f 54 US 8,538,778 B2 Dynamic Screening System Experience a of Other Men‘ lndividual Results: 1 Individual Diagnosis of: . Biomarkers —> lmages—> E ‘5,’ I Dynam'c —> Progressing Cancer —> 01 Screening System —> Long-Term Conditions —> m g (I) 1 E Individual Diagnosis of Temporary Conditions FIG. 5 US. Patent Sep. 17, 2013 Sheet 5 0f 54 US 8,538,778 B2 Dynamic Screening Analysis System Control System and Decisions individual Risk Ratios —> Prior Probabilities Probabilities of; Related Changes Progressing _> Individual Cancer Results: " Biomarkers—> Trends |ma9e$—> l 1‘ Long-Term —> Progressing Cancer Probabilities —> Long-Term Conditions Residual Early Values Warning —> Years of Warning ‘l Temporary Long-Term Long-Term Conditions Conditions Severity Test Severity of Long-Term Conditions ‘ Severity of Temporary Timing ' Conditions Decisions ' A Temporary Probabilities of: > Temporary Conditions Probabilities Test Timing Recommendations Information Value of Test Timing FIG. 6 US. Patent Sep. 17, 2013 Sheet 6 0f 54 US 8,538,778 B2 Trend Residual Velocities l Cancer (Years of Early Warning) _> 0 Mean Residual Velocity 0 Variation in Distribution 0 Trend o Biologic Long'Term Probabilities No-Cancer Prediction —> 0 Mean Residual Velocity 0 Probability of —> Progressing Cancer Variation in Distribution 0 Trend o Biologic T Prior Probabilities 7 US. Patent Sep. 17, 2013 Sheet 7 0f 54 US 8,538,778 B2 Trend Models Values, Velocities & Variation P(Trends: l CX) Biologic Models' ' Cancer (Years of Early Warning) Personalized . .. Probablllty I PSA ' PSAV’ : 0 - nBnfealm Vases: 8;_velocities_’ Distributions Noéancéo oglc aria lOl’l - Mean Values & Velocities - Biologic Variation & Probabilities Bayes l Long-Term Probability of : Probabilities —> ggogzssmg P(Trend5: I NC) T Personal Information Personal Profile Data 0 ' PSA PSAV, 0 fPSA% 0 fPSAV% T Prior Probabilities 8 US. Patent Sep. 17, 2013 Sheet 8 0f 54 US 8,538,778 B2 Four Dimensional Frequency Generator Monte Carlo iteration Controller <— Healthy Prostate Monte Carlo Generator from Distributions v Volume v PSA v v v Summation: Growth PSA No Cancer ‘ No Cancer ' 4D Monte Carlo PSAV ‘ Monte Carlo ?> Frequency Generator fPSA fPSA from fPSAV Generator fPSAV _ Distributions ' V V V ! YearX 425A ‘ Summation: Cancel’ , ' YrXCancer —> Monte Carlo Generator From Distributions _> ; Collector 425A ‘ YrXCancer ' +No Cancer P‘m!_> +No Cancer PSWL> 4D fFSA ‘ fPSAV > fFSA ‘ fPSAV V > Monte Carlo Generator i_______ E Frequency Collector 1 v v Monte Carlo iteration Completion 598 FIG. 9 US. Patent Sep. 17, 2013 Sheet 9 0f 54 US 8,538,778 B2 No Cancer Four Dimensional Frequency Generator Monte Carlo iteration Controller i Healthy Prostate Monte Carlo Generator from Distributions V Volume Growth Monte Carlo Generator from Distributions PSA PSAV fPSA fPSAV > V V V Summation: No Cancer Monte Carlo Generator PSA No Cancer 4D PSAV fPSA V fPSAV V Frequency Collector Monte Carlo Iteration Completion FIG. 10 US. Patent Sep. 17, 2013 US 8,538,778 B2 Sheet 10 0f 54 Cancer Plus No Cancer Four Dimensional Frequency Generator Monte Carlo Iteration Controller l Healthy Prostate Monte Carlo Generator from Distributions V Volume Growth Monte Carlo Generator from Distributions V PSA PSAV fPSA fPSAV V YearX 423A Cancer ‘ —> Monte Carlo V ‘ V V Summation: ' fPSA From fP SAV -ll5A Yr X Cancer P‘mL > + No Cancer Generator Distributions V Summation: No Cancer Monte Carlo Generator a Monte Carlo Generator ‘ YrXCancer ' + No Cancer PSKL > 4D fF 3A > Frequency fp SAV Collector > v Monte Carlo Iteration Completion FIG. 11 US. Patent Sep. 17, 2013 Sheet 11 0154 US 8,538,778 B2 2D Rectangle of Possible Results PSA FIG. 12 FB 1 3 US. Patent Sep. 17, 2013 Sheet 12 0f 54 Range of Target Results in Bucket PSA PVeSlocAity FIG. 14 US 8,538,778 B2 US. Patent Sep. 17, 2013 Sheet 13 0f 54 US 8,538,778 B2 No Cancer Four Dimensional Frequency Generator Monte Carlo iteration Controller V No ‘ Stop Iteration PSA Monte Carlo Yes V No ‘ Stop iteration PSAV Monte Carlo Yes V No ‘ Stop iteration fPSA% Monte Carlo i Yes ‘ No ‘ Stop Iteration fPSAV% Monte Carlo Yes V 4D Frequency Collector i Monte Carlo iteration Completion FIG. 16 US. Patent Sep. 17, 2013 Sheet 14 0f 54 US 8,538,778 B2 Cancer Plus No Cancer Four Dimensional Frequency Generator Monte Carlo Iteration Controller V No ‘ Stop Iteration I CX PSA Monte Carlo v Yes No ‘ Stop Iteration I CX PSAV Monte Carlo v Yes No ‘ Stop Iteration I CX fPSA% Monte Carlo V Yes No 0 < Stop Iteration‘ CX fPSAV /0 Monte Carlo A V Yes CX 4D Frequency Collector n V Monte Carlo Iteration Completion FIG. 17 US. Patent Sep. 17, 2013 Sheet 15 0154 US 8,538,778 B2 Accelerating PSA 14 13 __ 12 + 11 1 + ____ W g 1T5.“ J 8 - + 51 7 0- ~1 ,+ 6 ++ J; 5 ++ 4 - 3 + +++ 2 ' ++ +++ ++ 1 -—++++++++++++++ 0 50 51 52 53 54 55 56 57 58 59 60 Accelerating PSA with Age 10yr Window 14 13 + 12 11 - Trend __ 10yr Window + ' ' ' Linear (10yr Window) 4, 10 +1" 9 < + 8 ' ¢ . ++' ' 2 7 ‘ 5f 2. ¢ — ’ ‘ |++ ' 2 ’ ‘ a ;+ ++++| 1 +++++++,++4++++ 0 ' ' 50 51 52 53 54 55 Age 56 57 58 59 60 FIG. 19 US. Patent Sep. 17, 2013 Sheet 16 0f 54 US 8,538,778 B2 Accelerating PSA for 2, 6 and 10yr Windows APSA + Trend 7 2yr Window 6yr Window 10yr Window / // IV ' ' ' Linear (10yr Window) 1% — - Linear (6yr Window) Linear (2yr Window) 4>bNo.)01o:\10o(0oc»->A 50 51 52 53 54 , e g7 ¢ ’ 2 55 56 57 58 59 60 Age FIG. 20 Estimated PSA at Age 60 vs Window Size O 1 2 3 4 5 6 Window Size (years) 7 8 9 10 FIG. 21 US. Patent Sep. 17, 2013 Sheet 17 0f 54 US 8,538,778 B2 Standard Deviation Estimated PSA at Age 60 0.15 \ 0.10 ~ \ 0.05 0.00 0 1 3 _ 4 5 6 Wmdow S|ze (years) 7 8 9 10 SD vs PSA for Various Window Sizes 0.45 < w 040 D. / .5 0.35 / .5 0'30 17291021, 5 0.25 - 5 a 0.20 O ‘I 2 3 4 5 6PSA7 8 9 1O 11 12 FIG 22
© Copyright 2025