Sample preparation • sand sample -LCPC sand sample -UCAM sand sample • Clay sample -LCPC clay sample 2 Sand sample preparation Objectives (Ternet, 1999): -Reproducibility -Spatial homogeneity of the density -Organisation of the the sand grain comparable to in-situ sample Longitudinal g axis of the particles (Ternet, 1999) ((Ternet,, 1999)) Methods: -Manual ⇒ p poor reproducibility p y and homogeneity g y -Vibration of the box ⇒ poor homogeneity, small box -Layer rodding ⇒ controled unit weight, poor homogeneity, poor reproducibility -Layer tamping ⇒ poor homogeneity -Raining ⇒ reproducibility (automatic device), homogeneity (Mullis et al, 1977), comparable organisation of the sand grain (Miura & Toki, 1984) 3 Sand sample preparation Sand raining Parameters: Controlled parameters (Garnier , 2002): -Falling heigth : 0.4m (0.57m) to 2m -Relative density or void ratio -Hooper aperture : 2 – 3 - 4 mm (aperture > 2x maximum grain size) -State of geostatic stress (σv, σH, KO) -Horizontal velocity -Mechanical characteristics (evaluated by qc) 4 Sand sample preparation y = 0,0x + 94,6 2 R = 0,5 y = 0,3x + 90,5 2 R = 0,9 3mm hp=60cm 94,0 3mm hp=80cm 89,0 y = 0,9x + 77,8 2 R = 1,0 y = 0,5x + 86,2 2 R = 1,0 3mm hp=90cm 84,0 y = 0,8x + 75,3 2 R = 1,0 Id (%) 79,0 4mm hp=60cm y = 1,4x + 64,2 2 R = 1,0 74,0 4mm hp=75cm 4mm hp=90cm 69,0 y = 2,2x + 54,1 2 R = 1,0 64,0 2mm hp=60cm y = 3,7x 3 7 + 26 26,6 6 2 R = 1,0 y = 2,9x + 40,0 2 R = 1,0 59,0 2mm hp=75cm 54,0 2mm hp=90cm 49,0 5 7 9 11 13 15 17 19 Vh (cm/s) (Thiriat, 2009) 5 Sand sample preparation Calibrate density box Dense sand (16kN/m3) Medium dense sand (15kN/m3) (Ternet, 1999) Direction of the horizontal displacement of the hooper (Ternet, 1999) Density increases with the depth 6 Sand sample preparation (Ternet, 1999) 7 Sand sample preparation Homegeneous area (Ternet, 1999) 8 Sand sample preparation European collaboration ( LCPC, Brunel University, Lyngby University) ⇒ prototype pressure cell ll for f granular l material i l Installation tool + standardised procedure ⇒ stress measurement in sand better than 5% (Ternet, 1999) 9 Sand sample preparation -silo effect W= =800 H=720 H -coefficient coefficient of horizotnal pressure at rest: K0 L=1200 transversal view Top view Ratio H/W=0.87 H/L=0.58 (Ternet, 1999) 10 Sand sample preparation -silo effect Top view Transversal view Depth of the ESB box (Ternet, 1999) 11 Sand sample preparation -coefficient of horizontal pressure at rest: K0 unloading Variation of KO during the spin up and the spin down of the centrifuge Loading phase: K0 constant for N>15g loading g (Ternet, 1999) G-level (g) Variation of KO with the soil density k0 = 2.37 − 0.13γ d (Ternet, 1999) Relative density Dr 12 Sand sample preparation -Mechanical properties of the sand sample : qc (Ternet, 1999) (Ternet, 1999) Scattering Scatte ing of abo aboutt 12% 13 Sand sample preparation (Zhao et al., 2006) (Zhao et al., 2006) (Madabushi et al., 2006) (Zhao et al., 2006) 14 Sand sample preparation (Madabushi et al., 2006) (Zhao et al., 2006) Flow rate is the major parameter 15 (Zhao et al., 2006) Sand sample preparation (Zhao et al., 2006) 16 Clay sample preparation • Type of clay sample - reconstituted sample ⇒ clay coming for the site or « well-known clay » - undisturbed sample ⇒ clay coming for the site and carrefull sampling Use of undisturbed sample abandoned because of excessive local heterogeneities (Garnier, 2002) “well-known clay” : IFSTTAR Speswhite clay (kaolinite) “site clay” : Rion clay (Greece), Lysaker clay (Norway) •IFSTTAR boxes for clay sample (Khemakhem, 2011) (Garnier, 2001) 17 Clay sample preparation • Methods of clay sample reconstitution Methods References Hydraulic gradient Hamilton et al, (1991) L Luong & Rivière Ri iè (1999) Rahman et al. (2000) Hydraulic actuator Mc Namara et al. (2010) Begag Qerimi et al al. (2010) In fligth consolidation Ilyas et al. (2004) Hydraulic actuator +In fligth consolidation Kitazume & Miyajima (1994) (Khemakhem, 2011) IFSTTAR centrifuge 18 Clay sample preparation • Consolidation at 1g with hydraulic actuator • successive clay layers of about 10cm thick (at the end of the consolidation) • 1 week per layer (kaolinite) – drainage at both end of the clay sample • σv selected based on the request OCR and the σv at Ng mixing Draining layer (sand + geotextile or geotextile) Kaolin powder + water Clay slurry Cl l w = 90 % (about 2 time wl) Preparation of the following layer Consolidation (Khemakhem, 2011) 19 Clay sample preparation • Consolidation at Ng • avoid desaturation during the fligth ⇒ water layer above the sample surface (few cm) • consolidation indicator ⇒ pore pressure profile and surface settlement • hydrostatic pore pressure distribution • settlement stabilization : asaoka method (Magnan, 1980) 20 (Khemakhem, 2011) Clay sample preparation • Evolution of Cu profile at Ng – limitations Su near surface decreases rapidelly Low Su near surface (offshore conditions) Normally consolidate sample clay (Khemakhem, 2011) Overconsolidate sample clay (Khemakhem, 2011) 21 Clay sample preparation • Selection of σv for consolidation at 1g versus the request Su profile Expression of Su versus OCR (Ladd et al, 1977) ⎡S ⎤ = ⎢ u' ⎥ OCR m ' σ v ⎣ σ v ⎦ nc Su with OCR = σ v' max (σ v' ) Experimental determination for Su=f(OCR) for the kaolinite clay 1g 550 kPa 0 kPa Test at 100g 135 to 550kPa qc measurements q at different σ’v qc = 3.5σ v' OCR 0.59 with S u = 18.5qc qc measurements at different σ’v (depths) (Garnier 2001) (Garnier, 22
© Copyright 2025