FOR OCR GCE Examinations Advanced / Advanced Subsidiary Core Mathematics C3 Paper B MARKING GUIDE This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for using a valid method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong Solomon Press These sheets may be copied for use solely by the purchaser’s institute. C3 Paper B – Marking Guide 1. 2. (2x − 3)2 > (x + 2)2 3x2 − 16x + 5 > 0 (3x − 1)(x − 5) > 0 x < 13 or x > 5 1 3 M1 A1 M1 A2 5 3(cosec2 x − 1) − 4 cosec x + cosec2 x = 0 4 cosec2 x − 4 cosec x − 3 = 0 (2 cosec x + 1)(2 cosec x − 3) = 0 cosec x = − 12 or 32 M1 M1 A1 2 3 sin x = −2 (no solutions) or M1 x = 0.73, π − 0.7297 x = 0.73, 2.41 (2dp) 3. (i) dx = 2y − dy A2 3 y 2 y2 − 3 y = dy dx =1÷ = dy dx (ii) 1 2 y= , x= ∴ y− 1 2 = − 15 y A1 2 y2 − 3 (x − 1 4 B1 ) M1 20y − 10 = −4x + 1 4x + 20y − 11 = 0 4. (i) x xe2x I ≈ 1 3 A1 0 0.25 0.5 0.75 1 0 0.4122 1.3591 3.3613 7.3891 × 0.25 × [0 + 7.3891 + 4(0.4122 + 3.3613) + 2(1.3591)] = 2.10 (3sf) (ii) = [ − 12 e (i) (ii) 5 = ∫1 ]1 = 2 3 (4 − 2) = = π∫ 5 1 1 3x + 1 1 2 (1 − e−1) M1 A1 1 dx = [ 23 (3x + 1) 2 ] 15 = 4 3 M1 A1 dx π(ln 16 − ln 4) = M1 A1 1 3 π ln 4 = 2 3 π ln 2 [k= Solomon Press C3B MARKS page 2 (7) M1 A1 = π[ 13 ln3x + 1] 15 1 3 M1 M1 M1 A1 2 1 3x + 1 (6) A1 1 − 2x 1 = − 12 (e−1 − 1) = 5. (6) M1 A1 , grad = − 15 1 4 (5) 2 3 ] M1 A1 (8) 6. (a) 1 3 V= (b) πr2h = 2 πh × h = 3 r h , r= h 3 M1 πh3 1 9 V = 8 × 120 = 960 = ∴ (i) 1 3 = A1 dV dV = 120, = 13 πh2 dt dh dV dV dh dh = , 120 = 13 πh2 , × dt dh dt dt dh = 3.18 cm s−1 (2dp) when h = 6, dt (i) (ii) 7. 1 3 let radius = r, ∴ tan 30° = 1 9 πh3 ∴ h = 3 B1 dh 360 = 2 πh dt M1 A1 9 × 960 π = 14.011 dh = 0.58 cm s−1 (2dp) dt LHS ≡ 2 sin x cos x − sin x cos x M1 A1 2 sin x ≡ sin x(2cos x − 1) ≡ × cos 2x ≡ tan x cos 2x ≡ RHS cos x (i) cos x tan x cos 2x = 2 cos 2x cos 2x (tan x − 2) = 0 cos 2x = 0 or tan x = 2 2x = 90, 270 or x = 63.4 x = 45°, 63.4° (3sf), 135° A2 t = 0, m = 480 ∴ t = 10, m = 0.998 × 480 = 479.04 ∴ 479.04 = 400 + 80e−10k e−10k = 79.04 80 475 = 400 + 80e−kt, e−kt = 9. (i) (ii) (iii) A1 M1 A1 75 80 M1 (iv) (v) A1 dm = −80ke−kt dt dm = −80ke−100k = −0.0856 t = 100, dt ∴ decreasing at rate of 0.0856 g yr−1 (3sf) M1 A1 M1 A1 f(x) < 3 (11) B1 = f(2) = 3 − e 4 2x M1 A1 2x y=3−e , −1 (9) B1 M1 75 = 53.5 (3sf) t = − 1k ln 80 (iii) M1 A1 M1 A1 k = − 101 ln 79.04 = 0.00121 (3sf) 80 (ii) (9) M1 cos x 8. M1 A1 2 ≡ 2sin x cos x − sin x (ii) M1 A1 e = 3 − y, ∴ f (x) = 1 2 e.g. −1 2x = ln (3 − y), ln (3 − x), x ∈ x= 1 2 ln (3 − y) , x<3 y = f (x) is the reflection of y = f(x) in the line y = x so they intersect on the line y = x, hence f −1(x) = f(x) ⇒ f −1(x) = x x1 = 0.4581, x2 = 0.4664, x3 = 0.4648, x4 = 0.4651, x5 = 0.4651 ∴ α = 0.465 (3sf) M1 A2 B2 M1 A1 A1 (11) Total (72) Solomon Press C3B MARKS page 3 Performance Record – C3 Paper B Question no. Topic(s) Marks 1 2 3 4 5 6 7 8 9 Total functions trigonometry differentiation Simpson’s integration connected trigonometry exponentials functions, rule, rates and numerical integration logarithms, methods differentiation 5 6 6 7 8 Student Solomon Press C3B MARKS page 4 9 9 11 11 72
© Copyright 2024