GCE Examinations Advanced Subsidiary / Advanced Level Pure Mathematics Module P5 Paper D MARKING GUIDE This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for knowing and using a method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Rosemary Smith & Shaun Armstrong Solomon Press These sheets may be copied for use solely by the purchaser’s institute. P5 Paper D – Marking Guide 1. 2. (a) dy −( x 2 + 1)cosech x coth x − 2 x cosech x = dx ( x 2 + 1) 2 (b) x = 0.5, ρ= dy = −4.55 (2dp) dx ds = 2(s + a) ∴ dψ ∫ 1 s+a ds = A1 ∫ 2 dψ ln | s + a | = 2ψ + c s + a = e 2ψ + c = e 2ψ × e c ∴ s = Ae2ψ − a [where A = ec] 3. (a) (b) sinh 3x ≡ sinh (2x + x) ≡ sinh 2x cosh x + cosh 2x sinh x ≡ 2 sinh x cosh2x + (1 + 2 sinh2x)sinh x ≡ 2 sinh x(1 + sinh2x) + sinh x + 2 sinh3x ≡ 2 sinh x + 2 sinh3x + sinh x + 2 sinh3x ≡ 4 sinh3x + 3 sinh x 4 sinh3x + 3 sinh x = 7 sinh2x sinh x(4 sinh2x − 7 sinh x + 3) = 0 sinh x(4 sinh x − 3)(sinh x − 1) = 0 sinh x = 0 or 34 or 1 x = 0 or ln ( 3 4 + 1 + 169 ) or ln (1 + (5) M1 A1 A1 M1 A1 (5) M1 A1 M1 M1 A1 M1 M1 A1 1+1 ) x = 0 or ln 2 or ln (1 + √2) P5D MARKS page 2 M2 A2 M1 A2 Solomon Press (11) 4. (a) 1 ∫ 9 − 4x 1 2 = (b) 1− 2x ∫ 1 2 dx = 9 − 4 x2 ∫ y 1 1 y ∫ dy = 1 9 4 arcsin ( 23x ) + x 1− 2x 0 9 − 4 x2 1 2 ln | y | = 5. (a) 1 2 M1 arcsin ( 23x ) + c 1 2 2x 9 − 4 x2 dx 9 − 4x 2 + c 1 2 x 1 2 9 − 4x 2 − ( 12 arcsin 0 + 9 − 4x 2 − 3 2 dy dy = 4a ∴ = 2a y dx dx dy a at P, = 22ap = 1p dx grad of PQ = grad of PS = M1 A1 A1 (12) M1 ap 2 − aq 2 = 2( p − q ) = ( p + q )( p − q ) = p 2+ q 2p M1 A1 A1 p 2 −1 2p (c) ) A1 2 ap − 2 aq ap 2 − a 3 2 A1 2 2 ap − 0 A1 M1 eqn. is y − 2ap = 1p (x − ap2) (b) M1 A1 9 − 4x 2 ] 0 2y giving yp = x + ap M1 M1 A1 1 2 arcsin ( 23x ) + arcsin ( 23x ) + ∫ M1 A1 dx y [ln | y |] 1 = [ 12 arcsin ( 23x ) + ln | y | − ln 1 = dx − x2 arcsin ( 23x ) − 1 2 = (c) 1 2 ∫ dx = 2 ∴ p 2+ q = 2 p −1 2 p − 1 = p(p + q) p2 − 1 = p2 + pq ∴ pq = −1 A1 tangent at P: yp = x + ap2 (i) tangent at Q: yq = x + aq2 (ii) (i) × q: ypq = xq + ap2q (ii) × p: ypp = xp + apq2 subtracting 0 = x(p − q) + apq(q − p) 0 = x − apq pq = −1 ∴ x = −a ∴ meet on directrix M1 M1 A1 A1 M1 Solomon Press (13) P5D MARKS page 3 6. (a) u = secn−2x, u′ = (n − 2)secn−3x sec x tan x; v′ = sec2x, v = tan x In = [sec π 4 n−2 x tan x] 0 − π 4 ∫ (n − 2)sec 0 π 4 In = (√2)n−2 − 0 − (n − 2) ∫ In = (√2)n−2 − (n − 2) ∫ π 4 0 n−2 2 x tan x dx A1 secn−2x(sec2x − 1) dx secnx dx + (n − 2) ∫ 0 π 4 0 M1 A1 secn−2x dx In = (√2)n−2 − (n − 2)In + (n − 2)In−2 (n − 1)In = (√2)n−2 + (n − 2)In−2 (b) I1 = ∫ π 4 M1 A1 π sec x dx = [ln | sec x + tan x |] 04 0 M1 = ln (√2 + 1) − ln (1 + 0) = ln (√2 + 1) 2I3 = (√2)1 + I1 = √2 + ln (√2 + 1) I3 = 12 √2 + 12 ln (√2 + 1) 7. (a) x2 = a2sinh2u, x = a sinh u, ∫ ∫ ∫ a 2 + x 2 dx = = 1 2 = 1 2 = 1 2 = (b) ∫ 3 (c) 3 0 s = 2[ 2t A1 ∫ cosh 2u + 1 du M1 a2[ 12 sinh 2u + u] + c A1 a 2 a sinh u cosh u + 2 x a = 1 2 a× = 1 2 ax 1 + ax 2 + = 1 2 x a2 + x2 + 1+ t2 + 1 2 1 2 M1 a cosh u du 2 × 1 + ax 2 + 2 1 2 1 2 1 2 2 au+c 2 a arsinh( M1 x a )+c M1 a2arsinh( ax ) + c 1 2 a2arsinh( ax ) + c A1 M1 M1 A1 1 + t 2 dt s = 2[( 32 √10 + P5D MARKS page 4 2 4 + 4t 2 dt 0 s=2∫ a 2 + a 2 sinh 2 u (a cosh u) du 2 (13) M1 A1 dx dy = 2; y = t2, = 2t dt dt x = 2t, s= M1 A1 M1 A1 A1 dx = a cosh u du 2 M1 A1 A1 arsinh t] 30 M1 arsinh 3) − (0 + 0)] = 3√10 + arsinh 3 Solomon Press M1 A1 (16) Total (75) Performance Record – P5 Paper D Question no. 1 Topic(s) diff. hyp. fns Marks 5 2 intrinsic coords 5 3 eqn. in hyp. fns. 4 integr. std. forms 11 12 5 6 7 parabola, tangent reduction formula integr. using hyp. sub., arc length 13 13 16 Total 75 Student Solomon Press P5D MARKS page 5
© Copyright 2024