Journal of Scientific Research Volume XXXIV No. 2 October 2005 ON THE VARIANCE OF THE SAMPLE MEAN FROM FINITE POPULATION Syed Shakir Ali Ghazali1*, Ghausia Masood Gilani**, Muhammad Hussain Tahir*** *Department of Statistics, Govt. S.E. College, Bahawalpur. **Institute of Statistics, Punjab University, Lahore ***Department of Statistics, Islamia University, Bahawalpur ABSTRACT An alternate proof of the variance of the sample mean in case of simple random sampling without replacement (SRSWOR) is obtained. This proof is very simple and avoids the use of expectation. Key words: Sample mean, simple random sampling, variance, without replacement sampling. 1. INTRODUCTION Simple random sampling from a finite population has attracted much of APPROACH I: the researchers and Barnett (2002, p.32-35) has given the proof of the practitioners working in surveys. It is the simplest, variance of mean as follows: most preferable and widely used probability If a sample of size n is drawn from a finite sampling technique. The variance or standard error population of size N having y1 , y1 , L , y N units, of the sampling distribution of mean serves as a N n then there are K = distinct samples each basis for efficiency comparison with other sampling methods like stratified random sampling, systematic −1 N having the same probability . n sampling, cluster sampling etc. The variance of sample mean in case of SRSWOR has been Let y i , i = 1, 2, L , n be the ith chosen member, then discussed by Hansen et al. (1953), Murthy (1967), the probability for obtaining this ordered sequence Sukhatme and Sukhatme (1970), Cochran (1977), Jessen (1978), Singh and Chaudhary (1986), is DesRaj and Chandhok (1998), Mukhopadhyay But the probability for obtaining any particular set (1998), Govindarajulu (1999), Barnett (2002) and of n distinct population members (irrespective of Sampath (2005). In literature, three different −1 approaches for the variance of sample mean in the order) is just simple random sampling without replacement (SRSWOR) are available, which are given below: 1 ( N − n)! 1 1 1 1 . L = . . N N −1 N − 2 N − n +1 N! For proof and correspondence: S. S. A. Ghazali 19 n! ( N − n)! N = . N! n Journal of Scientific Research Volume XXXIV No. 2 October 2005 Then the estimator of Y based on simple random Consider sample of size n is y= n( y − Y ) = ( y1 − Y ) + ( y 2 − Y ) + L + ( y n − Y ) 1 n ∑ yi , n i =1 But [ which is an unbiased estimator of Y . E ( y1 − Y ) 2 + L + ( y n − Y ) 2 Now for variance 1 Var ( y ) = Var n = 1 n 2 n ∑ i =1 = yi 2 i 2 i =1 i j) E ( y i2 ) = 1 N ( y1 − Y )( y 2 − Y ) n(n − 1) = + ( y1 − Y )( y 3 − Y ) N ( N − 1) + L + ( y N −1 − Y )( y N − Y ) =Y , i =1 N ∑Y i 2 and units in the sample and population respectively. The N ∑Y Y i j (i ≠ j ) sum on the left contains i< j We get Var ( y i ) = (1. 5) Here the sum of products extends over all pair of i =1 2 E( yi y j ) = N ( N − 1) (1.4) ( y1 − Y )( y 2 − Y ) + ( y1 − Y )( y 3 − Y ) E + L + ( y n −1 − Y )( y n − Y ) (1.1) i< j N i ] n ∑ Var ( y ) + n ∑ Cov ( y , y ∑Y n ( y1 − Y ) 2 + L + ( y N − Y ) 2 N Also n Using the results on Barnett (2002, p34) that 1 E( yi ) = N [ ] (1.3) ( N − 1) 2 S2 S and Cov ( y i , y j ) = − N N right contains (1. 2) n(n − 1) and that on the 2 N ( N − 1) terms. 2 Now squaring (1.3) and averaging over all simple Hence by using (1.2) in (1.1), we have random samples. We get by using (1.4) and (1.5), 1 n ( N − 1) S 2 n (n − 1) S 2 − Var ( y ) = 2 N N n N −n 2 S Var ( y ) = Nn n 2 E( y − Y ) 2 ( y1 − Y ) 2 + L + ( y N − Y ) 2 n = 2(n − 1) ( y1 − Y )( y 2 − Y ) N + N − 1 + L + ( y N −1 − Y )( y N − Y ) Sampath (2005) and DesRaj and Chandhok (1998) also used the same approach for the derivation of Completing the square on the cross-product term, the variance of sample mean SRSWOR. we have 2 n − 1 ( y1 − Y ) 1 − 2 n N − 1 + L + ( y N − Y ) 2 2 n E( y − Y ) = (1.6) 2 N (n − 1) ( y1 − Y ) + N − 1 + L + ( y N − Y ) APPROACH II: Cochran (1977, p.23-24) has given the proof of the variance of the mean y as under: 20 Journal of Scientific Research Volume XXXIV No. 2 October 2005 The second term inside the curly brackets vanishes, Therefore since the sum of y i equals NY . Division of (1.6) Cov ( ai a j ) = E (a i a j ) − E (a i ) E (a j ) 2 by n gives = V ( y) = E( y − Y ) 2 = N −n n N ( N − 1) N ∑ ( yi − Y ) 2 = i =1 n (n − 1) n − N ( N − 1) N = − N −n 2 S Nn 2 n n 1 − N ( N − 1) N Now we will find the variance as This approach has also been used by DesRaj and 1 N Var ( y ) = Var ∑ a i y i n i =1 Chandhok (1998) Govindarajulu (1999), Hansen et al. (1953) and Singh and Chaudhary (1986). APPROACH III: N N 2 ∑ y i Var (a i ) + 2∑ y i y j Cov (a i , a j ) i =1 i< j = 1 n2 = 1− f nN Cornfield (1944) suggested another proof that uses the results from an infinite population theory, which is as follows: N 2 2 N − y yi y j ∑ i ∑ N − 1 i< j i =1 Let a i be the random variate such that a i takes the Completing the square on the cross-product term value “1” if the ith unit is drawn and “0” otherwise. gives Then sample mean can be written as y = N 1 ∑ ai yi , n i =1 = where the sum extends over all N units in the 1− f N N 2 1 yi − Y2 ∑ nN N − 1 i =1 N −1 1− f N = ( yi − Y ) 2 ∑ n( N − 1) i =1 1− f 2 N − n 2 Var ( y ) = S = S n Nn = population. Here a i are random variables and the y i are set of fixed numbers. n n , Pr(a i = 0) = 1 − N N Thus a i is distributed as binomial variate in a Clearly 1− f N 2 1 N 2 ∑ y i + Y 2 y − ∑ i nN i =1 N − 1 i =1 Pr(a i = 1) = single trial, with P = n . N This method is also cited in Murthy (1967), Hence E ( ai ) = P = n n n , V (a i ) = PQ = 1 − N N N advantage of Cornfield’s (1944) method is that it is Cochran (1977) and Govindarajulu (1999). The useful in evaluating higher moments of the distribution of y . The probability that two specific units are both in a sample is equal to n (n − 1) . N ( N − 1) We have developed an alternate method for the variance of sample mean in case of simple random sampling without replacement given in section 2. 21 Journal of Scientific Research Volume XXXIV No. 2 October 2005 2. ALTERNATE METHOD FOR VARIANCE OF SAMPLE MEAN IN SRSWOR ( y − Y )2 + ( y − Y )2 + L + ( y − Y ) 2 n 2 + 1 + 2 ( y1 − Y ) ( y2 − Y ) + L + 2( yn −1 − Y )( yn − Y ) ( y1 − Y )2 + L + ( yn −1 − Y ) 2 + ( yn +1 − Y ) 2 1 + 2( y1 − Y ) ( y2 − Y ) + L + 2( yn −1 − Y )( yn +1 − Y ) Var ( y ) = 2 n k + L + 2 2 y Y ) ( y Y ) L ( y Y ) − + − + + − N −n+2 N N − n +1 + 2( y N − n +1 − Y ) ( y N − n + 2 − Y ) + L + 2( y N −1 − Y )( y N − Y ) Suppose a simple random sample of size n is drawn from a population Y1 , Y2 , L , Y N of size N with out replacement. Then the total number of samples of N size n is k = and the samples are given as n below: Since over all possible samples, each { y1 , y 2 , L , y n }, { y1 , L y n −1 , y n +1 } ,L , N − 1 times and each Yi ( i = 1, 2, , L , N ) appears n −1 { y N − n +1 , y N − n + 2 , L , y N } N − 2 The variance of all possible sample means without times, therefore pair Yi Y j appears n−2 replacement is given as 1 Var ( y ) = k Var ( y ) = k ∑(y j N − 1 N (Yi − Y ) 2 1 n − 1 i =1 Var ( y ) = N N − 2 2N n + 2 (Yi − Y )(Y j − Y ) n n − 2 i j >i ∑ −Y )2 j =1 { 1 ( y1 − Y ) 2 + ( y 2 − Y ) 2 + L + ( y k − Y ) 2 k ∑∑ } N − 1 N (Yi − Y ) 2 1 n − 1 i =1 Var ( y ) = N N N − 2 2 n 2 − ( Y Y ) − i n n − 2 i =1 ∑ 2 y + y + L + y 2 n 1 − Y n 2 1 y1 + L + y n −1 + y n +1 − Y Var ( y ) = + n k 2 + L + y N − n +1 + y N − n + 2 + L + y N − Y n ( ) y + y + L + y − nY 2 2 n 1 1 2 Var ( y ) = 2 + y1 + L + y n −1 + y n +1 − nY n k + L + y N − n +1 + y N − n + 2 + L + y N − nY ( ( ( ) ) ∑ Var ( y ) = 2 ) ( y −Y ) + (y −Y ) +L+ (y −Y ) 2 n 2 1 2 1 + ( y1 − Y ) + L + ( y n −1 − Y ) + ( y n +1 − Y ) Var ( y ) = 2 n k + L + y N − n +1 − Y ) + ( y N − n + 2 − Y ) + L + ( y N − Y ) ( ( Var ( y ) = ) 3. 2 ) 22 N − 2 1 N − 1 Nσ 2 Nσ 2 − N n −1 n−2 n 2 n σ 2 N −n N −n 2 S = n N −1 N n REMARKS The alternative method developed here is simple and without the use of expectation. Journal of Scientific Research Volume XXXIV No. 2 October 2005 Second Revised Edition, Iowa State University REFERENCES Press, Ames, Iowa. 1. Barnett, V. (2002) Sample Survey: Principles and Methods. 3rd Edition, Arnold, London. 2. Cochran, W.G. (1977) Sampling Techniques. 3rd Edition, Wiley, New York. 3. Cornfield, J. (1944) On samples from finite population. J. Amer. Statist. Assoc. 39, 236239. 4. DesRaj and Chandhok, P. (1998) Sample Survey Theory. Narosa Publishing House, New Delhi. 5. Govindarajulu, Z. (1999) Elements of Sampling: Theory and Methods. Prentice-Hall Inc. 6. Hansen, M.H., Hurwitz, W.N. and Madow, W.G. (1953) Sample Survey Methods and Theory. Volume II: Theory. Wiley, New York. 7. Jessen, R. J. (1978) Statistical Survey Techniques. Wiley, New York. 8. Mukhopadhyay, P. (1998) Theory and Methods of Survey Sampling. Prentice-Hall India Pvt. Ltd., New Delhi. 9. Murthy, M. N. (1967) Sampling Theory and Methods. Statistical Publishing Society, Calcutta. 10. Sampath, S. (2005) Sampling Theory and Methods. 2nd Edition. Narosa Publishing House, New Delhi. 11. Singh, D. and Chaudhary, F.S. (1986) Theory and Analysis of Sample Survey Designs. Wiley Eastern Limited, New Delhi. 12. Sukhatme, P.V. and Sukhatme, B.V. (1970) Sampling Theory of Surveys with Application. 23
© Copyright 2025