Cylinder Deactivation – A technology with a future or a niche application? Dave Kehr First application: Cadillac Seville 1981 6.0L V8 OHV 864 1 Schaeffler Symposium 2014 Dave Kehr Examples for cylinder deactivation in mass production 3.9L V6 5.8L V12 6.0L V8 4.0L V8 6.0L V8 5.0L V8 3.5L V6 6 3/4L V8 1.4L I4 Why the gap? 1980 1990 2000 2010 5.7L V8 5.5L V8 6.5L V12 5.3L V8 6.4L V8 2 Schaeffler Symposium 2014 Dave Kehr 8-cylinder mode Lowest specific fuel consumption Torque in Nm Torque in Nm Operating principal of cylinder deactivation Constant specific fuel consumption 4-cylinder mode Engine is operating closer to lowest fuel consumption Road load curve Engine Speed in rpm 3 Schaeffler Symposium 2014 Dave Kehr Engine Speed in rpm Fuel consumption improvement potential 10 Benefit for 4 cylinder mode be in % 1.4L 4 cyl. with 2 cyl. Differenz-Kennfeld 1,4l operation 4Z 20 gegenüber 1,4l 4Z - ZAS bar 18 16 effective brake mean p pressure in bar 4 12 10 7 2 6 8 8 6 6 me Theoretical switching threshold 14 8 0 4 -2 -4 2 -6 5 0 -2 Optimum combustion -4 4 -6 -8 -8 3 -10 -12 -10 -14 -12 2 -18 -20 -16 -14 -16 1 -18 -20 0 1000 1500 2000 n engine speed in rpm 4 Schaeffler Symposium 2014 Dave Kehr min-1 3000 Benefit for 2 cylinder mode 6 Traditional BDC TDC BDC TDC BDC TDC BDC TDC BDC TDC Higher combustion pressures Drehzahlbereich More pressure variation Recent development BDC TDC BDC TDC BDC TDC BDC TDC BDC TDC Lower combustion pressures Less pressure variation Direct injection can improve cylinder deactivation NVH 5 Schaeffler Symposium 2014 Dave Kehr Source: MTZ "The New AMG 5.5L V8 Naturally Aspirated Engine with Cylinder Shut-off" Two different cylinder deactivation strategies Actual filling Cylinder filling (Throttle position) Ignition angleefficiency 8 Cyl. Mode 6 Schaeffler Symposium 2014 Dave Kehr Switch-over phase 4 Cyl. Mode Time Source: MTZ Source: MTZ The new Audi V8 TFSI Engine Part 2 Filling- target Actuator shifting Engine Torque Switching strategy – managing torque change Switchable finger follower Working principle Valve train with switchable finger follower and hydraulic support element 7 Schaeffler Symposium 2014 Dave Kehr Switchable finger follower Full lift mode Exhaust Intake Deactivation mode Exhaust Intake Oil supply 8 Schaeffler Symposium 2014 Dave Kehr Switchable pivot element Working principle Oil supply 9 Schaeffler Symposium 2014 Dave Kehr Controlled oil circuit layout Oil circuit design Switching window independent VCT Parallel Intake cyl 1 Cylinder selectable 10 Advantages cyl 2 cyl 3 cyl 4 Switching window up to 180° (cam) Exhaust Simple oil galleries Intake Switching window up to 250° (cam) VCT Influence cyl 1 cyl 2 cyl 4 Cylinder selective Exhaust Schaeffler Symposium 2014 cyl 3 Compact oil galleries Dave Kehr Variable valve lift by cam shifting system (2-step) System Advantages Cylinder- and camshaft selective variability Provides OBD signal Can be upgraded to 3-step (modular principle) 11 Schaeffler Symposium 2014 Dave Kehr Chapter Title Variabilität durch SchiebenockenSystem (2-Stufigkeit) - Zylinder- und nockenwellenselektive Variabilität - OBD-Signal "aktiv/integriert" ausbaufähig zur 3-Stufigkeit (Baukastenprinzip) 12 Schaeffler Symposium Dave 2014 Kehr Electro-hydraulic valve train systems Uniair-System Advantages Fully variable Lift Zero lift capable Provides OBD signal 13 Schaeffler Symposium 2014 Dave Kehr Fuel Consumption Reduction in % Fuel consumption improvement potential using CDA 15 8 5 8 6 4 4 3 Number of Cylinders per Engine 14 Schaeffler Symposium 2014 Dave Kehr Final thoughts We offer the right components… …for fuel efficient technology 15 Schaeffler Symposium 2014 Dave Kehr ‟ By failing to prepare, you are preparing to fail ” Benjamin Franklin 1706 – 1790
© Copyright 2025