Environmental Monitoring: Aquatic Insects Research Unit: Biology Department Faculty of Science, Chiang Mai University Biological Monitoring or Biomonitoring : การติดตามตรวจสอบคุณภาพน้ําโดยใชสิ่งมีชีวิตในน้ํา - Concept? What, Why! Water Quality ? Pollution Community change ขั้นตอน “Monitoring” ที่เกี่ยวของกับการจัดการ (Management) 3 steps of the management 1. Survey - defines a pattern of variation of a parameter in a space inform the situation at one point in time 2. Surveillance - repeated measurement of variable Trend may be detected 3. Research - pollution processes in more detail using experimental&analytical techniques 1 From these 3 steps policy for management e.g. level of Zn in the effluent might be reduced by 75% by installing a treatment plant in the factory Monitoring observation of performance in relation to standard Monitoring pollution For the effective management of the environment receiving pollutant Information needed concerning 1. Quantities, source, distribution of substances entering environment 2. Effects of these substances within the environment 3. Trends in concentration and effect, cause of these changes 4. How far these input, concentration effect & trends can be modified, and by what mean, what cost. 2 Examples of various sources of different types of Water Quality Standards. Surface Water Quality Standards Surface Water Resources Classification And Standards Parameters Units 1. Temperature 2. pH value 3. Dissolved oxygen 4. BOD (5 days, 20oC) 5. Coliform Bacteria - Total coliform - Fecal coliform 6. NO3 - N 7. NH3 - N 8. Phenols 9. Cu 10. Ni 11. Mn 12. Zn 13. Cd 14. Cr (Hexavalent) 15. Pb o C mg/l mg/l Standard Values for Class 1 n' n n - 2 n' 5. - 9 6 1.5 3 n' 5. - 9 4 2.0 4 n' 5. - 9 2 4.0 5 - - 50,000 20,000 - - n n n n n n n n n n 1,000 - = = = = = = = = = 4,000 5.0 0.5 0.005 0.1 0.1 1.0 1.0 0.003*0.05** 0.05 0.05 " " " n n n = = = 0.002 0.01 0.005 = = = - " " " " " " " n n n n n n n = = = = = = = 0.1 1.0 0.05 1 0.02 0.1 0.1 = = = = = = = - " " n n = 0.2 none = - 20%ile 80%ile MPN/100 " ml " " mg/l Max. allowance " " " " " " " " " " " " " " " " " " 16. Hg (total) " 17. As " 18. CN " 19. Radioactivity - Gross x Becqurel/l - Gross B " 20. Pesticides (Total) mg/l - DDT μg/l - xBHC " - Dieldrin " - Aldrin " - Heptachlor & Heptachlor epoxide " - Endrin " Note Statistic - = = = = = = = = = n = naturally n’ = naturally but changing not more than 3 oC * = when water hardness not more than 100 mg/l as CaCO3 ** = when water hardness more than 100 mg/l as CaCO3 ตารางมาตรฐานคุณภาพน้าํ ผิวดินจากกระทรวงวิทยาศาสตร เทคโนโลยีและสิง่ แวดลอม (ป พ.ศ. 2528) Water Classification Classifications Class 1 Class 2 Class 3 Class 4 Class 5 Condition & Beneficial usages Extra clean fresh surface water resources using for: (1) conservation, not necessary pass through water treatment processes require only ordinary process for pathogenic destruction (2) ecosystem conservation which basic living organisms can spread breeding naturally Very clean fresh surface water resources using for: (1) consumption which require the ordinary water treatment process before uses (2) aquatic organism conservation for living and assisting for fishery (3) fishery (4) recreation Medium clean fresh surface water resources using for: (1) consumption but have to pass through as ordinary treatment process before uses (2) agriculture Fairly clean fresh surface water resources using for: (1) consumption but require special water treatment process before uses (2) industry (3) other activities The resources which are not classified in class 1-4 and using for: (1) navigation Sources: Notification of The Ministry of Science, Technology and Environment (B.E. 2528 (1985)). Printed in the Royal Government Gazette, vol. 103, No. 60, Dated April 15, B.E. 2529(1986). 3 Table 3 : Various standard values for drinking water and surface water. Classification Conpounds affecting the palatability of water Components hazardous to health Parameters TDS Total hardness II 500 - III 1,000 315 IV 500 - V 500 - VI - pH (mg/l) - 7.0-8.5 - - 6.5-8.5 5.0-9.0 Fe Mn Cu Zn Ca (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) 50 5 1.5 1.5 - 0.3 0.1 1.0 5.0 75.0 1.0 3.0 15.0 - 0.3 0.05 1.0 5.0 - 0.5 0.3 1.0 5.0 75.0 1.0 0.1 1.0 M g plus Na 2 SO 4 (mg/l) 1,000 - - 500 - - Mg (mg/l) 1,000 50.0 250.0 - 50.0 Cl - (mg/l) - 20.0 250.0 250.0 250.0 - SO 4 2- (mg/l) - 200.0 250.0 250.0 200 - - AB S surfactant (mg/l) 0.5 - - - - - NO 3 - (mg/l) 45.0 45.0 - 45.0 45.0 45.0 (mg/l) 1.5 1.5 F Toxic substances Standard values I (mg/l) 1,500 (mg/l) - - 1.0 0.8-1.7 0.7 1.0 NO 2 - N (mg/l) - - 4.0 - - - NO 3 - N (mg/l) - - 0.002 - - - Phenolic substances As Ba Cd (mg/l) 0.002 (mg/l) 0.05 (mg/l) (mg/l) 0.01 0.001 0.05 1.0 0.01 0.05 - 0.001 0.01 - - 0.005 0.01 0.005-0.05 Table 3 : Various standard values for drinking water and surface water. (continued) Classification C h em ic al in d icator of p ollution Standard values Parameters Cr CNPb Se Hg ( m g / l) ( m g / l) ( m g / l) ( m g / l) ( m g / l) R a d ion uc lid e s - G ross x (B e cq ure l/l) - G ross B (B e cq ure l/l) Pe sticides (T ota l) (m g/l) - DDT (ug/l) - XB H C (ug/l) - D ield rin (ug/l) - A ldrin (ug/l) - H ep tach lor an d (ug/l) pe p tac hlor e p oxide - E nd rin (ug/l) C h e m ical oxyge n (m g/l) dem an d (C O D ) B ioc h em ica l oxyg en (m g/l) dem an d (B O D ) T otal n itrogen (m g/l) exclusive of N O 3 A m m oni u m (N H 3 ) as (m g/l) N C a rb on ch loroform e xtr act (C C E (m g/l) organ ic pollutan ts) G rease (m g/l) D issolved o xyge n (m g/l) I II III IV V VI 0 .5 0 .2 0 .0 5 0 .0 1 - 0 .2 0 .0 5 0 .0 1 - 0 .0 1 - 0 .0 1 - none 0 .0 5 0 .0 0 1 0 .0 5 0 .0 0 2 - - - - non e non e ac ute - 0.1 1.0 0.0 5 1.0 0.0 2 0.1 0.1 - - - - - 0.2 - - - - - N on e 10.0 - - - - 6.0 - - - - 1.0 - 0.06 - - - 0.5 - 0.06 - - - 0.5 - 0.20 - - - 1.0 - - - N on e 1.5 - 4.0 10.77 – 6 .6* (I) (II) (III) (IV) (V) (VI) WHO natural water standard International standard for drinking water Thai public health service drinking water standard US public health service drinking water standard M inistry of industry drinking water standard (Thailand) Surface water quality standard (The M inistry of Science, Technology and Environment) * No data or details The standard values for DO quoted here are for the temperature range in Chiang M ai (12 – 38 o C) 4 ตารางแสดงมาตรฐานน้ําดื่มจากประเทศอินโดนีเซีย Table 4 Drinking water standard of INDONESIA mg/l TCU JTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l Standard Value Highest Desirable Max. Permissible 500 1500 5 50 2 10 unobjectionable unobjectionable unobjectionable unobjectionable 0.1 1 0.05 0.5 0.05 1.5 1 15 75 200 30 150 200 400 200 600 7.0 - 8.5 6.5 - 9.2 0.001 0.002 Unit Standard Value mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l group/ml N/100 ml 180 0.1 0.05 0.01 0.05 0.05 0.01 2 20 10 0.0 0.0 0.0 Parameters Unit Total Solids Color (Platinum Cobalt) Turbidity Taste Odor Iron (Fe) Manganese (Mn) Copper (Cu) Zinc (Zn) Calcium (Ca) Magnesium (Mg) Sulphate (SO4) Chloride (Cl) pH Phenolic Substances Parameters Total Hardness (as CaCO3) Lead (Pb) Arsenic (As) Selenium (Se) Chromium (hexavalent) (Cr) Cyanide (CN) Cadmium (Cd) Barium (Ba) Mercury (Hg) Fluoride (F) Nitrate Nitrogen (NO3 - N) Ammonium Organic Matter Total Colonies Pathogenic Germs Coliform Group Source : ประพิษฐ วัลยเสวี WATER QUALITY CRITERIA FOR FRESHWATER FISH AND AQUATIC LIFE BASED ON EPA(USA) AND EIFAC Substance Criteria for protection of fish EPA 0.003 25 (20). EIFAC Aldrin/Dieldrin Ammonia (un-ionised) Arsenic Cadmium hardwater 1.5a 1.2 softwater 0.9a 0.4 4 4 0.01 2 (100). 0.01 10 400 hardwater 112a 0.1 96 hr LC50 (c. 10) 0.1 96 hr LC50 softwater 22a 0.1 96 hr LC50 (c. 2) 0.1 96 hr LC50 5 0.001 0.003 0.004 0.001 5 0.001 0.003 0.004 0.001 Chlordane Chlorine Chromium Copper Cyanide DDT Endosulphan Endrin Heptachlor Criteria for protection of aquatic life EPA 0.003 20 100 12 5 Substance Criteria for protection of fish EPA EIFAC Lead Criteria for protection of aquatic life EPA hardwater 0.01 96 hr LC50(c. 500) 0.01 96 hr LC50 softwater 0.01 96 hr LC50(c. 5) 0.01 96 hr LC50 0.01 0.1 0.05 0.03 0.01 0.1 0.05 0.03 Nickel 0.01 96 hr LC50(c. 100) 0.01 96 hr LC50 Oil 0.01 96 hr LC50(c. 100) 0.01 96 hr LC50 0.04 0.001 0.04 0.001 Lindane (HCH) Malathion Mercury Methoxychlor Parathion PCBs Phenols 1000 Phthalate esters 1b 3 3 Selenium 0.01 96 hr LC50(c. 20) 0.01 96 hr LC50 Silver Sulphide (undissociated H2S) 0.01 96 hr LC50(c. 01) 0.01 96 hr LC50 Zinc 2 2 hardwater 50a 0.01 96 hr LC50(c. 25) 0.01 96 hr LC50 softwater 20a 0.01 96 hr LC50(c. 3) 0.01 96 hr LC50 a 95 percentile values. Value are in μg litre-1. Where application factors of the 96 hr LC50 are specified approximate values are given in brackets. b Is the single measurement of O2 reliable to use as the criteria to assess water quality class? คา O2 เพียงคาเดียวที่วัดไดมีความนาเชื่อถือมากนอยแค ไหน ในการนํามาเปนหลักในการแยกชั้นคุณภาพน้ํา? เหตุผลวาทําไมตองใช “Biomonitoring” Why Biomonitoring? Chemical sampling, even at frequent intervals (arrows) can miss biologically - significant peak concentrations. After Abel, 1989 6 Spatial & Temporal Changes Diurnal variation in oxygen concentration at four stations along a river receiving an organic discharge at point X between station A and B. The oxygen sag curve at 12.00 h is shown. Ecological Effects of Changes in Water Quality รูปเปรียบเทียบการเปลี่ยนแปลง O2 จากสถานที่สองแหงที่คุณภาพน้ําตางกันชัดเจน “ Biological Monitoring” vs. “Physico-chemical Monitoring” Biological Monitoring – the systematic use of biological responses to evaluate the change in environment 7 Biological Monitoring can provide 1. an integrated assessment of water quality covering a period of long time 2. summative estimate of the effects of all deterious water quality changes 3. short-term early warning of accidental discharge upstream 4. early warning system of ecosystem and food chain disruption Change in sp. diversity and abundance combine with the use of toxicity “bioassays” bioassays “biomarker” biomarker 5. evidence of food chain bioaccumulation and biomagnification (e.g. heavy metal, pesticides) 6. assessment of damage based on changes in biosphere activity Risk assessment 7. cheap initial screening of Freshwater ecosystem to identify the stress which require more intensive monitoring 8 - Biomass - Community structure Possible responses of a community to environmental change. (From Hellawell, 1987) After Abel, 1989 Fate of Organic Pollutant Self purification Pollution of a stream with untreated sewage and the subsequent recovery as reflected in the biotic community. As the oxygen dissolved in the water decreases (curve to the left), fishes disappear and only organisms able to obtain oxygen from the surface (as in Culex mosqu. to larvae) or those which are tolerant of low oxygen concentration are found in zone of maximum organic decomposition. When bacteria have reduced all of the discharged material the stream returns to normal. (After Eliassen, Scientific American, Vol. 186, No. 3, March, 1952.) Spatial variation of physical, chemical and biological consequences of the continuous discharge of a severe organic load into flowing water. After Bartsche (1948). 9 Recommendations for the use of different taxonomic groups as biological indicators. Percentage distribution of literature citations up to 1970. From Hellowell (1977b) Bioindicator Organisms - protozoa - fish - algae - macrophyte - bacteria - benthic macroinvertebrates ทําไมจึงนิยมใชกลุมสัตวไมมีกระดูกสันหลังขนาดใหญที่เปนสัตวหนาดิน Why Benthic Macroinvertebrates ? Benthic macroinvertebrates are particularly suitable for biological monitoring studies as: (a) they live in all types of aquatic habitat (b) they show a range of tolerances to pollutants and therefore environmental pollution will be accompanied by a change in community structure. (c) their sedentary nature allows spatial variation in water quality to be studied. 10 (d) Their long life – cycles allow intermittent pollution to be detected and temporal trends in water quality to be studied. (e) Techniques for their sampling and analysis are well – developed and can be achieved with simple equipment. (f) Tropical communities of benthic macroinvertebrates are similar (with many of the same families) to temperate communities, which have been well described and widely used for biological monitoring Qualitative macroinvertebrate samplers : Dredge sampler After Abel, 1989 11 a) hand net b) shovel c) dredge d) drift net After Abel, 1989 Quantitative macroinvertebrate samplers : Surbur sampler After Abel, 1989 Cylinder sampler (a) Surber sampler (b) rectangular box sampler (c) cylindersampler After Abel, 1989 12 For Benthos in deep water (a) cable operate Ekman grab (b) Peterson grab (c) Van Veen grab (d) pole operated Ekman grab After Abel, 1989 Air lift samplers (a) Design of Pearson et al. (1973) ( c) Design of MacKey (1972) (b) FBA design, Drake et al. (1983) After Abel, 1989 Core sampler. After Kajak (1971) 13 TABLE 6 RECOMMENDED METHODS FOR SAMPLING MACROINVERTEBRATE COMMUNITIES (After Hellawell, 1978) Water depth Current velocity Substrate type Shallow Swift (less than 1 m) Hand net - lifting stones by hand Moderate Gravel Slow Gravel - sand Hand net - kicking to disturb substrate Shovel sampler Very slow or static Sand - mud Moderate ( 1 - 3 m) Deep (more than 3 m) Qualitative surveys Boulders, large stones Shovel sampler Slow Gravel - sand Static Very slow Sand - mud Sand - mud Compacted substrate Static Sand - mud Compacted substrate Quatitative surveys Surber - type sampler, where this can be located properly Colonization Surber - type sampler Air - lift if depth is adequate Cylinder sampler Air - lift if depth is adequate Core sampler (hand operated) Air - lift if depth is adequate Ekman grab Pole - mounted corer Pole - mounted Ekman grab Ekman or Ponar grab Ponar grab Air - lift sampler (diver operated) Ponar grab Quantitative methods can also be used in qualitative surveys. Compacted substrates sometimes occur in large rivers, especially if dredged. Substrate Components - องคประกอบของพื้นทองน้ํา มีชื่อเรียกตามประเภท และขนาดของวัตถุที่ ปรากฏตามธรรมชาติ Inorganic Bedrock Boulder Cobble Gravel Sand Silt Clay Organic Detritus Muck – mud Mari Diameter >256 mm (10 in.) 64-256 mm (2.5 – 10 in.) 2 – 64 mm (0.1 – 2.5 in.0 0.06 – 2 mm (gritty) 0.004 – 0.06 mm < 0.004 mm (slick) Characteristic Stick, wood, Mont Material (CPOM) Black, very fine organic (FPOM) Grey, shell fragments 14 Bedrock Examples of various aquatic habitats Silt/Clay CPOM Boulder Gravel Sand Table 7 - Efficiencies of seven grabs at recovering animals from the surface and below the surface of two different substrata. Data from Elliot & Drake (1981a) ตารางแสดงประสิทธิภาพของตัวอยางเครื่องมือที่ใชตามความลึกของพื้นทองน้ํา Grab % Efficiency substratum 2 – 4 mm Substratum 8 – 16 mm Surface 3 cm below Surface 3 cm below surface surface Ponar 100 70 88 50 Weighted Ponar 100 70 100 50 Van - Veen 87 56 50 50 Birge - Ekman 73 37 30 7 Allan 51 36 25 7 Friedinger 59 7 30 7 Dietz - La Fond 22 26 25 20 รูปแสดงที่เก็บตัวอยางจําลองแบบตาง ๆ ที่สรางขึ้น (artificial substrate sampler) (a) Wire tray of basket filled with stones (b) Slag bag (c) Multiplate sampler (d) SAUFU (standard aufwuchs unit) After Abel, 1989 15 Artificial substrates that had been used in our research work in Chiang Mai. Advantages of Artificial substrate ขอดีของการใชที่เก็บตัวอยางจําลอง - allow for sample collection from deep rivers/place-difficult to sample effectively - present standard habitat for colonization - require less experienced operators Disadvantages ขอดอยของการใชที่เก็บตัวอยางจําลอง - require sufficient time for colonization - do not sample the fauna which would naturally occur at a site Where to place ? – in water column on river bed clogged problem need standard procedure 16 Various ways of representing the results of study Gravel river bed Muddy river bed Colonisation of artificial substrate samplers exposed on a gravel river bed (upper graph) and a muddy river bed (lower graph) (From Hellawell, 1978, based on data given by Pearson&Jones, 1975) After Abel, 1989 A taxon accretion curve After Abel, 1989 17 การเก็บตัวอยางเชิงปริมาณ แสดงจํานวนตัวอยางที่ตองเก็บจํานวนถึง 100 ตัวอยางขณะที่ index of precision = 0.1 Quantitative sample : N= N= [ st ] 2 DX [ 5x2 ] 2 0.1x10 N = Number of Samples required X = mean S = Standard deviation D = index of precision (0.1 +10%) t = Value of Student’s t for the required level of confidence = 100 samples Inputs of pollution Number of invertebrate species and Chandler Biotic Score at stations along the length of a polluted river.. Adapted from Hellawell (1978). After Abel, 1989 The use of ‘kite’ diagrams to represent the abundance of species at different sites. The width of ‘kite’ represents the abundance of each species. After Abel, 1989 18 Diversity indices which are widely used in aquatic ecosystem studies, arranged in eight group according to their derivation. After Washington (1984) 19 Table 8 – The Trent Biotic Index (Woodiwiss, 1964). Key indicator groups Diversity of fauna Column No: 1 2 Plecoptera nymphs present More than one species One species only Ephemeroptera nymphs More than one speciesa present One species onlya Trichoptera larvae More than one speciesb present One species onlyb All above species absent Gammarus present All above species absent Asellus present Tubificid worms and/or All above species Red Chironomid larvae present All above types absent Some organisms such as Eristalis tenax not requiring dissolved oxygen may be present Total number of groups (see Part 2) present 0-1 2-5. 6-10. 11-15. 16+ 3 4 5 6 7 Biotic Index VII VIII IX X - VI VI VII VII VII VIII IX IX - V V VI VI VII VII VIII VIII IV III III I IV IV III III V V IV III VI VI V IV VII VII VI - 0 I II - - Different Key indicator groups 20 จากกรณีศึกษาของผลกระทบ จากการทําเหมืองแรใน สหราชอาณาจักร (แมน้ําเอเลน) Map of the Rivers East and West Allen, showing sampling stations, derelict mines and workings, and remaining spoil heaps. After Green (1984) ตารางแสดงตัวอยางของสัตวไมมีกระดูกสันหลังที่พบจากการ เก็บตัวอยางแบบ kick sampling จากกรณีศึกษาของผลกระทบ จากการทําเหมืองแรในสหราชอาณาจักร (แมน้ําเอเลน) จุด เก็บตัวอยาง 4 จุด ในลําธารที่มีการปนเปอ นจาก Z n เปรียบเทียบกับลําธารปกติ โดยมีคา ระดับ Zn, Trent Biotic Index และ Chandler Biotic Score แสดงอยูด วย Site Dissolved Zn, mg1-1 Invertebrate taxa: 7 1.28 6a 0.04 6+ 0.76 4 0.38 2 1 3 0 0 0 0 0 0 7 0 0 3 3 3 1 2 0 16 0 0 2 0 0 0 0 3 5 3 8 24 2 1 0 0 0 2 0 0 9 67 7 7 7 5 3 131 13 1 1 0 0 0 0 2 1 0 0 2 0 0 0 2 1 0 2 5 0 Plecoptera Protonemoura meneri Isoperla grammatica Amphinemoura sulciollis Leuctra fusca Taeniopteryx nebulosa Chloroperla tripunctata Perla bipunctata Perlodes microcephala Brachyptera risi Ephemeroptera Baetis rhodani Ecdyonurus venosus Rhithrogena semicolorata Trichoptera Polycentropus flavomaculatus Agapetus sp. Rhyacophila dorsalis Hydropsyche sp. Philopotamus sp. 21 Site Dissolved Zn, mg1-1 Invertebrate taxa: 7 1.28 6a 0.04 6+ 0.76 4 0.38 1 0 16 1 0 0 0 0 0 1 1 1 1 0 0 10 0 0 0 1 1 0 0 0 0 1 0 0 0 11 0 0 1 0 0 0 11 15 IX 588 35 0 0 0 16 174 X 1001 0 0 0 0 10 46 VIII 618 2 1 1 1 17 204 X 998 Coleoptera Limnius volckmari Elmis aenea Diptera Chironomidae Simulidae Dicranota Tipula Neuroptera Sialis lutaria Mollusca Ancylastrum fluviatilis Other taxa Gammarus pulex Hydracarina Hirudinea Oligochaeta Total no. of taxa Total no. of individuals Trent Biotic Index value Chandler Biotic Score value The extended version of the Trent Biotic Index. Groups are defined defined as shown in Table 3.3 Biogeographical region: Midlands, England Total number of groups present 0-1 2-5. More than one species - 7 8 9 One species only - 6 7 8 9 10 11 12 13 More than one speciesa - 6 7 8 9 10 11 12 13 One species onlya - 5 6 7 8 9 10 11 12 More than one speciesb - 5 6 7 8 9 10 11 12 One species onlyb 4 4 5 6 7 8 9 10 11 Gammarus present All above species absent 3 4 5 6 7 8 9 10 11 Asellus present All above species absent 2 3 4 5 6 7 8 9 10 Tubificid worms and /or Red Chironomid larvae present All above species absent 1 2 3 4 5 6 7 8 9 Some organisms such as 0 1 2 Eristalis tenax not requiring dissolved oxygen may be present a Baetis rhodani excluded. b Baetis rhodani (Ephem.) is counted in this section for the purpose of classification. - - Plecoptera nymphs present Ephemeroptera nymphs present Trichoptera larvae present 6-10. 11-15. 16-20 21-25 26-30 30-35 36-40 Biotic indicies 10 11 12 All above types absent 13 14 The Chandler Biotic Score System (Chandler, 1970) Abundance in Standard Sample Groups present in sample Planaria alpina Each species of Taenopterygidae, Perlidae, Perididae, Isoperlidae, Chloroperidae Each species of Leuctridae, Capniidae, Nemouridae (excluding Amphinemoura) Each species of Ephemeroptera (excluding Baetis) Each species of Cased caddis, Megaloptera Each species of Anchlus Rhyacophilia (Trichoptera) Dicranota, Limnophora Genera Simulium Genus Present Few Common Abundant 11-15. 51-100 Points scored Very abundan 100+ 1-2. 3-10. 90 94 98 99 100 84 89 94 97 98 79 84 90 94 97 75 80 86 91 94 70 65 75 70 82 77 87 83 91 88 60 56 65 61 72 67 78 73 84 75 22 A bundance in Standard Sample P resent Groups present in sample Genera of Each species of Each species of Genera of Each species of Each species of Each species of Each species of Each species of Coleoptera, Nematoda Amphinemoura (Plecoptera) Baetis (Ephemeroptera) Gammarus Uncased caddis (exc. Rhyacophila) Tricladida (excluding P. alpina) Hydracarina Mollusca (excluding Ancylus) Chironomids (excluding C. riparius) Glossiphonia Asellus Leech (excluding Glossiphonia, Haemopsis) Haemopsis Tubifex sp. Chironomus riparius Nais air breathing species No animal life Few C om m on A bundant 11-15. 51-100 Points scored V ery abundan 100+ 1-2. 3-10. 51 47 55 50 61 54 66 58 72 63 44 40 38 46 40 36 48 40 35 50 40 33 52 40 31 35 33 31 29 25 32 30 30 28 28 25 25 22 21 18 28 25 21 18 15 26 25 24 23 22 20 20 18 16 16 14 12 13 10 8 23 22 21 20 19 19 18 17 16 15 15 13 12 10 9 0 10 12 7 6 5 7 9 4 2 1 The BMWP score system Allocation of biological scores Families S ip h lo n u ri d a e H ep ta g en iid a e L ep t o p hlebiidae Ephermere llidae Potamanthidae Ephemeridae Taeniopterygidae Leuctridae Capniidae Perlodidae Perlidae Chloroperlidae Aphelocheiridae Phryganeidae Molannidae Baraeidae Odontoceridae Leptoceridae Goeridae Lepidostomatidae Brachycentridae Sericostomatidae Astacidae Lestidae Agriidae Gomphidae Cordulegasteridae Aeshnidae Corduliidae Libellulidae Psychomyiidae Philopotamidae Score 10 8 Caenidae Nemouridae Rhyacophilidae Polycentropodidae Limnephilidae 7 Neritidae Viviparidae Ancylidae Hydroptilidae Unionidae Corophiidae Gammaridae Platycnemididae Coenagriidae 6 The BMWP score system (con.) Allocation of biological scores Families Mesovelidae Hydrometridae Gerridae Nepidae Naucoridae Notonectidae Pleidae Corixidae Haliplidae Hygrobiidae Dytiscidae Gyrinidae Hydrophilidae Clambidae Helodidae Dryopisae Elminthidae Chrysomelidae Curculionidae Hydropsychidae Tipulidae Simliidae Planariidae Dendrocoelidae Score 5 Baetidae Sialidae Piscicolidae 4 Valvatidae Hydrobiidae Lymnaeidae Physidae Planorbidae Dphaeriidae Glossiphoniidae Hirudidae Erpobdellidae Asellidae 3 Chironomidae 2 Oligochaeta (whole class) 1 23 Matrix of Raabe’s similarity coefficients for nine alternating pool and riffle stretches on the River West AllenAfter. Abel, 1989 Dendrogram derived by average - linkage cluster analysis of the matrix shown in previous Fig. SI = a 2c +b a = total no. of species in Com. A b = total no. of species in Com. B c = no. of species shared by Com. A and Com. B Dendrogram derived by average - linkage cluster analysis of a matrix of Sorensen’s similarity coefficients, based on the same raw data used to derive previous Fig. 24 Number of individuals of various taxa recovered from artificial substrate sample at two sites on the River East Allen. Allen. Taxon Oligochaeta Chironomidae Limoniinae Empididae Limnius volckmari Esolus parallelepipedus Elmis aenea Anchlastrum fluviatilis Pisisium sp. Polycentropus flavomaculatus Baetis rhodani Nos. of individuals Site A 6 36 32 1 1 1 1 6 2 8 - Site G 51 20 4 1 1 1 3 a = 10 b=7 c=6 Matrix of Kerdali’s rank correlation coefficients for pairs of sites on the East and West Allen (Green, 1984). In this matrix, open squares indicate pairs of sites which are significantly different from each other. After Abel, 1989 Dendrogram derived by average - linkage cluster analysis of the matrix shown in previous Fig .(Green, 1984). 25 ตัวอยางจากการศึกษาของธัญลักษณ เหลียวรุงเรือง “การใชกลุมสัตวหนาดินในการตัดสินคุณภาพน้ําจาก ลําธารในบริเวณมหาวิทยาลัยเชียงใหม” 2541 หวยแกว มหาวิทยาลัยเชียงใหม หวยกูขาว หวยแมระงอง หวยธารชมภู หวยฝายหิน ผลการสํารวจวงศ (Family) ของกลุมสัตวหนาดินที่พบในลําธารน้ําภายใน มหาวิทยาลัยเชียงใหม เดือนกันยายน 26 ผลการสํารวจวงศ (Family) ของกลุมสัตวหนาดินที่พบในลําธารน้ําภายใน มหาวิทยาลัยเชียงใหม เดือนกันยายน (ตอ.) คา ASPT (Average Score Per Taxa) ของแตละจุดเก็บตัวอยางเดือนพฤศจิกายน โดยเปรียบเทียบระหวาง BMWP Score ของอังกฤษ อินเดียและแมน้ําปง คา Similarity index โดยใชกลุมสัตวหนาดินในเดือนกันยายน 27 คา Similarity index โดยใชกลุมสัตวหนาดินในเดือนพฤศจิกายน Sorensen’s similarity index = A2C+ B A = จํานวนวงศที่จดุ A B = จํานวนวงศที่จุด B C = จํานวนวงศที่จดุ A และ B คา Similarity Index ซึ่งแสดงเปนแผนภาพ Dendrogram โดยใชกลุม สัตวหนาดินเปนตัวชี้วัดในเดือนกันยายน 28 คา BMWP Score ในแบบเดิมของอินเดีย (ค.ศ. 1995) TAXONOMICAL CLASS/ORDER TAXONOMICAL FAMILIES Ephemeroptera Heptogeniidae. Leptophlebiidae. Ephemerellidae. Ephemeridae. Potaminthidae. Siphonuridae. Leuctridae. Capniidae. Perlodidae. Perlidae. Taeniopterygidae. Ahpelocheiridae Leptoceridae. Goeridae. Lepisostomatidae. Brachycentridae. Sericostomatidae. Lestidae. Gomphidae. Cordulegasteridae. Aeschnidae. Corduliidae. Libellulifae. Plathycnemididae Psychomyiidae. Philopotamidae Caenidae Numouridae Rhyacophilidae. Polycentropodidae. Limnephilidae Ancylidae. Hydrobiidae. Neritidae. Viviparidae. Thiaridae. Bithynidae. Unionidae Hydroptilidae Plecoptera Hemiptera Trichoptera Odonata Trichoptera Ephemeroptera Plecoptera Trichoptera Mollusca Trichoptera BMWP SCORE 10 8 7 6 คา BMWP Score ในแบบเดิมของอินเดีย (ค.ศ. 1995) ตอ. TAXONOMICAL CLASS/ORDER TAXONOMICAL FAMILIES Crustacea Polychaeta Odonata Hemiptera Palaemonidae. Atydae. Gammaridae Nereidae, Nephthyidae Coenagriidae. Agriidae Mesovelidae. Hydrometridae. Gerridae. Nepidae. Naucoridae. Notonectidae. Pleidae. Corixidae. Veliidae. Hebridae. Belestomatidae Haliplidae. Hygrobidae. Dytiscidae. Gyrinidae. Hydrophilidae. Noteridae. Helodidae. Dryopidae. Elmidae. Psephenidae Hydropsychidae Tipulidae. Culicidae. Blepharoceridae. Simulidae Planariidae. Dendroceolidae Baetidae Sialidae Piscicodidae Lymnaeidae. Planorbidae. Sphaeridae Glossiphonidae. Hirudidae. Erpobdellidae Dugesiidae Coleoptera Trichoptera Diptera Planaria Ephemeroptera Megaloptera Kiredinea Mollusca Hirudinea Planaria BMWP SCORE 6 5 4 3 คุณภาพน้ําทางกายภาพและเคมีในจุดที่ศกึ ษาทั้ง 10 แหง เดือนกันยายน Parameter Site S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 1. อุ ณ หภู มิ น้ํา (oC) 2. อุ ณ หภู มิ อ ากาศ (oC) 29.00 29.00 30.00 27.00 30.00 30.00 31.50 28.50 32.30 30.00 29.50 32.20 32.00 33.00 7.00 29.50 30.00 31.00 34.00 33.00 3. pH 6.90 7.14 4. TDS (mg/l) 5. Conductivity (us/cm) 6. Velocity (m/s) 79.50 136.0 82.50 138.0 165.0 159.4 266.0 164.8 321.0 329.0 159.4 314.0 157.4 225.0 239.0 0.14 0.33 0.20 0.18 0.29 0.14 0.40 0.30 0.33 0.33 7. DO 6.00 9.00 6.20 2.60 2.80 5.00 6.00 7.60 4.40 8.20 8. BOD 5 (mg/l) 3.00 2.00 2.50 8.00 14.00 3.20 2.80 1.20 20.00 14.00 9. Ammonia (mg/l) 0.52 0.34 0.09 0.56 1.73 2.50 1.99 0.01 2.35 2.26 10. Nitrate (mg/l) 11. Phosphate (mg/l) 1.10 1.10 0.90 1.70 1.00 1.10 1.50 0.90 1.20 1.20 0.28 0.11 0.18 0.25 0.24 0.16 0.20 0.14 0.48 0.74 8.38 7.94 6.84 6.90 7.50 7.85 7.50 8.30 79.5 157.0 78.50 113.0 119.0 29 คา Similarity Index ซึ่งแสดงเปนแผนภาพ Dendrogram โดยใชคา คุณภาพน้ําทางกายภาพ และเคมีเปนตัวชีว้ ัดในเดือนกันยายน Multivariate Analysis การวิเคราะหหลายตัวแปร -Pattern analysis involves searching for ecological meaningful pattern in data -Help to generate hypothesis & seek to improve communication of the results Clustering -serve to reduce a set of many objects to group of objects based on their degree of similarity -can be hierarchical (showing relationship between the group similar to a family tree or dendrogram - or non-hierarchical, natural grouping Ordination -A method which seek to condense the information associate with a set of attribute (measured variable, species etc.) to a smaller number (2 or 3) of new attribute with minimum loss o f information -Results can be displayed in a bipot: the distance between the objects (e.g. sampling sites) represent the degree of similarity of difference between objects as measured by a full set attribution -May detect natural cluster, and highlight trends and gradients 30 ‘Pollution’ distances between sites Changes in water quality and abundance of selected organisms typically found in a river below the discharge of an organic effluent, after Hynes (1960). Fig. 2.2 (E) shows the zones described by Kolkwitz&Marsson (1909). Other descriptive systems have been used (see Hellawell (1983) for a summary) but are not significantly different. After Abel, 1989 Comparative chart of several early systems for classifying the stages of recovery from the effects of an organic effluent in flowing water. After Warren (1971) Kolkwitz&Ma rsson Forbes & Richardoson Organic 1908,1909 1913 effluent Oligosaprobic Clean water Suter & Moore Sihmpple & 1922 Whipple 1927 Clean water Clean water Clean water Septic Recent Pollution Septic Degradation Septic αMesosaprobic Polluted Pollutional or Unusually Tolerant βMesosaprobic Contaminated Sub – pollutional or Tolerant Oligosaprobic Clean water Clean water Polysaprobic Flow Richardson 1921,1925 Active Decomposition Recovery Recovery Clean water Clean water Organic effluent Flow Toxic condition 31 Water quality and dissolved oxygen (DO) content in parts per million (ppm) at 20 oC (68 oF). Only a few fish species can survive in water with less than 4 ppm of dissolved oxygen at this temperature Water Quality Maps of River Danube before and after the operation of water treatment plants. 1967 1986 Dilution and decay of degradable oxygen demanding waste and heat, showing the oxygen sag curve (orange orange) and the curve of oxygen demand (blue blue). Depending on flow rates and the amount of pollutants streams recover from oxygen-demanding wastes and heat if they are given enough time and are not overloaded. 32 Clean - water (sensitive) forms Clean - water (sensitive) forms Mild - pollution (less sensitive) forms 33 moderate - pollution (relative tolerant) forms severe - pollution (tolerant) forms Characteristic Features of the Four Water Quality Classes (I-IV) (Values between are coordinated to the intermediate classes I-II, II-III, III-IV) 34 Characteristic Features of the Four Water Quality Classes (I(I-IV) (Values between are coordinated to the intermediate classes I-I-II, IIII-III, IIIIII-IV) Biological – Ecological Assessment of Water Quality 4 Classes of Water Quality Class I - no or only slight pollution II - moderate pollution III - heavy – pollution IV - very heavy pollution Oligosaprobic (O) β -Mesosaprobic (bmes) bmes) α- Mesosaprobic (ames) ames) Polysaprobic (p) Frequency levels : 1. Single find 2. Seldom 3. Few 4. Medium 5. Medium to frequent 6. Frequent 7. Abundant 35 e.g. Sampling place X Indicator organisms Saprobity Frequency sum Tubfex Herpobdella (Ephem) Lmectra (Plecop) Baetis rhodani (Ephem) Rhyacophila (Trichop) Chironomidae not red Chironomidae red p a mes 0 – b mes b mes 7 2 1 1 Frequency in the saprobity level 0 b a p mes mes 7 2 0.5 0.5 1 0 – b mes 1 0.5 b mes - a mes a mes - p 7 3 Σ 0.5 3.5 1.0 5.5 3.5 1 6.5 2 9 ∴ (O + b mes + a mes + p) = 22 Saprobic Index (SI) SI = 4xp+3x a mes + 2 xb mes + 1 x 0 (p + a mes + b mes + 0) e.g. = 4x9 +3x6.5 + 2x5.5 + 1x1 9+6.5+5.5+1 = 3.06 SI 1 – 1.5 1.8 – 2.3 2.7 – 3.2 3.5 – 4 Saprobity 0ligosaprobic β - M esosaprobic α - M e sosap ro b ic Polysaprobic Limitation of the Methods used ขอจํากัดของการใชวิธกี ารตาง ๆ ในการประเมินคุณภาพน้ํา -Saprobic index -Biotic Index -BMWP score ASPT (average score per Taxa) empirical data Taxonomic keys to species level not available Diversity Indices – nos of species Nos of Individual in each species Similarity Indices 36 Protozoa ที่พบตามชั้นคุณภาพน้ําตาง ๆ กัน ตามระบบ Saprobiensystem (a) Polysaprobic Protozoa ที่พบตามชั้นคุณภาพน้ําตาง ๆ กัน ตามระบบ Saprobiensystem (b) alphaalpha-Mesosaprobic Protozoa ที่พบตามชั้นคุณภาพน้ําตาง ๆ กัน ตามระบบ Saprobiensystem (c) betabeta-Mesosaprobic 37 สาหรายบางชนิดที่พบในน้ําที่มีการปนเปอ นของสารอินทรียสูง LIST OF COMMON CILIATES WHICH ARE INDICATIVE OF DIFFERENT DEGREES OF ORGANIC POLLUTION 1. Polysaprobic – grossly pollutes Colpidium campylum (Stokes) Colpidium colpoda Stein Colpoda steinii Maupas Glaucama scintillans Ehrenberg Trimyema compressum Lackcy 2. AlphaAlpha- mesosaprobic – polluted Chilodonella cucullulus (Muller) Chilodonella uncinata Ehrenberg Colpoda cuculus Muller Cyclidium citullus Cohn Spirostomum ambiguum Muller - Ehrenberg 3. Beta - mesoprobic – mildly polluted Aspidisca costata (Dujardin) Cinetochilum margaritaceum Perty Coleps hirtus Nitzsch Euplotes affinis Dujardin Euplotes patella (Muller) Halteria grandinella (Muller) Paramecium caudatum Ehrenberg Paramecium putrinum Clap and Lachmann Paramecium trichium Stokes Vorticella microstoma Ehrenberg Urocentrum turbo (Muller) Urotricha farcara Clap and Lachmann Stylonychia mytilus Ehrenberg Stylonychia putrina Stokes Carchesium polypinum Linnaeus Litonotus lamella Schewiakoff Paramecium bursaria (Ehrenberg) Spirostomum teres Clap and Lachmann Biotic indices for BMWP Score (after National Water Council 1981) FAMILIES Sipolonuridae Heptageniidae Leptophlebiidae Ephemerellidae Potamanthidae Ephemeridae Taeniopterygidae Leuctridae Capniidae Perlodidae Perlidae Chloroperlidae Aphelocheiridae Phryganeidae Molannidae Beraeidae Odontoceridae Leptoceridae Goeridae Lepidostonatidae Brachycentridae Sericostomatidae Astacidae Lestidae Agriidae Gomphidae Cordulegasteridae Aeshnidae Corduliidae Libellulidae Psychomyiidae Philopotamidae Caenidae Nemouridae Rhyacophilidae Polycentropodidae Limnephilidae Neritidae Viviparidae Ancylidae Hydroptilidae Unionidae Corophiidae Gammaridae Platycriemididae Coenagriidae SCORE 10 8 7 6 38 Biotic indices for BMWP Score (after National Water Council 1981) con. FAMILIES SCORE Mesovelidae Hydrometridae Gerridae Nepidae Naucoridae Notonectidae Pleidae Corixidae Haliplidae Hygrobiidae Dytiscidae Gyrinidae Hydropoilidae Chlambidae Helodidae Dryopidae Elminthidae Chrysomelidae Curculionidae Hydropsychidae Tipulidae Simuliidae Planariidae Dendrocoelidae Baetidae Sialidae Piscicolidae Valvatidae Hydrobiidae Lymnaeidae Physidae Planorbidae Sphaeriidae Glossiphoniidae Hirudidae Erpobdellidae Asellidae Chironomidae Oligochaeta (whole class) 5 4 3 2 1 Families available in Yamuna River Families available in Yamuna River. con. 39 BIOTIC INDEX OF THAI FRESHWATER INVERTEBRATES จากผลงานวิจัยลุมน้าํ แมปปง ของ Steve Mustow และ กชกร แสนนาม กรกฏาคม กรกฏาคม 2540 40 คะแนนรวม (BMWP) จํานวนวงศ (No. of family) คะแนนเฉลี่ย (ASPT) ผลงานวิจัยกรณีศกึ ษาจากแมน้ําตาง ๆ ในภาคเหนือของประเทศไทย Average Score Per Taxa (ASPT) น้ําปง 41 Average Score Per Taxa (ASPT) ลําธารบนดอยอินทนนท น้ําแมกวง Mae Sa 42 Total No. of macroinvertebrates families and % of families refer to reference point (5a) Mae Sa ตัวอยางการใชวิธี Rapid Bioassessment เพื่อการประเมินคุณภาพน้ําในพื้นที่เชียงใหม Rapid Bioassessment (EPA Protocols for use in Streams and Rivers) The metrics evaluated were: 1. Taxa or family richness = total number of distinct taxa or family 2. Family biotic index (modified) FBI = (Xi ti/ n) * 3. Ratio of EPT and Chironomidea Abundances 4. Percent contribution of dominant family 5. EPT index = total number of distinct Taxa with in E, P, T 6. Community similarity/ loss indices : -Jaccard Coefficient of Community Similarity -Community Loss Index (d – a )/ e = a/ (a + b + c) a = number of families common to both samples b = number of families present in Sample B but not A c = number of families present in Sample A but not B d = total number of families in Sample A e = total number of families in Sample B Note * For FBI – Xi = number of individual with in a family ti = tolerance value of a family (from total) n = total number of organisms in the sample 43 List of families and number of individuals found at each site. 44 Tolerance values (0 – 10) for a family biotic index Orders Ephemeroptera Odonata Plecoptera Megaloptera Trichoptera MODIFIED FROM HILSENHOFF (1988) Families Caenidae, Siphonuridae Baetidae, Ephemeridae, Heptageniidae, Potamanthidae Baetiscidae Leptophelbiidae, Isonychiidae, Meteropodidae, Polymitarcyidae, Ephemerellidae Coenagrionidae, Lestidae, Libellulidae Calopterygidae, Corduliidae Aeshnidae, Macromidae Gomphidae Nemouridae, Perlodidae, Taeniopterygidae Capniidae, Cloroperlidae, Perlidae Pteronarcyidae, Leutridae Sialidae Corydalidae Hydropsychidae, Polycentropodidae Molannidae, Hydrotilidae, Leptoceridae, Limnephilidae, Phryganeidae Trichoptera Helicopsychedae, Philopotamidae, Sericostomatidae Psychomyiidae Brachycentridae, Lepidostomatidae Glossosomatidae, Odontoceridae, Rhyacophilidae Lepidoptera Pyralidae Coleoptera Dryopidae Elmidae, Psephenidae Diptera Psychodidae, Syrphidae Blood – red Chironomidae Pink Chironomidae, Ceratopogonidae, Empididae, Simuliiidae, Muscidae, Tabanidae Dolichopodidae Tipulidae Athericidae Blepharicidae Amphipoda Talitridae Gammaridae Isopoda Aeshllidae Oligochaeta Tubificidae Naididae, Lumbriculidae Source: Morse et al. 1984 Tolerance values 7 4 3 2 9 5 3 1 2 1 0 4 0 6 4 3 2 1 0 4 5 4 10 8 6 4 3 2 0 8 4 8 10 8 Note: Note Hemiptera and Coleoptera are not assigned tolerance values because of their mobility and their air-breathing ability, which make their presence in a waterway somewhat independent of the presence of pollutants. Ranges of index scores associated with quality point scores Quality Point 1. Taxa richness 2. Hilsenhoff’s FBI 3. EPT: Chironomids 4. EPT Index 5. Community Loss Index 6. % Dominant Taxon Source: Plafkin et al. (1989) 6 >80% >85% >75% >90% <0.5 <20% 4 61-80% 71-85% 51-75% 81-90% 0.5-1.5 20-30% 2 40-60% 50-70% 25-50% 70-80% 1.6-4.0 31-40% 0 <40% <50% <25% <70% >4.0 >40% 45 Quality point ranges for the final classification of sites. % of Biological Reference Condition Category Score >83% Nonimpaired Attributes 54-79% Slightly impaired Loss of some sensitive taxa/families. Contribution of tolerance forms increased. 21-50% Moderately impaired Fewer families/taxa due to loss of most of sensitive groups, notably EPT. <17% Severely impaired Few families/taxa. Community dominated by one or two groups. Comparable to the condition at the reference site, with good community structure. Source: Plafkin et al. (1989) Water quality scores of the dry season sampling trip Trip 1 S1 Taxa richness 6 FBI 6 EPT/Chiro 6 EPT idx 6 Com. Loss 6 % dom. fam. 4 TOTAL 34 100 % Water N quality Note: S2 4 6 6 6 4 6 32 94 % N S3 4 6 6 0 4 0 20 59 % S P1 P2 4 4 6 4 6 4 0 0 4 4 2 2 22 18 65 53 % % S S-M P3 IC1 IC2 4 0 0 4 4 6 6 2 0 0 0 0 4 2 2 4 0 0 22 8 8 65 24 24 % % % S M M IC3 SC1 SC2 SC3 2 0 0 0 4 2 2 2 0 0 0 0 0 0 0 0 4 2 2 0 4 0 2 0 14 4 6 2 41 12 18 6 % % % % M SV M- SV SV N = Non – impaired S = Slightly impaired M = Moderately impaired SV= Severely impaired Dendrogram of the Dry season sampling trip 46 การเปรียบเทียบวิเคราะหการใชรูปแบบการประเมินคุณภาพน้ําโดยใชสัตวหนาดิน วิธีการแบบตาง ๆ กับประโยชนของการนํามาใช (แหลงขอมูล Schafer, 1997) Zoogeographic regions of the world * Less knowledge on biodiversity study in the tropic Need more further intensive study AT = Afrotropical OL = Oriental NA = Nearctic NT = Neotropical EP = East Palearctic AU = Australasian WC = West Palearctic http://entweb.clemson.edu/database/trichopt/ Speciescape in which the size of individual organisms is approximately proportional to the number of described species in the higher taxon that it response. (After Wheeler, 1990) source: Gullen, J.F. and P. Cranston, 2000 47 1. Monera 2. Fungi 3. Algae 4. Plantae 5. Protozoa 6. Porifera 7. Cnidanaria 8. Platyhelminthes 9. Nematoda 10. Annelida 11. Mollusca 12. Echinodermata 13. Insecta 17. Reptilia 14. Non-insect Arthropoda 18. Aves 15. Pissces 19. Mammalia 16.Amphibia Species – definition a group of actually of potentially interbreeding natural populations reproductively isolated from other such groups. Information of species attributes on -Development -External + Internal Anatomy -Coloration -Cytology -Physiology -Biochemistry -Serology -Behaviour -Ecology Characters of Species 48 Speciation - process of distinguishing species based on Phylogenetic tree a b1 b2 b3 TIME B c1 c2 C d1 d2 d3 d4 d5 D A Dissimilarity A Hypothetical phylogenetic tree Generic limit by phenetic taxonomist Generic limit by phylogenetic taxonomist ( A, B, C, D Evolutionary lines) 49 50 51 Trichoptera แมลงหนอนปลอกน้ํา เปนกลุมสิ่งมีชีวติ ทีพ่ บทั่วไปในระบบนิเวศแหลงน้ําทุก ประเภท จากการศึกษาของหองปฏิบัตกิ ารวิจยั แมลงน้ํา ภาควิชาชีววิทยา คณะวิทยาศาสตร มหาวิทยาลัยเชียงใหม สามารถทําการจําแนก ไดถึงระดับชนิด ทัง้ หมดประมาณ 713 ชนิด เปนชนิดใหมที่ตงั้ ชื่อจาก ตัวอยางในประเทศไทยกวา 78 % และยังมีชนิดใหมทยี่ ังไมไดรับการ ตั้งชื่ออีกจํานวนหนึง่ เนื่องจากเปนสิ่งมีชีวติ ที่มีการศึกษาทางดาน อนุกรมวิธานมาแลวเปนอยางดี ประกอบกับคุณสมบัตทิ ี่มีความไวใน การตอบสนองตอการรบกวนถิ่นที่อยู จึงไดมีการศึกษาเพื่อใชเปน b i o i n d i c a t o r ของคุณภาพน้ํา 52 ตัวอยางการศึกษาเรื่องการใชแมลงหนอนปลอกน้ํา (Order Trichoptera) ในการตรวจสอบคุณภาพสิ่งแวดลอม Prachaub chaibu, 2000. POTENTIAL USE OF TRICHOPTERA AS WATER POUULATION BIOMONITORING IN PING RIVER CHIANG MAI. Sampling sites along the Ping River PO1 : Ping Khong PO2 : Chiang Doa PO3 : Taeng Doa elephant camp PO4 : Tha Dua village 53 PO5 : Ton Kham PO6 : Mae Rim PO7 : Pa Tan PO8 : Meng Rai Bridge PO9 : Pa Dad PO10 : Wang Sing Kham PO11 : Hnong Tong PO12 : Mae Ka Bridge Physical and Chemical Parameters <-------> Biological communities 54 Heavy metals concentration Percentage of species richness in each family Caddisflies diversity - male caddisflies : 13 families, 25 genera, 58 species Dominant species Ecnomus puro 18.7 % Setodes argentiguttatus Paduniella semarangensis 13.0 % 11.8 % 55 HMDS ordination based on caddisflies individuals Site ordination Caddisflies indicator species ordination Water quality variables ordination Ordination of reference sites based on caddisflies indicator species and Water quality variables Correlation coefficients of 11 sensitive(no. 1-11) and 7 tolerant (no.12-18) caddisflies species and environmental variables by Spearman correlation coefficients test. 56 11 Sensitive species 5 Hydropsychidae - Amphipsyche gratiosa Cheumatopsyche globosa Hydropsyche dolosa Macrostemum midas Potamyia phaidra 5 Leptoceridae - Leptocerus dirghachuka Oecetis empusa Setodes endymion Setodes fluvialis Setodes argentiguttatus 1 Odontoceridae - Marilia sumatrana Conclusions Indicator species Sensitive species Hydropsychidae Leptoceridae Odontoceridae 18 sp. 11 sp. 5 sp. 5 sp. 1 sp. Tolerant species Hydropsychidae Leptoceridae Ecnomidae Psychomyiidae 7 sp. 4 sp. 1 sp. 1 sp. 1 sp. Can be used to assess water quality of the Ping River : Conductivity, TDS, Alkalinity, Suspended solids, DO, BOD5, NH3, NO3 Acknowledgement These presentation were produced under the teaching media production program from Biology Department, Faculty of Science, Chiang Mai University 57 References 1. Abel P.D. 1989. Water Pollution Biology. John Wiley & Sons. New York. 2. Caduto M.J. 1990. Pond and Brook: A Guild to Nature in Freshwater Environments.University Press of New England, Hanover. 3. Hellawell J.M. 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Elsevier Applied Science Publishers, London. 4. Gullen J.F. and Cranston P.,2000. The Insects: an outline of entomology(2nd Ed). Blackwell S c i e n c e L t d . , O x f o r d . 5. Landis W.G. and Yu M.H. 1999. Introduction to Environmental Toxicology: Impact of Chemicals Upon Ecological System (2nd Ed). Lewis Publishers, London 6. Mason C.F. 1998. Biology of Freshwater Pollution (3rd Ed). Blackwell Science Ltd., O x f o r d . 7. Moss C.F. 1995. Ecology of Fresh Waters: Man and Medium (2nd Ed). Blackwell Science L t d . O x f o r d . 8. Muirhead-Thomson R.C. 1989. Pesticide Impact on Stream Fauna with Special Reference t o M a c ro i n v e r t eb r a t e s . C a m b r id g e Un i v e r s i t y P r e s s , Ca m b r i dg e . 9. Rosenberg, D.M.and Resh V.H.( Eds.). 1993. Freshwater biomonitoring a nd b en t h ic macro inver tebra tes. Cha pman and Hall, New York. 10. Sch ä fer A. 1997. Biogeographic der Binnengewässer. Teubner Stuttgart. 11. Tapp J.F., Hunt S.M. and Wharfe J.R. 1996. Toxic Impact of Wastes on the Aquatic Environment. The Royal Society of Chemistry. Hartnolls Ltd., Cornwall. 58
© Copyright 2025