ALLEN JEE-MAIN SAMPLE PAPER # 03 TARGET - 2014

ALLEN
TM
CAREER INSTITUTE
Path to Success KOTA (RAJASTHAN)
ALLEN JEE-MAIN SAMPLE PAPER # 03
TARGET - 2014
egRoiw . kZ lw p uk,¡
IMPORTANT INSTRUCTIONS
Do not open this Test Booklet until you are asked to do so.
bl ijh{kk iq fLrdk dks rc rd u [kksysa tc rd dgk u tk,A
ijh{kk iqfLrdk ds bl i`"B ij vko';d fooj.k uhys@dkys ckWy ikbaV isu
ls rRdky HkjsaA isfUly dk iz;ksx fcYdqy oftZr gaSA
ijh{kkFkhZ viuk QkeZ ua- (fu/kkZfjr txg ds vfrfjä) ijh{kk iqfLrdk @ mÙkj
i= ij dgha vkSj u fy[ksaA
ijh{kk dh vof/k 3 ?ka V s gSA
bl ijh{kk iqfLrdk esa 90 iz'u gaSA vf/kdre vad 360 gSaA
1.
Immediately fill in the form number on this page of the Test Booklet
with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
1.
2.
The candidates should not write their Form Number anywhere else
(except in the specified space) on the Test Booklet/Answer Sheet.
2.
3.
The test is of 3 hours duration.
3.
4.
The Test Booklet consists of 90 questions. The maximum marks are
360.
4.
5.
There are three parts in the question paper A,B,C consisting of
Mathematics, Physics and Chemistry having 30 questions in each
part of equal weightage. Each question is allotted 4 (four) marks for
correct response.
5.
bl ijh{kk iqfLrdk es a rhu Hkkx A, B, C gSa] ftlds izR;sd Hkkx esa
xf.kr] HkkSfrd foKku ,oa jlk;u foKku ds 30 iz'u gaS vkSj lHkh iz'uksa ds vad
leku gASa izR;sd iz'u ds lgh mÙkj ds fy, 4 (pkj)vad fuèkkZfjr fd;s x;s gAaS
6.
One Fourth mark will be deducted for indicated incorrect response
of each question. No deduction from the total score will be made
if no response is indicated for an item in the Answer Sheet.
6.
7.
Use Blue/Black Ball Point Pen only for writting particulars/marking
responses on Side–1 and Side–2 of the Answer Sheet.
Use of pencil is strictly prohibited.
7.
8.
No candidate is allowed to carry any textual material, printed or written,
8.
izR;sd xyr mÙkj ds fy, ml iz'u ds dqy vad dk ,d pkSF kkbZ vad dkVk
tk;sxkA mÙkj iqfLrdk esa dksbZ Hkh mÙkj ugha Hkjus ij dqy izkIrkad esa ls
½.kkRed vadu ugha gksxkA
mÙkj i= ds i` " B&1 ,oa i` " B&2 ij okafNr fooj.k ,oa mÙkj vafdr djus gsrq
dsoy uhys@ dkys ckWy ikba V isu dk gh iz;ksx djsaA
isf Uly dk iz ;ksx fcYdqy oftZr gSA
ijh{kkFkhZ }kjk ijh{kk d{k @ gkWy esa ifjp; i= ds vykok fdlh Hkh
izdkj dh ikB~; lkexzh eqfær ;k gLrfyf[kr dkxt dh ifpZ;ksa] istj]
eksckby Qksu ;k fdlh Hkh izdkj ds bysDVªkfud midj.kksa ;k fdlh vU;
izdkj dh lkexzh dks ys tkus ;k mi;ksx djus dh vuqefr ugha gSaA
bits of papers, pager, mobile phone any electronic device etc, except
the Identity Card inside the examination hall/room.
9.
jQ dk;Z ijh{kk iqfLrdk esa dsoy fu/kkZfjr txg ij gh dhft;sA
10. On completion of the test, the candidate must hand over the Answer
Sheet to the invigilator on duty in the Room/Hall. However, the
candidate are allowed to take away this Test Booklet with them.
10.
11. Do not fold or make any stray marks on the Answer Sheet.
11.
ijh{kk lekIr gksus ij] ijh{kkFkhZ d{k@gkWy NksM+us ls iwoZ mÙkj i= d{k fujh{kd
dks vo'; lkiSa nsAa ijh{kkFkhZ vius lkFk bl ijh{kk iq fLrdk dks ys tk
ldrs gaS A
mÙkj i= dks u eksMa+s ,oa u gh ml ij vU; fu'kku yxk,saA
9.
Rough work is to be done on the space provided for this purpose in
the Test Booklet only.
Corporate Office
ALLEN Career Institute,
“SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005,
Trin : +91 - 744 - 2436001 Fax : +91-744-2435003,
E-Mail: info@allen.ac.in Website: www.allen.ac.in
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
HAVE CONTROL ¾® HAVE PATIENCE ¾® HAVE CONFIDENCE Þ 100% SUCCESS
BEWARE OF NEGATIVE MARKING
PART A - MATHEMATICS
2.
r r
r
rr
For three vectors a, b and c , given a.b = 0
r
r
and c makes 30º with the plane containing a
r
r
r
r
and b . If a = 4 , b = 6 and c = 5 , volume
4.
r r
r
rr
rhu lfn'kksa a, b rFkk c ds fy;s] a.b = 0 rFkk cr ,
of tetrahedron whose coterminous edges are
r
r r
given by a, b and c will be (in cu. units)-
r
r
a rFkk b dks j[kus okys lery ds lkFk 30º dk dks.k
r
r
r
cukrk gAS ;fn a = 4 , b = 6 rFkk c = 5 gks] rks
r r
prq"Qyd dk vk;ru ftldh vklUu dkjS s a, b rFkk
r
c g]S gksxk (?ku bdkbZ esa)-
(1) 120
(1) 120
(2) 60
(3) 10
(4) 5
If P 1 : x + ay – 3z + 3 = 0 and 2.
P2 : x + 2y – bz + c = 0 are two parallel planes
such that sum of intercepts made by P2 on the
axes is 14 then value of (a + b + c) will be(1) 8
3.
1.
A
LL
EN
1.
(2) 7
(3) –6
(4) –7
(2) 60
(3) 10
(4) 5
;fn P1 : x + ay – 3z + 3 = 0 rFkk
P2 : x + 2y – bz + c = 0 nks lekUrj lery bl
izdkj gS fd v{kksa ij lery P2 }kjk cuk;s x;s vUr%
[k.Mksa dk ;ksxQy 14 gks] rks (a + b + c) dk eku
gksxk&
(1) 8
(2) 7
(3) –6
(4) –7
Absolute value of slope of a line, common 3.
tangent to both the curves given by y = x 2 and
x2 + y + 1 = 0 will be-
ml js[kk dh izo.krk dk fujis{k eku] tks nksuksa oØksa
y = x 2 rFkk x2 + y + 1 = 0 dh mHk;fu"B Li'kZ js[kk
g]S gksxk&
(1)
(1)
5
(2) 2
(3) 3
(4)
2
If ƒ(x) is invertible function " x Î [1,5] and 4.
g(x) is inverse of ƒ(x) such that g(3) = 1 and
5
6
1
3
5
(2) 2
(3)
3
(4)
2
;fn ƒ(x), " x Î [1,5] O;qRØe.kh; Qyu rFkk
g(x), ƒ(x) dk izfrykse bl izdkj gS fd g(3) = 1 rFkk
5
6
1
3
g(6) = 5 then value of ò ƒ(x)dx + ò g ( x ) dx is-
g(6) = 5 gks] rks ò ƒ(x)dx + ò g ( x ) dx dk eku gksxk-
(1) 8
(1) 8
(2) 27
(3) 64
(4) 125
SPACE FOR ROUGH WORK /
ALLEN
(2) 27
(3) 64
(4) 125
jQ dk;Z ds fy;s txg
H-1/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
¥
5.
Value of
ò
0
8.
) lnx dx is-
+1
x
2
¥
5.
ò
(x
0
(2)
2
+1
x
2
(1) 2e
) lnx dx dk eku gksxk&
(2)
2
e
(3) -
2
e
(1) 720
(2) 740
(1) 720
(2) 740
(3) 745
(4) 900
(3) 745
(4) 900
éa 2 2 ù
ê
ú
Given A = ê1 b 4 ú , where abc = –10 and 7.
êë3 5 c úû
éa 2 2 ù
A = êê1 b 4 úú fn;k x;k gS, tgk¡ abc = –10 rFkk
êë3 5 c úû
10a + 3b + c = 17 gAS |A.Adj(A)| dk eku
10a + 3b + c = 17. Value of |A.Adj(A)| will
be (1) 1000
(2) –1000
gksxk
(1) 1000
(2) –1000
(3) 0
(3) 0
(4) 1331
(4) 1331
A biased die is such that probability of 8.
obtaining face numbered i is proportional to i.
If die is rolled twice and faces 'a' and 'b' turn
up on first and second turn respectively, then
probability that a is even and b is odd is(1)
12
49
(2)
9
49
(3)
17
49
(4)
8
49
SPACE FOR ROUGH WORK /
H-2/31
(4) 'kwU;
A rFkk B nks leqPp; bl izdkj gS fd n(A) = 4 rFkk
n(B) = 5 gSA ;fn leqPp; A ls B esa laHko ifjHkkf"kr
izfrfp=.kksa dh la[;k x rFkk buesa ls y izfrfp=.k ,dd
S h
gks] rks x + y dk eku gksxk&
A
LL
EN
7.
2
2
2
(3) (4) zero
e
e
A and B are two sets such that n(A) = 4 and 6.
n(B) = 5. If number of possible mappings
defined from set A to B is x and out of these y
mappings are one-one, then x + y will be -
(1) 2e
6.
(x
,d i{kikrh ikalk bl izdkj gS fd Qyd la[;k i
vkus dh izkf;drk i ds lekuqikrh gAS ;fn ikalk nks ckj
Qad
S k tkrk gS rFkk izFke ,oa f}rh; mNky esa Øe'k%
Qyd la[;k a o b izkIr gksrh gaS] rc izkf;drk fd a
le rFkk b fo"ke gksxk] gksxh&
(1)
12
49
(2)
9
49
(3)
17
49
(4)
8
49
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
9.
Area of region enclosed between curves given
9.
by y2 = –4x and -x = | y | is (in sq. units)1
2
4
8
(2)
(3)
(4)
3
3
3
3
Number of possible 8 digit odd numbers
formed using digits 0,0,2,2,3,3,4,5 is-
(1)
(1)
10.
(1) 6 C 2 .
5!
2!
6
(2) C 2 .
10.
13.
2
3
11.
(1) 4 units
(2) 9 units
(3) 12 units
(4) 16 units
An ellipse has its focii as S 1 (1,–2) and 12.
S2(–3,4). If the foot of perpendicular dropped
from S2 on a tangent to the ellipse is (1,6), then
length of minor axis of ellipse will be (1) 2 units
(2) 4 units
(3) 8 units
(4) 16 units
Area of quadrilateral formed by joining focii
13.
x2 y2
x2 y2
+
= 1 and
+
= 1 is of ellipses
16 12
12 16
(in sq. units)
(1) 2
(2) 4
(3) 6
(4) 8
SPACE FOR ROUGH WORK /
ALLEN
(3)
4
3
(4)
8
3
vadksa 0,0,2,2,3,3,4,5 ds iz;ksx ls fufeZr laHko 8
vadksa dh fo"ke la[;kvksa dh la[;k gksxh&
A
LL
EN
line
4x + 4 3y - 1= 0 on the curve y2 = x will be-
12.
(2)
(1) 6 C 2 .
6
(3) C 2 .
11.
1
3
5!
2!
5! 3
6
(3) C 2 . .
2! 2
5!
2!2!
5! 3
5!
6
.
(4) C 2 . .3
2! 2
2!
Length of intercept cut by
oØks y2 = –4x rFkk -x = | y | ds e/; Nk;kafdr
{ks= dk {ks=Qy gksxk (oxZ bdkbZ esa)-
6
(2) C 2 .
5!
2!2!
6
(4) C 2 .
5!
.3
2!
oØ y2 = x ij js[kk 4x + 4 3y - 1 = 0 }kjk dkVs
x;s vUr% [k.M dh yEckbZ gksxh&
(1) 4 bdkbZ
(2) 9 bdkbZ
(3) 12 bdkbZ
(4) 16 bdkbZ
,d nh?kZo`Ùk dh ukfHk;k¡ S1(1,–2) rFkk S2(–3,4) gAS
;fn nh?kZo`Ùk dh fdlh Li'kZ js[kk ij S2 ls Mkys x;s
yEc dk ikn (1,6) gks] rks nh?kZo`Ùk ds y?kqv{k dh
yEckbZ gksxh&
(1) 2 bdkbZ
(2) 4 bdkbZ
(3) 8 bdkbZ
(4) 16 bdkbZ
x2 y2
x2 y2
+
= 1 rFkk
+
= 1 dh ukfHk;ksa
16 12
12 16
dks feykus ij fufeZr prqHkqZt dk {ks=Qy gksxk (oxZ bdkbZ esa)
nh?kZo`Ùk
(1) 2
(2) 4
(3) 6
(4) 8
jQ dk;Z ds fy;s txg
H-3/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
14.
Locus of mid points of parallel chords of curve 14.
xy = 8 having slope 2 is- (1) y = 2x
(3) y =
(4) y = -
x
2
(3) y =
ì æ e1/ x - e -1/ x ö
x¹0
ïx
Consider ƒ ( x ) = í èç e1/ x + e -1/ x ø÷
ï
0
x=0
î
15.
(4) y = -
x
2
ì æ e1/ x - e -1/ x ö
x¹0
ïx ç 1/ x
ekuk ƒ ( x ) = í è e + e -1/ x ÷ø
g-S
ï
0
x=0
î
(1) ƒ(x), x = 0 ij uk rks larr~ vkSj uk gh vodyuh;
(2) ƒ(x) is continuous but not differentiable at
x=0
(2) ƒ(x), x=0 larr~ ijUrq vodyuh; ugha gksxkA
(4) Jump of discontinuity for ƒ(x) at x = 0 is 2.
gksxk
(3) ƒ(x), x = 0 larr~ rFkk vodyuh; gksxkA
(4) x = 0 ij ƒ(x) dk vlarr~rk dk mNky 2 gksxkA
16.
If a and b are the roots of equation
a 6 + b6
x2–2x+ 4 = 0 then the value of
will
ab
be(1) 128
17.
x
2
(1) ƒ(x) is neither continuous nor differentiable
at x = 0
(3) ƒ(x) is continuous as well as differentiable
at x = 0
16.
(2) y = –2x
A
LL
EN
15.
(1) y = 2x
(2) y = –2x
x
2
oØ xy = 8 dh lekUrj thokvksa ] ftudh izo.krk 2
g]S ds e/; fcUnqvksa dk fcUnqiFk gksxk -
(2) 64
(3) 32
(2) GP
(3) HP
(4) None
SPACE FOR ROUGH WORK /
H-4/31
a 6 + b6
dk eku gksxk ab
(1) 128
(2) 64
(3) 32
(4) 16
(4) 16
If x,y,z are in GP, then y + z, 2y, x + y will be 17.
in(1) AP
;fn a rFkk b lehdj.k x2–2x+ 4 = 0 ds ewy gks] rks
;fn x,y,z xq.kksÙkj Js.kh esa gks] rks y + z, 2y, x + y
gksx&as
(1) lekUrj Js.kh
(2) xq.kksÙkj Js.kh
(3) gjkRed Js.kh
(4) buesa ls dksbZ ugha
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
18.
ò
2 tan x ( sec x + tan x ) + 1 dx is equal to-
2 tan x ( sec x + tan x ) + 1 dx cjkcj gksxk-
(tgk¡ c lekdyu vpj gS)
x
(1) ln tan .sec x + c
2
x
(1) ln tan .sec x + c
2
æp xö
(2) ln tan ç + ÷ .sec x + c
è4 2ø
æp xö
(2) ln tan ç + ÷ .sec x + c
è4 2ø
x
+c
2
(3) ln tan x.sec
A
LL
EN
20.
ò
(where c is constant of integration)
(3) ln tan x.sec
19.
18.
x
+c
2
x
p x
(4) ln tan sec æç + ö÷ + c
2
è4 2ø
x
p x
(4) ln tan sec æç + ö÷ + c
2
è4 2ø
d 2x
If x – y = e , then value of
isdy 2
d 2x
;fn x – y = e gks] rks 2 dk eku gksxk&
dy
19.
x
ex
(1)
(1 - e x )3
ex
(2) x
(e - 1)3
(3) –ex
(4)
If
in
æ pö
ç 0, ÷ ,
è 2ø
ex - 1
ex
the
equation
20.
x
ex
(1)
(1 - e x )3
ex
(2) x
(e - 1)3
(3) –ex
(4)
;fn
vUrjky
æ pö
ç 0, 2 ÷
è
ø
ex - 1
ex
esa
lehdj.k
9
1
+
= k has atleast one root, then
cos x 1 - cos x
'k' cannot be -
9
1
+
= k dk de ls de ,d ewy gks] rks
cos x 1 - cos x
'k' dk eku ugha gks ldrk g-S
(1) 15
(1) 15
(2) 20
(3) 25
(4) 30
SPACE FOR ROUGH WORK /
ALLEN
(2) 20
(3) 25
(4) 30
jQ dk;Z ds fy;s txg
H-5/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
21.
21.
Consider the following statements.
I. Derivative of differentiable aperiodic
function is also aperiodic.
II. If a differentiable function ƒ is increasing in
(a,b) then ƒ' will be decreasing in (a,b).
III. A continuous monotonic function defined
on R will have R as its range.
Identify the correct options
(1) Only one of I,II & III is correct.
(2) Only two of I,II & III is correct.
(3) All three are correct
(4) None of I,II & III is correct
A
LL
EN
ekuk fuEu dFku gAS
I. vodyuh ; vukorhZ Qyu dk vodyt Hkh
vukorhZ gksxkA
II. ;fn ,d vodyuh; Qyu ƒ vUrjky (a,b)
esa o/kZeku gks] rks ƒ' vUrjky (a,b) esa âkleku gksxkA
III. R esa ifjHkkf"kr ,d larr~ ,dfn"V Qyu dk ifjlj
R gksxkA
lgh fodYiksa dks ifgpkfu;s&
(1) I,II rFkk III esa ls dsoy ,d lgh gksxkA
(2) I,II rFkk III esa ls dsoy nks lgh gksxasA
(3) lHkh rhuksa lgha gksxsaA
(4) I,II rFkk III esa ls dksbZ lgha ugha gksxkA
22. Number of solutions of the equation 5x = 7[x], 22. lehdj.k 5x = 7[x] ds gyksa dh la[;k gksxh (tgk¡ [.]
egÙke iw.kk±d Qyu dks n'kkZrk g)S where [.] denotes greatest integer function is (1) 1
23.
(2) 2
(3)
25.
23.
n ( n + 1)
2
n ( n + 1)
3
(2)
(4)
24.
n ( n + 1)( 2n + 1)
n ( n + 1)( 2n + 1)
25.
denotes greatest integer function, is(1) –3
(2) –2
(3) 2
(4) 3
SPACE FOR ROUGH WORK /
H-6/31
(4) 4
(2) O;k?kkr
(3) a Ù ~ b dk }rS
(4) buesa ls dksbZ ugha
izFke (2n + 1) izkd`r la[;kvksa dk folj.k gksxk&
(3)
3
(3) 3
( a Ù b ) ® ( ~ a Ú b ) gksxk &
(1)
2
p tan x - x sec x ù
é
Value of ê lim
2
ú , where [.]
ë x ®0 sin x - tan x û
(2) 2
(1) iqu:fDr
(2) Contradiction
(3) Dual of a Ù ~ b
(4) None of these
Variance of first (2n + 1) natural numbers is(1)
(1) 1
(4) 4
( a Ù b ) ® ( ~ a Ú b ) is(1) Tautology
24.
(3) 3
n ( n + 1)
2
n ( n + 1)
3
(2)
(4)
n ( n + 1)( 2n + 1)
2
n ( n + 1)( 2n + 1)
3
p tan x - x sec x ù
é
2
ê lim
ú dk eku gksxk (tgk¡ [.] egÙke
ë x ®0 sin x - tan x û
iw.kk±d Qyu dks n'kkZrk g)S -
(1) –3
(2) –2
(3) 2
(4) 3
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
27.
28.
Coefficient of apbqcr in the expansion of
26.
(a – 3b + 2c)6, where p, q, r are three distinct,
consecutive, non zero terms of a decreasing
A.P. respectively, is (1) 1080 (2) 1024 (3) 2160 (4) 2048
If p and q are the degree and order respectively 27.
for the differential equation obtained on
eliminating arbitrary constants a, b, c, d from
y + a cos2x + b sin2x + c cos2x + d sin2x = 0,
then p + q is (1) 7
(2) 6
(3) 5
(4) 4
Statement-I : For a twice differentiable 28.
function ƒ, if 0 and 3 are roots of ƒ and
ƒ(1) = 2 and ƒ(2) = –3, then number of roots
of equation g(x) = (ƒ'(x))2 + ƒ(x).ƒ"(x) in [0,3]
is 4.
(a – 3b + 2c)6 ds izlkj esa apbqcr dk xq.kkad]
tgk¡ p, q, r Øe'k% ,d ákleku lekUrj Js.kh ds
rhu fHkUu Øekxr v'kwU; in g]S gksxk&
(1) 1080
(2) 1024
(3) 2160
(4) 2048
;fn p rFkk q Øe'k% lehdj.k
y + a cos2x + b sin2x + c cos2x + d sin2x = 0,
ls LosPN vpjksa a, b, c, d ds foyqfIrdj.k ls izkIr
vody lehdj.k dh ?kkr rFkk dksfV gks] rks p + q
gksxk(1) 7
(2) 6
(3) 5
(4) 4
dFku -I : nks ckj vodyuh; Qyu ƒ ds fy;s] ;fn
0 rFkk 3, ƒ ds ew y ,oa ƒ(1) = 2 rFkk
ƒ(2)=–3 gks] rks vUrjky [0,3] esa lehdj.k
g(x) = (ƒ'(x))2 + ƒ(x).ƒ"(x) ds ewyksa dh la[;k 4
A
LL
EN
26.
Statement-II : For a continuous differentiable
function ƒ, if ƒ(x) = 0 has n roots in (a,b) then
ƒ'(x) = 0 will have atleast (n – 1) roots in (a,b).
(1) Statement-I is true, Statement-II is true;
statement-II is a correct explanation for
Statement-I.
(2)Statement-I is true, Statement-II is true;
statement-II is not a correct explanation for
Statement-I.
(3) Statement-I is true, Statement-II is false.
gksxhA
dFku -II : larr~ vodyuh; Qyu ƒ ds fy;s ;fn
(a,b) esa ƒ(x) = 0 ds n ewy gks] rks vUrjky (a,b) esa
ƒ'(x) = 0 ds de ls de (n – 1) ewy gksaxAs
(1)
dFku -I lR; g S_ dFku -II lR; g S_ dFku -II
dFku-I dh lgh O;k[;k gAS
(2)
dFku -I lR; gS _ dFku -II lR; gS _ dFku -II
dFku-I dh lgh O;k[;k ugha gAS
(3)
dFku-I lR; gS] dFku-II vlR; gAS
(4)
dFku-I vlR; gS] dFku-II lR; gAS
(4) Statement-I is false, Statement-II is true.
SPACE FOR ROUGH WORK /
ALLEN
jQ dk;Z ds fy;s txg
H-7/31
ALLEN JEE-MAIN SAMPLE PAPER # 03
29.
(
) (
)
Statement-I : A 7iˆ - kˆ , B -2iˆ + 3ˆj + 5kˆ ,
(
29.
)
C ˆi + 2 ˆj + 3kˆ do not constitute vertices of a
triangle.
Statement-II : If A,B,C are vertices of a
uuur uuur uuur
triangle then AB + BC + CA = 0 .
2014
dFku -I : A ( 7iˆ - kˆ ) , B ( -2iˆ + 3ˆj + 5kˆ ) ,
(
)
C ˆi + 2 ˆj + 3kˆ fdlh f=Hkqt ds 'kh"kZ ugha gksxsaA
dFku -II : ;fn A,B,C fdlh f=Hkqt ds 'kh"kZ gks] rks
uuur uuur uuur
AB + BC + CA = 0 gksxkA
(1)
dFku -I lR; g S_ dFku -II lR; g S_ dFku -II
dFku-I dh lgh O;k[;k gAS
(2)Statement-I is true, Statement-II is true;
statement-II is not a correct explanation for
Statement-I.
(2)
dFku -I lR; gS _ dFku -II lR; gS _ dFku -II
dFku-I dh lgh O;k[;k ugha gAS
(3) Statement-I is true, Statement-II is false.
(3)
dFku-I lR; gS] dFku-II vlR; gAS
A
LL
EN
(1) Statement-I is true, Statement-II is true;
statement-II is a correct explanation for
Statement-I.
dFku-I vlR; gS] dFku-II lR; gAS
30. Consider C1 : x2 + y2 – 6x – 8y + 24 = 0 and 30. ekuk C1 : x 2 + y 2 – 6x – 8y + 24 = 0 rFkk
C2 : x2 + y2 – 2x – 4y – 4 = 0.
C2 : x2 + y2 – 2x – 4y – 4 = 0 gAS
dFku -I : o`Ùk C2 ij fLFkr lHkh fcUnqvksa ls o`Ùk C1
Statement-I : Tangents can be drawn to circle
C1 from all points on circle C2.
ij Li'kZ js[kk;sa [khaph tk ldrh gAS
Statement-II : C1 lies completely outside C2.
dFku -II : C1 iw.kZr;k o`Ùk C2 ds ckgj fLFkr gksxkA
(4) Statement-I is false, Statement-II is true.
(4)
(1) Statement-I is true, Statement-II is true;
statement-II is a correct explanation for
Statement-I.
(1)
dFku-I lR; gS_ dFku-II lR; gS_ dFku-II dFkuI dh lgh O;k[;k gAS
(2)Statement-I is true, Statement-II is true;
statement-II is not a correct explanation for
Statement-I.
(2)
dFku -I lR; gS _ dFku -II lR; gS _ dFku -II
dFku-I dh lgh O;k[;k ugha gAS
(3)
dFku-I lR; gS] dFku-II vlR; gAS
(4)
dFku-I vlR; gS] dFku-II lR; gAS
(3) Statement-I is true, Statement-II is false.
(4) Statement-I is false, Statement-II is true.
SPACE FOR ROUGH WORK /
H-8/31
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
PART B - PHYSICS
Two pendulums with identical bobs and lengths 31.
,dtSls xksydksa rFkk leku yEckbZ okys nks ljy yksydksa
are suspended from a common support such
dks ,d mHk;fu"B vk/kkj ls bl izdkj yVdk;k tkrk gS
that in rest position the two bobs are in contact
fd fojkekoLFkk esa nksuksa xksyd ,d&nwljs ds lEidZ esa
(figure). After being displaced by 5° the bob
jgrs gaS] fp= ns[ksaA xksyd A dks 5° foLFkkfir djus ds
A is released from rest, at t = 0 subsequently it
i'pkr~ t = 0 ij fojkekoLFkk ls NksM+s tkus ij ;g nwljs
collides elastically head-on with the other bob.
xksyd ls lEeq[k izR;kLFk VDdj djrk gAS
A
LL
EN
31.
The graph showing variation in energy of
pendulum A with time, for 0 £ t £ T (where T
is the period of either pendulum).
ET
ET
(1)
T
4
t
3T T
4
ET
(2)
T
4
ET
3T T
4
t
T
4
3T T
4
t
ET
(1)
T
4
t
3T T
4
(2)
ET
ET
(3)
T
4
3T T
4
t
T
4
T
4
3T T
4
T
4
3T T
4
t
ET
(3)
(4)
SPACE FOR ROUGH WORK /
ALLEN
0 £ t £ T (tgk¡ T izR;sd yksyd dk vkorZ dky g)S ds
fy, le; rFkk yksyd A dh ÅtkZ esa ifjorZu dks
n'kkZus okyk vkjs[k gksxk %&
3T T
4
t
(4)
jQ dk;Z ds fy;s txg
H-9/31
t
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
32.
After absorbing a slowly moving neutron of 32.
mass mN (momentum ~0) a nucleus of mass
M breaks into two nuclei of masses m1 and
3m1(4m1 = M + mN), respectively. If the de
Broglie wavelength of the nucleus with mass
m1 is l, then de Broglie wavelength of the other
nucleus will be:l
(4) l
3
While measuring the speed of sound by
performing a resonance column experiment, a
student gets the first resonance condition at
column length of 20 cm during winter.
Repeating the same experiment during summer,
student measures the column length to be x cm
for the second resonance. Then
33.
34.
(2) 3 l
(1) 9 l
(3)
33.
(2) 3 l
(3)
l
3
(4) l
tc 'khr ½rq esa vuqukn LrEHk iz;ksx }kjk /ofu dh
pky dk ekiu fd;k tkrk gS rks ,d fo|kFkhZ izFke
vuqukn fLFkfr ds fy;s LrEHk yEckbZ 20 lseh- izkIr
djrk gAS bl iz;ksx dks xehZ ds ekl
S e esa nqckjk nksgjk;k
tkrk gS rks og f}rh; vuqukn ds fy;s LrEHk yEckbZ x
lseh izkIr djrk gAS rc
A
LL
EN
(1) 9 l
,d /kheh xfr ls xfr'khy mN æO;eku ds U;wVªk Wu
(laoxs ~0) dk vo'kks"k.k dj æO;eku M dk ,d ukfHkd
æO;eku Øe'k% m1 ,oa 3 m1 (4 m1 = M + mN) ds
nks ukfHkdksa esa VwVrk gAS ;fn æO;eku m1 okys ukfHkd
dh Mh&czkXyh rjaxn/S ;Z l gS] rc nw ljs ukfHkd dh
Mh&czkXyh rjaxn/S ;Z gksxh :-
(1) 20 > x
(2) x > 60
(1) 20 > x
(2) x > 60
(3) 60 > x > 40
(4) 40 > x > 20
(3) 60 > x > 40
(4) 40 > x > 20
What should be the value of distance d so that 34.
final image is formed on the object itself. (focal
lengths of the lenses are written on the lenses.)
iznf'kZr fp= esa nwjh d dk eku D;k gksuk pkfg, rkfd
vfUre izfrfcEc Lo;a fcEc ij gh cus (ysUlksa dh
Qksdl nwfj;k¡ ysUlksa ij fy[kh gqbZ gaSA)
(1) 10 cm
(1) 10 cm
(2) 20 cm
(2) 20 cm
(3) 5 cm
(3) 5 cm
(4) none of these
(4) buesa ls dksbZ ugha
SPACE FOR ROUGH WORK /
H-10/31
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
35.
The depletion layer of a p-n junction :
35.
(1) is of constant width irrespective of the
bias
bias
(2) i'p ckW;l dh fLFkfr esa ,d dqpkyd {ks= dh
Hkkafr dk;Z djrh gAS
(3) has a width that increases with an increases
in forward
(3) dh pkM
S +kbZ esa vxz ckW;l esa o`f¼ djus ij o`f¼ gksrh
A
LL
EN
gSA
(4) is depleted of ions
(4) vk;uksa ls vo{ksfir gksrh gAS
The inductor in a L–C oscillation has a 36.
L–C nksyu esa izsjd dq.Myh ij vf/kdre foHkokUrj
maximum potential difference of 16 V and
16 V o vf/kdre ÅtkZ 640 mJ gAS L–C ifjiFk esa
maximum energy of 640 mJ. Find the value of
37.
(1) fu;r pkM
S +kbZ dh gksrh gS tks ckW;l dh izd`fr ij
fuHkZj ugha djrhA
(2) acts like an insulating zone under reverse
36.
p-n lfU/k dh vo{k; ijr %&
capacitor in mF in L–C circuit.
la/kkfj= dh èkkfjrk mF esa Kkr dhft;sA
(1) 5
(2) 4
(1) 5
(2) 4
(3) 3
(4) 2
(3) 3
(4) 2
A refrigerator converts 100 g of water at 25°C 37.
into ice at – 10°C in one hour and 50 minutes.
The quantity of heat removed per minute is
(specific heat of ice = 0.5 cal/g°C, specific
heat of water = 1cal/g°C, latent heat of fusion
= 80 cal/g)
(1) 50 cal
(2) 100 cal
(3) 200 cal
(4) 75 cal
SPACE FOR ROUGH WORK /
ALLEN
,d js f Ýtjs V j 25°C ij 100 xz k e ikuh dks
1 ?k.Vs 50 feuV esa – 10°C ij cQZ esa cnyrk gAS
izfr feuV fu"dkf"kr Å"ek dh ek=k gksxh (cQZ dh
fof'k"V Å"ek = 0.5 cal/g°C] ikuh dh fof'k"V Å"ek
= 1cal/g°C laxyu dh xqIr Å"ek = 80 cal/g)
(1) 50 cal
(2) 100 cal
(3) 200 cal
(4) 75 cal
jQ dk;Z ds fy;s txg
H-11/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
38.
Figure gives a system of logic gates. From the 38.
study of truth table it can be found that to
produce a high output (1) at R, we must have
x
x
P
y
fp= esa rkfdZd }kjksa ls cuk ,d fudk; n'kkZ;k x;k gAS
lR; lkj.kh ds v/;;u }kjk ;g Kkr fd;k tk ldrk
gS fd R ij fuxZr (1) izkIr djus ds fy, gekjs ikl
gksuk pkfg,%&
R
P
y
R
O
(3) X = 1, Y = 0
39.
40.
(2) X = 1, Y = 1
(1) X = 0, Y = 1
(3) X = 1, Y = 0
A
LL
EN
(1) X = 0, Y = 1
(4) None of these
When a semiconductor is doped its electrical 39.
conductivity :
(1) Increases
(2) Decreases in the direct ratio of the doped
material
(3) Decreases in the inverse ratio of the doped
material
(4) Remains unaltered
Which of the following demonstrate that earth 40.
has a magnetic field ?
(1) A freely suspended bar magnet always
points in the same direction
(2) A large quantity of iron ore is found burried
in the earth
(3) The intensity of cosmic rays of charged
particles coming from space to earth is less
at the poles than at the equator
(4) The earth is surrounded by an ionosphere
(a shell of charged particles)
SPACE FOR ROUGH WORK /
H-12/31
O
(2) X = 1, Y = 1
(4) buesa ls dksbZ ugha
tc fdlh v/kZpkyd esa v'kqf¼ feyk;h tkrh gS ] rks
bldh fo|qr pkydrk %&
(1) c<+rh gAS
(2) feyk;s x;s inkFkZ ds lh/ks vuqikr esa ?kVrh gSA
(3) feyk;s x;s inkFkZ ds O;qRØekuqikrh vuqikr esa ?kVrh
gSA
(4) ogh cuh jgrh gSA
fuEu esa ls fdl rF; ds vk/kkj ij dgk tk ldrk gS
fd i`Foh dk pqEcdh; {ks= gksrk gS %&
(1) ,d Lora= :i ls yVdh NM+ pqEcd lno
S ,d gh
fn'kk esa Bgjrh gSA
(2) i`Foh ds vUnj cM+h ek=k esa ykgS v;Ld dk tyh
gqbZ voLFkk esa ik;k tkukA
(3) varfj{k ls i`Foh dh vksj vkus okyh vkosf'kr d.kksa
dh dkWfLed fdj.kksa dh rhozrk Hkwe/; js[kk dh
rqyuk esa /kzoq ksa ij de gksrh gSA
(4) i`Foh vk;u e.My ls f?kjh gS tks fd vkosf'kr
d.kksa dk ,d dks'k gksrk gAS
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
41.
A speech signal of 3 kHz is used to modulate 41.
vk;ke eksMwyu dk mi;ksx dj ,d 3 kHz okys èofu
a carrier signal of frequency 1 MHz, using
ladrs dh lgk;rk ls 1 MHz vko`fÙk ds okgd ladrs
amplitude modulation. The frequencies of the
dks eksMfw yr fd;k tkrk gAS Side bands dh vko`fÙk;k¡
side bands will be :
(1) 1.003 MHz and 0.997 MHz
(1) 1.003 MHz rFkk 0.997 MHz
(2) 3001 kHz and 2997 kHz
(2) 3001 kHz rFkk 2997 kHz
(3) 1003 kHz and 1000 kHz
(3) 1003 kHz rFkk 1000 kHz
(4) 1 MHz and 0.997 MHz
(4) 1 MHz rFkk 0.997 MHz
A
LL
EN
42.
gksxha%&
Following statements are given for a stationary
wave :-
42.
(a) Every particle has a fixed amplitude which
is different from the amplitude of its nearest
particle.
(b) All the particles cross their mean position
at the same time.
(c) All the particles are oscillating with same
amplitude.
(d) There is no net transfer of energy across
any plane.
(e) There are some particles which are always
at rest.
,d vizxkeh rjax ds fy, fuEu dFku fn, x, gaSA
(a) izR;sd d.k dk ,d fLFkj vk;ke gksrk gS tks blds
lehiLFk d.k ds vk;ke ls vyx gksrk gAS
(b) lHkh d.k mudh ek/; fLFkfr;ksa ls ,d gh le; ij
xqtjrs gSaA
(c) lHkh d.k leku vk;ke ls nksyu djrs gSaA
(d) fdlh Hkh lery ls ÅtkZ dk dksbZ ifj.kkeh
LFkkukUrj.k ugha gksrk gAS
(e) dqN d.k ,sls gksrs gaS tks lnSo fojkekoLFkk esa gksrs
gSaA
Which of the following is CORRECT :-
lgh dFku pqfu, %&
(1) a, b, c, d, e
(2) a, c, d, e
(3) b, c, d, e
(4) a, b, e
(1) a, b, c, d, e
(3) b, c, d, e
SPACE FOR ROUGH WORK /
ALLEN
(2) a, c, d, e
(4) a, b, e
jQ dk;Z ds fy;s txg
H-13/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
44.
A test charge q is made to move in the electric 43.
field of a point charge Q along two different
closed paths (Figure). First path has sections
along and perpendicular to lines of electric
field. Second path is a rectangular loop of the
same area as the first loop. Ratio of work done
in the two cases are ?
,d ijh{k.k vkos'k q dks fcUnq vkos'k Q ds fo|qr {ks=
esa fp=kuqlkj nks vyx&vyx can iFkksa ds vuqfn'k xfr
djkbZ tkrh gAS igys iFk esa fo|qr {ks= js[kkvksa ds
vuqfn'k rFkk yEcor~ Hkkx cus gq, gaSA f}rh; iFk izFke
ywi ds leku {ks=Qy okyk ,d vk;rkdkj ywi gAS
bu nksuksa fLFkfr;ksa esa fd, x, dk;Z dk vuqikr gksxk %&
A
LL
EN
43.
(2) vifjHkkf"kr
(3) ¥
(1) 1
(2) undefined (3) ¥
(4) 0
Two uniform spherical charge regions S1 and 44.
S2 having positive and negative charges
overlap each other as shown in the figure. Point
O1 and O2 are their centres and points A, B, C
and D are on the line joining centres O1 and
O2. Electric field from C to D
nks le:i xksykdkj vkosf'kr Hkkxksa S1 o S2 ij èkukRed
o ½.kkRed vkos'k gS rFkk ;s fp=kuqlkj ,d&nwljs ij
vfrO;kfir gks jgs gaSA fcUnq O1 rFkk O2 buds dsUæ gaS
rFkk fcUnq A, B, C o D buds dsUæksa O1 o O2 dks
tksM+us okyh js[kk ij fo|eku gaSA C ls D dh vksj tkus
ij fo|qr {ks= %&
(1) increases
(2) first decreases then increases
(3) remains constant
(4) first increases then decreases
(1) c<+rk gAS
(2) igys ?kVrk gS fQj c<+rk gAS
(3) fu;r cuk jgrk gSA
(4) igys c<+rk gS fQj ?kVrk gAS
SPACE FOR ROUGH WORK /
H-14/31
(1) 1
(4) 0
jQ dk;Z ds fy;s txg
ALLEN
ALLEN JEE-MAIN SAMPLE PAPER # 03
In an optics experiment, with the position of 45.
the object fixed, a student varies the position
of a biconvex lens (having refractive index µ
and radius R) and for each position, the screen
is adjusted to get a clear image of the object. A
graph between the object distance u and the
image distance v, from the lens, is plotted using
the same scale for the two axes. A straight line
passing through the origin and making an angle
of 45° with the x-axis meets the experimental
curve at P. The coordinates of P will be :-
fdj.k izdkf'kdh ds ,d iz;ksx esa] ,d oLrq dh fLFkfr
fLFkj j[krs gq,] ,d fo|kFkhZ ,d f}mÙky ysal (ftldk
viorZukad µ rFkk f=T;k R) dh fLFkfr esa ifjorZu
djrk gS vkjS izR;sd voLFkk ds fy,] oLrq ds Li"V
izfrfcEc gsrq insZ dks O;ofLFkr djrk gAS ysUl ls oLrq
dh nwjh u vkjS izfrfcEc dh nwjh v ds chp xzkQ nksuksa
v{kksa ij ,dleku Ldsy ysdj vkjsf[kr fd;k tkrk
gAS ewy fcUnq ls xqtjus okyh ,d ljy js[kk] tks fd
x–v{k ls 45° dk dks.k cukrh gS] izk;ksfxd oØ ls P
ij feyrh gSA P ds funsZ'kkad gS :-
æ R
R ö
,
ç
(1) ç 2 m - 1 2 m - 1 ÷÷
) ( )ø
è (
æ R
R ö
,
ç
(1) ç 2 m - 1 2 m - 1 ÷÷
) ( )ø
è (
æ 2R
2R ö
,
ç
(2) ç m - 1 m - 1 ÷÷
) ( )ø
è(
æ 2R
2R ö
(2) çç m - 1 , m - 1 ÷÷
) ( )ø
è(
æ R
R ö
,
ç
(3) ç m - 1 m - 1 ÷÷
) ( )ø
è(
æ R
R ö
(3) çç m - 1 , m - 1 ÷÷
) ( )ø
è(
æ R
R ö
,
ç
(4) ç 4 m - 1 4 m - 1 ÷÷
) ( )ø
è (
æ R
R ö
(4) çç 4 m - 1 , 4 m - 1 ÷÷
) ( )ø
è (
A
LL
EN
45.
2014
SPACE FOR ROUGH WORK /
ALLEN
jQ dk;Z ds fy;s txg
H-15/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
46.
Two identical conducting spheres M and N has 46.
charges q m and q n respectively. A third
identical neutral sphere P is brought in contact
with M and then separated. Now sphere P is
brought in contact with N then final charge on
sphere P is (1)
q m + 2q n
4
47.
48.
qn
2
q m + 2q n
4
(2)
qm + q n
4
(1)
(4)
q m + 2q n
2
(3) q m +
qn
2
A
LL
EN
(3) q m +
nks ,dtSls pkyd xksyksa M rFkk N ij Øe'k% qm rFkk
qn vkos'k gAS vc ,d buds leku ijUrq mnklhu xksys
P dks M ds lEidZ esa yk;k tkrk gS rFkk fQj gVk fy;k
tkrk gAS vc xksys P dks N ds lEidZ esa yk;k tkrk gAS
xksys P ij vfUre vkos'k gksxk%&
To reduce the resonant frequency in an LCR 47.
series circuit with a generator
(1) the generator frequency should be
reduced.
(2) another capacitor should be added in parallel
to the first.
(3) the iron core of the inductor should be
removed.
(4) dielectric in the capacitor should be
removed.
Relative permittivity and permeability of a 48.
material are e r and m r , respectively. Which of
the following values of these quantities are
allowed for a diamagnetic material?
(1) e r = 0.5 , m r = 1.5 (2) e r = 1.5 , m r = 0.5
(3) e r = 0.5 , m r = 0.5 (4) e r = 1.5 , m r = 1.5
SPACE FOR ROUGH WORK /
H-16/31
(2)
qm + q n
4
(4)
q m + 2q n
2
tfu= yxs gq, ,d LCR Js.kh ifjiFk dh vuquknh
vko`fÙk dks ?kVkus ds fy,%&
(1) tfu= vko`fÙk ?kVkuh gksxhA
(2) la/kkfj= ds lekUrjØe esa ,d vU; la/kkfj= tksM+uk
gksxkA
(3) izjs d dq.Myh esa yxh yksg ØksM dks gVkuk gksxkA
(4) la/kkfj= esa fLFkr ijko|
S qr dks gVkuk gksxkA
,d inkFkZ dh vkisf{kd fo|qr'khyrk rFkk pqEcd'khyrk
Øe'k % er rFkk µr gAS ,d izfrpqEcdh; inkFkZ ds fy;s
fuEu ekuksa esa ls dkSulh jkf'k;k¡ mi;qDr gS ?
(1) e r = 0.5 , m r = 1.5
(2) e r = 1.5 , m r = 0.5
(3) e r = 0.5 , m r = 0.5
(4) e r = 1.5 , m r = 1.5
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
50.
51.
A moving coil galvanometer has 100 equal 49.
divisions. Its current sensitivity is 10 divisions
per milli ampere and voltage sensitivity is 2
divisions per milli volt. In order that each
division reads 1 V, the resistance in Ohm's
needed to be connected in series with the coil
will be-
fdlh py dq.Myh /kkjkekih esa 100 cjkcj Hkkx gaSA
bldh èkkjk lqxzkfgrk 10 Hkkx izfr feyh,sfEi;j rFkk
oksYVrk lqxzkfgrk 2 Hkkx izfr feyhoksYV gAS bldk
izR;sd Hkkx 1 oksYV ikB~;kad i<+s] blds fy, bldh
dq. Myh ds lkFk Js .khØe esa la ;ksf tr vko';d
izfrjks/k dk vkse esa D;k eku gksxk -
(1) 103
(2) 105
(3) 99995
(4) 9995
(1) 103
(3) 99995
A
LL
EN
49.
The current in the primary circuit of a 50.
potentiometer is 0.1 A. The specific resistance
and cross-section of the potentiometer wire are
8 × 10 –7 ohm metre and 4 × 10 –7 m 2
respectively. The potential gradient will be
equal to :(1) 0.2 V/m
(2) 1 V/m
(3) 0.5 V/m
(4) 0.1 V/m
The electrostatic potential V at a point on the 51.
circumference of a thin non–conducting disk
of radius r and uniform charge density s is given
by equation V = 4sr. Which of the following
expression correctly represents electrostatic
energy stored in the electric field of a similar
charged disk of radius R?
8 2 3
(1) U = ps R
3
(3) U =
2 2 3
ps R
3
(2) U =
4 2 3
ps R
3
(4) None of these.
SPACE FOR ROUGH WORK /
ALLEN
(2) 105
(4) 9995
,d foHkoekih ds izkFkfed ifjiFk esa /kkjk 0.1A
g SA foHkoekih ds rkj dk fof'k"V iz f rjks /k vk Sj
ifjPNsn {ks =Qy Øe'k% 8 × 10–7 vkse ehVj vkSj
4 × 10–7 m2 gSA foHko izo.krk dk eku gksxk :-
(1) 0.2 V/m
(2) 1 V/m
(3) 0.5 V/m
(4) 0.1 V/m
f=T;k r rFkk le:i vkos'k ?kuRo s okyh ,d iryh
vpkyd pdrh dh ifjf/k ij fLFkr ,d fcUnq ij
fLFkjo|
S qr foHko V = 4sr }kjk fn;k tkrk gAS f=T;k
R okyh blds leku vkosf'kr pdrh ds fo|qr {ks= esa
lafpr fLFkj o|
S qr ÅtkZ dks n'kkZus okyk O;atd gksxk %&
8 2 3
(1) U = ps R
3
(3) U =
2 2 3
ps R
3
(2) U =
4 2 3
ps R
3
(4) buesa ls dksbZ ugha
jQ dk;Z ds fy;s txg
H-17/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
53.
A parallel plate capacitor initially having plate 52.
separation d & capacitance C in air is connected
by means of a spring of spring constant k to a
point O, the plates are assumed to be massless,
and the lower plate is also fixed. A charge q
now is given to the capacitor. The capacitance
of the capacitor (assuming that the spring is
non conducting) becomes
C
(1) æ
2 ö
ç1 - q ÷
ç Ckd 2 ÷
è
ø
C
(2)
2
æ
ö
ç1 - q
÷
ç 2Ckd 2 ÷
è
ø
(3) C
(4) none of the above
The maximum number of emission lines for 53.
atomic hydrogen that you would expect to see
with naked eye if the only electronic levels
involved are those shown in the figure, is
izkjEHk esa ,d lekUrj iê la/kkfj= dh IysVksa ds eè;
nwjh d rFkk ok;q esa bldh /kkfjrk C gAS bls k fLizax
fu;rkad okyh ,d fLizax dh lgk;rk ls fcUnq O ls
tksM+ nsrs gaSA IysVksa dks æO;ekughu ekuk x;k gS tcfd
fupyh IysV Hkh fLFkj gAS vc la/kkfj= dks q vkos'k
nsrs gaSA ;fn fLizax vpkyd gks rks la/kkfj= dh /kkfjrk
gks tk,xh %&
C
(1) æ
2 ö
ç1 - q ÷
2÷
ç
è Ckd ø
C
(2)
2
æ
ö
ç1 - q
÷
ç 2Ckd 2 ÷
è
ø
(3) C
(4) mijksä esa ls dksbZ ugha
A
LL
EN
52.
(1) 6
(2) 5
(3) 21
n=7
n=6
n=5
n=4
n=7
n=6
n=5
n=4
n=3
n=3
n=2
n=2
n=1
n=1
(4) ¥
SPACE FOR ROUGH WORK /
H-18/31
;fn fdlh ijekf.od gkbMªkt
s u ds mRltZu LisDVªe esa
dsoy fp= esa iznf'kZr ÅtkZ Lrj gh Hkkx ysa rks vki
viuh vka[kksa ls fcuk fdlh vU; midj.k dh lgk;rk
ls vf/kdre fdruh mRltZu js[kk,a ns[k ldrs gSa\
(1) 6
(2) 5
(3) 21
(4) ¥
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
55.
56.
For nuclei mass number A > 120
(i) when two nuclei fuse together energy is
released
(ii) when nuclei brakes energy is released
(iii) Binding energy per nucleon decreases with
increase in A
(iv) Binding energy decreases with increase
in A
The correct statement(s) will be
(1) (iii), (iv)
(2) (ii), (iii)
(3) (i), (iii)
(4) (ii), (iv)
54.
+
The radionuclide 11
6 C decays by b emission.
55.
nzO;eku la[;k A > 120 okys ukfHkd ds fy;s
(i) tc nks ukfHkd layf;r gksrs gaS rks ÅtkZ eqDr gksrh gAS
(ii) tc ,d ukfHkd fo[kf.Mr gksrk gS rks ÅtkZ eqDr
gksrh gSA
(iii) A esa o`f¼ ds lkFk izfr U;wfDy;kWu ca/ku ÅtkZ
?kVrh gAS
(iv) A esa o`f¼ djus ij ca/ku ÅtkZ ?kVrh gAS
lgh dFku gaS%&
(1) (iii), (iv)
(3) (i), (iii)
A
LL
EN
54.
(2) (ii), (iii)
(4) (ii), (iv)
Given that
jsfM;ksU;wDykbM 116 C dk {k; b+ mRltZu }kjk gksrk gAS
eku yks
m( 11
6 C ) = 11.011434 u
m( 11
6 C ) = 11.011434 u
m( 11
5 B ) = 11.009305 u
m( 11
5 B ) = 11.009305 u
me = 0.000548 u, 1u = 931.5 MeV/c2
The Q-value of this decay process is :(1) 0.962 MeV
(2) 0.962 × 103 MeV
(3) 0.962 eV
(4) Zero
An open pipe is suddenly closed at one end 56.
with the result that the frequency of third
harmonic of the closed pipe is found to be
higher by 100 Hz then the fundamental
frequency of the open pipe is
(1) 200 Hz
(2) 300 Hz
(3) 240 Hz
(4) 480 Hz
me = 0.000548 u, 1u = 931.5 MeV/c2
bl {k; izØe ds fy, Q-eku gksxk %&
(1) 0.962 MeV
(2) 0.962 × 103 MeV
SPACE FOR ROUGH WORK /
ALLEN
(3) 0.962 eV
(4) 'kwU;
,d [kqys ikbi ds ,d fljs dks vpkud cUn dj nsrs gaS
ftlds QyLo:i cUn ikbi dh r`rh; lUuknh esa
100 Hz dh o`f¼ gks tkrh gSA [kqys ikbi dh ewy
vko`fÙk gksxh :-
(1) 200 Hz
(3) 240 Hz
(2) 300 Hz
(4) 480 Hz
jQ dk;Z ds fy;s txg
H-19/31
ALLEN JEE-MAIN SAMPLE PAPER # 03
58.
For shown circuit :-
57.
(1) Current in circuit is 10A
(2) Voltage across inductor is 100V
(3) Voltage across capacitor is 200V
(4) Voltage on capacitor is more than that of
supply voltage because the phase
difference between VL and VC is 180°
Current i = 2.5 A flows along the circle 58.
x2 + y2 = 9 cm2 (here x & y in cm) as shown.
Magnetic field at point (0, 0, 4 cm) is
iznf'kZr ifjiFk esa %&
(1) ifjiFk esa /kkjk dk eku 10A gAS
A
LL
EN
57.
2014
(1) ( 36 p´ 10 -7 T ) kˆ
(2) ( 36 p ´ 10 -7 T ) ( - kˆ )
æ 9p
-7 ö
(3) ç ´10 T ÷ kˆ
è 5
ø
æ 9p
-7 ö
(4) ç ´ 10 T ÷ ( - kˆ )
è 5
ø
SPACE FOR ROUGH WORK /
H-20/31
(2) izsjd dq.Myh ij oksYVrk 100V gAS
(3) la/kkfj= ij oksYVrk 200V gAS
(4) la/kfj= ij oksYVrk lIykbZ oksYVrk ls vf/kd gksxh
D;kafs d VL o VC ds e/; dykUrj 180° gAS
/kkjk i = 2.5 A fp=kuqlkj o`Ùk x2 + y2 = 9 cm2
(;gka x rFkk y lseh esa g)S ds vuqfn'k izokfgr gksrh gAS
fcUnq (0, 0, 4 cm) ij pqEcdh; {ks= gksxk%&
(1) ( 36 p´ 10 -7 T ) kˆ
(2) ( 36 p ´ 10 -7 T ) ( - kˆ )
æ 9p
-7 ö
(3) ç ´10 T ÷ kˆ
è 5
ø
æ 9p
-7 ö
(4) ç ´ 10 T ÷ ( - kˆ )
è 5
ø
jQ dk;Z ds fy;s txg
ALLEN
ALLEN JEE-MAIN SAMPLE PAPER # 03
60.
Statement–1 : Cavalry troops are asked not 59.
to march in cadence across a suspension bridge
otherwise bridge may collapse.
Statement–2 : If the soldiers march in cadence,
in every step they step down at exactly the same
instant producing a very large impulse on the
bridge, which may cause it to collapse.
(1) Statement–1 is true, statement–2 is true;
statement–2 is a correct explanation for
statement–1.
(2) Statement–1 is true, statement–2 is true;
statement–2 is not a correct explanation for
statement–1.
(3) Statement–1 is true, statement–2 is false.
(4) Statement–1 is false, statement–2 is true.
Statement 1 : Photoelectric effect establishes 60.
quantum nature of light.
and
Statement 2 : There is negligible time lag
between photon collisions with the material and
photoelectron emission irrespective of intensity
of incident light. (Assume incident light is of
frequency greater than threshold frequency of
the material).
(1) Statement-1 is true, statement-2 is true and
statement-2 is correct explanation for
statement-1.
(2) Statement-1 is true, statement-2 is true and
statement-2 is NOT the correct explanation
for statement-1.
(3) Statement-1 is true, statement-2 is false.
(4) Statement-1 is false, statement-2 is true.
oDrO;–1 : fdlh >wyrs gq, iqy ij ls xqtjus ij lsuk
dh VqdM+h dks dnerky esa ugha pyus dks dgk tkrk gS
vU;Fkk iqy VwV ldrk gAS
oDrO;–2 : ;fn flikgh dnerky esa pyrs gaS rks izR;sd
ckj os ,d gh {k.k ij uhps dne j[krs gaS ftlds dkj.k
iqy ij rhoz vkosx mRiUu gksrk gS tks fd iqy VwVus dk
dkj.k cu ldrk gAS
(1) oäO;&1 lR; g]S oäO;&2 lR; g]S oäO;&2]
oäO;&1 dk lgh Li"Vhdj.k gAS
(2) oäO;&1 lR; g]S oäO;&2 lR; gS ; oäO;&2]
oäO;&1 dk lgh Li"Vhdj.k ugha gAS
(3) oäO;&1 lR; g,S oäO;&2 vlR; gAS
(4) oäO;&1 vlR; g]S oäO;&2 lR; gAS
oDrO; 1 : izdk'k fo|qr izHkko] izdk'k dh DokaVe
izÏfr dks n'kkZrk gSA
oDrO; 2 : inkFkZ ls QksVkWu ds Vdjkus rFkk QksVksbysDVªkWuksa
ds mRltZu ds e/; le;kUrjky vkifrr izdk'k dh
rhozrk ds vuisf{kr (irrespective) vR;Yi gksrk gAS
(eku yhft;s fd vkifrr izdk'k dh vko`fÙk inkFkZ dh
nsgyh vko`fÙk ls vf/kd g)S
(1) oäO;&1 lR; g]S oäO;&2 lR; g]S oäO;&2]
oäO;&1 dk lgh Li"Vhdj.k gAS
(2) oäO;&1 lR; g]S oäO;&2 lR; gS ; oäO;&2]
oäO;&1 dk lgh Li"Vhdj.k ugha gAS
(3) oäO;&1 lR; g,S oäO;&2 vlR; gAS
(4) oäO;&1 vlR; g]S oäO;&2 lR; gAS
A
LL
EN
59.
2014
SPACE FOR ROUGH WORK /
ALLEN
jQ dk;Z ds fy;s txg
H-21/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
PART C - CHEMISTRY
61.
62.
During electrolysis of NaCl, if 3mole of H2O 61.
are electrolysed then how much charge is
required if current efficiency is 75%(1) 1 F
(2) 2 F
(3) 4 F
(4) 8 F
Catalyst in a chemical reaction :–
62.
(1) Increase activation energy
(2) Does not change activation energy
(4) None of these
63.
(1) 1 F
(3) 4 F
(2) 2 F
(4) 8 F
,d jlk;fud vfHkfØ;k esa mRizjsd :–
(1) lfØ;.k ÅtkZ c<+krs gS
(2) lfØ;.k ÅtkZ esa ifjorZu ugha djrs gS
(3) DH ifjofrZr ugha djrs gS
(4) buesa ls dksbZ ugha
63. nh xbZ vfHkfØ;k ds fy, :
For the given reaction :
H2(g) + S(s) ® H2S(g) ; DHr = 100 kJ/mol and
H2(g) + S(s) ® H2S(g) ; DHr = 100 kJ/mol rFkk
DSr = 400 J/mol/K
DSr = 400 J/mol/K
Temperature at which above reaction occurs
reversibly is
rki ftl ij mijksDr vfHkfØ;k mRØe.kh; gksrh gAS
(Assumning DHr and DSr are independent of
(eku yhft,s DHr rFkk DSr rki ls Lora= g)S
temperature)
64.
dk o S| q r vi?kfVr gq vk gks rks fdrus vkos' k dh
vko';drk gksxh] ;fn /kkjk n{krk 75% izfr'kr gks-
A
LL
EN
(3) Does not change DH
NaCl ds o|
S qr vi?kVu ds nkjS ku] ;fn 3 eksy H2O
(1) 200 K
(2) 250 K
(1) 200 K
(2) 250 K
(3) 400 K
(4) None
(3) 400 K
(4) buesa ls dksbZ ugha
What will be the value of compressibility factor
64.
for real gas at low pressure and high
temperature(1) Z » 1
(2) Z > 1
(3) Z < 1
(4) None
SPACE FOR ROUGH WORK /
H-22/31
U;wu nkc rFkk mPp rki ij okLrfod xl
S ds fy,
laih.M~;rk xq.kkad dk eku D;k gksxk -
(1) Z » 1
(2) Z > 1
(3) Z < 1
(4) buesa ls dksbZ ugha
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
65.
The distance between an octahedral and
tetrahedral void in fcc unit cell would be (a is edge length of fcc unit cell)
3a
3a
3a
(3)
(4)
2
3
4
To obtain maximum mass of NO2 from a given
mass of a mixture of NH3 and O2, the ratio
of mass of NH3 to O2 should be
(1) 3 a
66.
65.
fcc bdkbZ ly
S esa ,d v"VQydh; rFkk prq"Qydh;
fjfDr ds e/; nwjh gksxh
(fcc bdkbZ lSy ds fdukjs dh yEckbZ a g)S
(1) 3 a
(2)
66.
3a
4
(1)
67.
[Kf , (H2O) = 1.86K molal–1]
(1) 930 g (2) 1000 g (3) 90 g (4) 210 g
The exothermic formation of ClF 3 is 68.
represented by the equation
Cl2(g) + 3F2(g)
2ClF3(g) ; DHr= –329 kJ
Which of the following will increase the
quantity of ClF3 in an equilibrium mixture of
Cl2, F2 and ClF3?
(1) Removing Cl2
(2) Increasing the temperature
(3) Adding inert gas at constant pressure
(4) Decreasing the volume of the container
SPACE FOR ROUGH WORK /
ALLEN
3a
(4)
3
17
4
(2)
40
7
17
(3)
(4) buesa ls dksbZ ugha
56
ty esa 0.1 eksy Xywdkst okyk ,d foy;u –0.2ºC
ij terk (freezes) gAS bl foy;u esa mifLFkr ty
dh ek=k gS-
A
LL
EN
68.
(3)
NH3 + O2 ¾¾
® NO2 + H2O
(1)
67.
3a
2
NH3 rFkk O2 ds ,d feJ.k ds ,d fn;s x;s nzO;eku
ls NO2 dk vf/kdre nzO;eku izkIr djus ds fy,
NH3 ls O2 ds nz O;eku dk vuqi kr gksuk pkfg,
NH3 + O2 ¾¾
® NO2 + H2O
17
4
(2)
40
7
17
(3)
(4) None of these
56
A solution containing 0.1 mole of glucose in
water freezes at –0.2ºC. The amount of water
present in this solution is -
(2)
[Kf , (H2O) = 1.86K molal–1]
(1) 930 g (2) 1000 g (3) 90 g (4) 210 g
ClF3 ds Å"ek{ksih fuekZ.k dks fuEu vfHkfØ;k }kjk
iznf'kZr fd;k tkrk gS
Cl2(g) + 3F2(g)
2ClF3(g) ;DHr =– 329 kJ
Cl2, F2 rFkk ClF3 ds ,d lkE; feJ.k esa ClF3 dh
ek=k fuEu esa ls dkuS lk dkjd c<k,sxk ?
(1) Cl2 gVkus ij
(2) rki ds c<+kus ij
(3) fu;r nkc ij vfØ; xl
S feykus ij
(4) ik= dk vk;ru ?kVkus ij
jQ dk;Z ds fy;s txg
H-23/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
69.
70.
For the electron present in hydrogen atom 69.
calculate the total number of possible spectral
lines during the transition between 4th excited
state and ground state without emitting any line
in Balmer series (1) 10
(2) 9
(3) 7
(4) 6
Calculate the percentage of hydrolysis in 70.
0.01M aqueous solution of NaOCN
(Kb for OCN– = 10–10)
72.
73.
74.
(1) 10
(2) 9
(3) 7
(4) 6
NaOCN ds 0.01M tyh; foy;u esa ty vi?kVu
dk izfr'kr crkb;s
(OCN– ds fy, Kb = 10–10 gS)
(1) 0.1
(3) 0.0001
(2) 0.01
(4) dksbZ ugha
dsydkstu ds gkbMªkbM ds fy, pKa dk lgh Øe
A
LL
EN
71.
(1) 0.1
(2) 0.01
(3) 0.0001
(4) None
Select correct order of pK a for hydride of
chalcogens
(1) OH2 > SH2 > SeH2 > TeH2
(2) TeH2 > SH2 > SeH2 > OH2
(3) TeH2 > SeH2 > SH2 > OH2
(4) OH2 > TeH2 > SeH2 > SH2
Select correct order of ionization energy
(1) N > N+
(2) N > O
(3) N > F
(4) N > Si
Select correct order of H – M – H bond angle
(1) PH3 > PH4+
(2) P2H4 > PH4+
(3) PH3 > NH4+
(4) PH4+ > NH3
In which of the following underlined atom use
hybrid orbital (with 25% s–character 75%
p-character) for bond formation(1) SF4
(2) [Ni(CN)4]2–
(4) [MnCl4]2–
(3) [HgI3]–
gkbMª k st u ijek.kq esa mifLFkr byS DVª k W u ds fy,]
4 th mÙks f tr voLFkk rFkk vk| voLFkk ds e/;
laØe.k ds nkjS ku mRlftZr lEHkkfor LisDVªeh js[kkvksa
(ckej Js.kh esa fdlh js[kk ds mRltZu ds fcuk) dh
dqy la[;k crkb;s -
71.
gS
(1)
(2)
(3)
(4)
72.
73.
74.
SPACE FOR ROUGH WORK /
H-24/31
OH2 > SH2 > SeH2 > TeH2
TeH2 > SH2 > SeH2 > OH2
TeH2 > SeH2 > SH2 > OH2
OH2 > TeH2 > SeH2 > SH2
vk;uu ÅtkZ dk lgh Øe crkb;s
(1) N > N+
(2) N > O
(3) N > F
(4) N > Si
H – M – H ca/k dks.k ds lgh Øe dks crkb;sA
(1) PH3 > PH4+
(2) P2H4 > PH4+
(3) PH3 > NH4+
(4) PH4+ > NH3
fuEu esa ls dkSuls js[kkafdr ijek.kqvksa esa ca/k fuekZ.k
ds fy, ladfjr d{kd (25% s–y{k.k 75%-p y{k.k
ds lkFk) dk mi;ksx fd;k x;k gS
(1) SF4
(3) [HgI3]–
(2) [Ni(CN)4]2–
(4) [MnCl4]2–
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
75.
Yellow solution of chromate ions is produced 75.
when(1) CrO2Cl2 is hydrolysed
ØksesV vk;uksa dk ihyk foy;u curk gS tc (1) CrO2Cl2 ty vi?kfVr gksrk gS
(2) Cr2O72– foy;u dks {kkj ds lkFk mipkfjr djrs
(2) Cr2O72– solution is treated with alkali
gS
(3) alkaline solution of Cr2(SO4)3 is treated
(3) Cr 2(SO 4) 3 ds {kkjh; foy;u dks H 2O 2 ds
with H2O2
77.
(4) All of the above
Which of the following is not a bleaching agent. 76.
(1) O 3
(1) O 3
(2) CaCl2.Ca(OCl)2
(2) CaCl2.Ca(OCl)2
(3) ClO2
(3) ClO 2
(4) KCl.MgCl2.6H2O
(4) KCl.MgCl2.6H2O
(4) mijksDr lHkh
fuEu esa ls dkuS lk ;kSfxd fojatd vfHkdeZd ugha gS
A
LL
EN
76.
mipkfjr djrs gS
Type of isomerism possible for given
complex is.
77.
fn;s x;s ladqy ds fy, lEHkkfor leko;ork dk
iz dkj gS
en
en
Pt
en
Br2
en
Pt
Cl
Cl
(1)
(2)
(3)
(4)
Optical isomerism
Geometrical isomerism
Ionization isomerism
All of the above
SPACE FOR ROUGH WORK /
ALLEN
(1)
(2)
(3)
(4)
Br2
Cl
Cl
izdkf'kd leko;ork
T;kfefr; leko;ork
vk;uu leko;ork
mijksDr lHkh
jQ dk;Z ds fy;s txg
H-25/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
78.
Ore Calcination Residue dil HNO3 aq. solution
(of metal M)
78.
Zn dust
v;Ld fuLrkiu vo'ks "k ruq HNO3 tyh; foy;u
(/kkrq M dk )
Zn pw.kZ
2+
Metal (M) + Zn (aq.)
80.
81.
2+
+ Zn (tyh;)
above metallurgy is possible when ore is (1) ZnCO3
(2) CaCO3.MgCO3
(3) CuCO3.Cu(OH) 2 (4) PbS
79.
"Chemilumiscence" is the property of (1) Rhombic Sulphur
(2) Red Phosphorus
(3) Atomic Nitrogen
(4) White Phosphorus
Which of the following process is writen with 80.
their correct initial ingredient(1) Barkland Eyed process - NH3, O2
(2) Ostwald process = N2, H2, Fe-Mo alloy
(3) Solvey process = KCl, CO2, NH3, H2O
(4) Deccan process - HCl, O2, CuCl2
Which of the following compounds will show 81.
geometrical isomerism -
fuEu esa ls dkuS lk izØe mlds lgh izkjfEHkd vo;o
ds lkFk fy[kk x;k gS (1) cdZyS.M vkbZMizØe - NH3, O2
(2) vksLVokWYM izØe = N2, H2, Fe-Mo feJ/kkrq
(3) lksYos izØe = KCl, CO2, NH3, H2O
(4) MsDdu izØe - HCl, O2, CuCl2
fuEu esa ls dkuS lk ;kSfxd T;kfefr; leko;ork iznf'kZr
djsxk -
(1)
(2)
(1)
(2)
(4)
(3)
(4)
mijksDr /kkrqdeZ ftl v;Ld ds fy, lEHko gS og gS
(1) ZnCO3
(2) CaCO3.MgCO3
(3) CuCO3.Cu(OH) 2 (4) PbS
"jlk;fudizfrfnIr" fdldk xq.k gksrk gS (1) jksf Ecd lYQj
(2) yky QkW LQks jl
(3) ijekf.od ukbVªk t
s u
(4) 'osr QkWLQks jl
A
LL
EN
79.
/kkrq (M)
(3)
SPACE FOR ROUGH WORK /
H-26/31
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
82.
What will be the correct order of stability of
following carbocations :
82.
Å
fuEu dkcZ/kuk;uks a ds LFkkf;Ro dk lgh Øe D;k
gksxk :
Å
CH2
CH2
Å
Å
CH2
CH2
(II)
(I)
O–CH3
Å
84.
(IV)
CH3
(1) II > III > I > IV (2) II > IV > II > III
(3) I > II > III > IV (4) IV > III > II > I
What will be the correct order of reactivity of
the following alcohols, with Lucas reagent :
OH
(I)
(II)
OH
OH
(III)
(1) II > I > III
(2) II > III > I
(3) III > II > I
(4) I > II > III
Which of the following compound is most
reactive when reacts with Grignards reagent
(MeMgBr) ?
O
O
||
||
(1) CH3–CH2–C–CH2–CH3 (2) Ph–C–Ph
O
||
(3) CH 3–C–Ph
83.
Å
CH2
(III)
(IV)
CH3
(1) II > III > I > IV
(3) I > II > III > IV
(2) II > IV > II > III
(4) IV > III > II > I
Y;q dkl vfHkdeZd ds lkFk fuEu ,Ydksg kW yksa dh
fØ;k'khyrk dk lgh Øe D;k gksxk :
(I)
OH
(III)
(1) II > I > III
(3) III > II > I
84.
O
||
(4) H–C–H
SPACE FOR ROUGH WORK /
ALLEN
O–CH3
CH2
CH2
A
LL
EN
83.
(II)
Å
Å
CH2
(III)
(I)
(II)
OH
OH
(2) II > III > I
(4) I > II > III
fuEu es a ls dk S u lk ;k S f xd fxz U ;kj vfHkdeZ d
(MeMgBr) ds lkFk vfHkfØ;k djkus ij lokZf/kd
fØ;k'khy gksxk ?
O
O
||
||
(1) CH3–CH2–C–CH2–CH3 (2) Ph–C–Ph
O
||
(3) CH 3–C–Ph
O
||
(4) H–C–H
jQ dk;Z ds fy;s txg
H-27/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
CH3
CH3
Å
85.
Å
85.
H KMnO4
¾¾¾¾
® x ;
H KMnO4
¾¾¾¾
® x ;
CH2–CH2–CH3
CH2–CH2–CH3
Å
H KMnO4
¾¾¾¾
®y ;
Å
H KMnO4
¾¾¾¾
®y ;
CH 2–CH 2–CH2–CH2–CH3
CH 2–CH 2–CH2–CH2–CH3
Å
H KMnO4
¾¾¾¾
® z
Å
A
LL
EN
H KMnO4
¾¾¾¾
® z
Identify correct sequence representing x, y &
z respectively :
COOH
(1)
COOH
CH2CH2COOH
CH2CH2CH2CH2COOH
COOH
COOH
COOH
COOH
COOH
CH2–OH
COOH
CH2CH2CH2CH2COOH
(2)
CH2–OH
(3)
CH2CH2CH2CH2COOH
(1)
COOH
(2)
CH2CH2COOH
x, y rFkk z dks iznf'kZr djus okyk lgh Øe Øe'k%
gS :
COOH
CH2CH2CH2CH2COOH
(3)
CH=CH2
CH2–CH 2–COOH
COOH
(4)
SPACE FOR ROUGH WORK /
H-28/31
CH=CH2
CH2–CH 2–COOH
COOH
(4)
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
87.
88.
Select correct statement :
86.
(1) Sucrose is a trisaccharide & non reducing
sugar
(2) Sucrose is a disaccharide & reducing
sugar
(3) Sucrose is a disaccharide & non reducing
sugar
(4) Sucrose is a trisaccharide & reducing
sugar
Select the incorrect statement about natural 87.
rubber:
(1) Gutta percha is naturally occuring isomer
of it
(2) It is having all the double bonds cis
(3) It is a polymer of 2-methyl-1, 3-butadiene
(isoprene)
(4) It is also known as Orlon
lgh dFku dk p;u dhft, :
(1) lqØkst ,d VªkbZld
S js kbM rFkk vuvipk;d 'kdZjk
gksrh gS
(2) lqØkst ,d MkbZlSdsjkbM rFkk vipk;d 'kdZjk
gksrh gS
(3) lqØkst ,d MkbZld
S js kbM rFkk vuvipk;d 'kdZjk
gksrh gS
(4) lqØkst ,d VªkbZld
S js kbM rFkk vipk;d 'kdZjk gksrh gS
izkd`fr jcj ds lUnHkZ esa xyr dFku gS :
(1) xqV~Vk ipkZ bldk izkd`frd :i ls izkIr gksus okyk
leko;oh gS
(2) blesa lHkh f}cU/k lei{k (cis) gksrs gS
(3) ;g 2-es f Fky-1, 3-C;wVkMkbZu (vkblksizhu) dk
cgqyd gksrk gS
(4) bls vkWjyksu ds :i esa Hkh tkuk tkrk gS
A
LL
EN
86.
Br2
CH3 -Cl
CrO2Cl2
® P¾¾¾
¾¾¾®
¾
® P3
P1¾¾
Fe
AlCl3
Ac 2 O
2
Identify P3
CH3
CH3
(1)
(2)
(1)
(4)
CH3
(2)
Br
COOH
CHO
(3)
(4)
Br
Br
SPACE FOR ROUGH WORK /
ALLEN
P3 igpkfu, %
CH3
Br
COOH
CHO
(3)
Br2
CH3 -Cl
CrO2Cl2
® P¾¾¾
¾¾¾®
¾
® P3
P1¾¾
Fe
AlCl3
Ac 2 O
2
88.
jQ dk;Z ds fy;s txg
H-29/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 03
Br
Br
EtONa
¾¾¾
® P (major product)
89.
EtONa
¾¾¾
® P (eq[; mRikn)
89.
Which of the following is P -
fuEu esa ls dkSulk P gS -
(1)
(1)
OEt
(3)
90.
OEt
(4)
(3)
Carbylamine reaction is positively given 90.
by :
(1)
(3)
(2)
A
LL
EN
(2)
NH–CH3
NH2
(2)
N–CH3
CH3
(4) Me2NH
SPACE FOR ROUGH WORK /
H-30/31
(4)
fdlds }kjk /kukRed dkfcZy,ehu vfHkfØ;k nh tkrh
gS :
(1)
(3)
NH–CH3
NH2
N–CH3
(2)
CH3
(4) Me2NH
jQ dk;Z ds fy;s txg
ALLEN
ALLEN JEE-MAIN SAMPLE PAPER # 03
jQ dk;Z ds fy;s txg
A
LL
EN
SPACE FOR ROUGH WORK /
2014
SPACE FOR ROUGH WORK /
ALLEN
jQ dk;Z ds fy;s txg
H-31/31