EMC modeling 04.12.2006, KOTEL TR7 meeting © Esju Oy 2006 page: 1 www.esju.fi Contact information Esju Oy Konekuja 8 90630 Oulu tel: 0424 54321 Timo Tarvainen email: timo.tarvainen@esju.fi tel: 0424 5432 216 © Esju Oy 2006 page: 2 Contents • Very brief overview of Esju Oy (from where I come) • The tools with examples • 3-D models • 2&2.5-D models • Circuit simulations • Analytic models • Combined models • Thoughts on future • Summary © Esju Oy 2006 page: 3 Esju Oy • Esju Oy is a professional provider of engineering design and research services • Services mainly for • Telecommunications • Defence industry • Health care technology • • • Founded 1991 About 40 employees Turnover 3.1 million euros (year 2005) © Esju Oy 2006 page: 4 www.esju.fi Esju Oy EMC laboratory • EMC testing services • EMC specialist services Engineering • RF technology • Analog and digital tech. • EMC and isolation design • Electromagnetic design • Measuring and testing • Embedded systems © Esju Oy 2006 page: 5 Research and training • EMC, EMI and isolation studies • RF studies • EMC, EMI and isolation training • Customer specific cources 3-D tools • • Volume vs. surface TD vs. FD TL M 1a 2 1b 4 5 © Esju Oy 2006 page: 6 3 1b FI T ? 4 PE EC ??????? ? 5 FE M M oM 3 ??? ???????? ?????? ??? ????? ?? ? 2 ? FD TD 1a 110 0 101 0011 0 0 1 100 1 1110101001 1 10 01 1 Examples of 3-D EMC problems • Radiated emissions calculations at desired distance • Radiated immunity calculations with plane waves or antennas • Isolation/ crosstalk/ shielding effectiveness evaluations • Filtering evaluations with PWBs • Mechanics and PWBs are often well suited to 3-D simulations • Parameter extractions from the measured data • Troubleshooting – finding the root cause of an error © Esju Oy 2006 page: 7 Some difficult areas for 3-D • Non-linearity is not easy today, but some tricks can be used (e.g. local parameter variations based on analytic models and non-linear circuit models) • Models that can adequately treat non-linearity, thermal behaviour and 3-D electromagnetics are under development • Poor or random contacts between parts • Structures that leak and are very thin vs. wavelength • Very big size vs. wavelength © Esju Oy 2006 page: 8 Problem meshing Surface (mainly) Volume (CST MWS) Further information at: www.csee.ltu.se/peec © Esju Oy 2006 page: 9 PEEC example on visualization • • • © Esju Oy 2006 page: 10 Screenshot from 50 ns, Gaussian, current source excitation at the front. Arrows indicate the current distribution. Further information at: www.csee.ltu.se/peec FIT large device EMP example 8m Outside E [kV/m] Desire: big problems from DC up to 40 GHz • • • 50kV/m radiated EMP pulse Typically Ein << Eout, but not everywhere How to define SE? © Esju Oy 2006 page: 11 Inside Power divider radiation (Pin = 1W) 1/2 © Esju Oy 2006 page: 12 Power divider radiation (Pin = 1W) 2/2 @3m, front [dBV/m] @3m, max, [dBV/m] © Esju Oy 2006 page: 13 Detonator immunity Transfer function S = I/E [A*m/V] 1.00E+00 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 1.00E-01 S = 0.00245 1.00E-02 20mm 1.00E-03 1.00E-04 S, Straight S Ignition wire, R = 1Ω S, Dipole 1.00E-05 1.00E-06 S = 7.87E-6 1.00E-07 30mm 1.00E-08 1.00E-09 f [GHz] • Transfer function (S=I/E) can be multiplied with different radiated threat • levels to find the ignition wire RF current For example scaling to 5670V/m threat level @1.8GHz yields 0.044A and 13.9A ignition wire RF currents for straight and dipole wire arrangements for the same detonator, respectively © Esju Oy 2006 page: 14 Coupling between antennas • Two 3.1m long antennas on the opposite corners of the bus © Esju Oy 2006 page: 15 What happens on the coupling? 1. The bus resonance of λ/2 type. 3. Slight downward shifting of λ/4 monopole response (nom. ≈ 24.2MHz) 1 3 2 2. Strongly attenuated wave propagation. © Esju Oy 2006 page: 16 Internal shielding effectiveness and gaskets 0 -20 S21 [dB] -40 -60 -80 -100 -120 0 1 2 f [GHz] measured cond 450 Microwave Testing of Electromagnetic Shielding On a Printed Wiring Board Level Computationally Efficient FIT Characterization and Measurement of EMC Gaskets - ICEAA 01 & ICEAA05, Turin, Italy © Esju Oy 2006 page: 17 3 2 and 2.5D approximations Hnorm Enorm Scaled resonant frequency 4,5 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0 50 Sample number 20 vias 50 vias 100 vias 100 200 vias Statistical Analysis of the PCB Resonance Suppression with Randomly Positioned Ground Vias - EMC Europe 2006, Barcelona, Spain • Good for printed wiring boards and insight © Esju Oy 2006 page: 18 Circuit simulations • Good when the design is not too complex and component models are available • Handles non-linear components (e.g. transient protectors) • Typical applications: • Signal integrity • Filtering • ESD, EFT and other transients © Esju Oy 2006 page: 19 Signal integrity example APLAC 8.10 User: ESJU Oy Nov 22 2006 0.30 V 0.12 -0.05 -0.23 -0.40 0.000 10.000n 20.000n t/s 30.000n V_Rx_diff_1 V_Rx_diff_2 VRx_1 SSub FR4Buried ER = 4.4 B = 1mm T = 0.017mm TAND = 0.015 RHO = 0.707 LEVEL = 2 FILE="90c031tm.ibs" COMPONENT = "DS90C031TM" PIN = "2" EN = "V_En" W = Width S = Separation L = Length Zterm © Esju Oy 2006 page: 20 FILE="90c032tm.ibs" COMPONENT = "DS90C032TM" PIN = "2" IBIS (Diff Input) V_In IBIS (Diff Output) VRx_2 Sclin VRx_3 Var V0 = 3 opt Var Trise = 200p opt Var Tfall = 200p opt Var Tbit = 2ns opt Var ZTerm = 100 opt Var Width = 360u opt Var Separation = 600u opt Var Length = 50mm opt optimmethod tuning 40.000n V_In1 Zterm IBIS (Diff Output) FILE="90c031tm.ibs" COMPONENT = "DS90C031TM" PIN = "2" EN = "V_En" VRx_4 FILE="90c032tm.ibs" COMPONENT = "DS90C032TM" PIN = "2" IBIS (Diff Input) Filtering example SAMPLE CASE: The same filter assembled to 50 ohm and 1 ohm systems 0 • Transients via wires (power, control, signal) • How much filtering? • Relying on 50 ohms specifications may yield surprises S -30 [dB] -60 -90 -120 0 250M S21@50R © Esju Oy 2006 page: 21 500M f [Hz] 750M S21@1R 1G Analytic models • Good for yielding insight and fast • Multiplex calculation methods • Typical applications: • First approximations for coupling problems (e.g. EMP) • Radiated emissions approximations • Shielding effectiveness calculations (but typically inaccurate, because of closed volumes, although approximations for these exist also) © Esju Oy 2006 page: 22 EMC laboratory absorbers Already layered = “easy” Not layered = “bit tricky” ε z = (1 − g) ε 0 + gε a µ z = (1 − g) µ 0 + gµ a 2( ε a − ε 0 ) ε t = ε 0 1 + g (1 + g)ε 0 + (1 − g)ε a z g= L 2 2( µ a − µ 0 ) µ t = µ 0 1 + g (1 + g)µ 0 + (1 − g)µ a Zi , in = Tarvainen Timo (1997) Häiriösuojatun radiokaiuttoman huoneen suunnittelu. Oulun yliopisto, sähkötekniikan osasto. Lisensiaatintyö, 86 s. © Esju Oy 2006 page: 23 Zi +1, in + jZi , ⊥ tan(φ i ) Zi ,⊥ , i = 2, 3, ... , n-1, Zi , ⊥ + jZi +1, in tan(φ i ) Γ= Z2 , in − Z1,⊥ , Z2 ,in + Z1, ⊥ Some absorber reflection examples o = 0°, + = 30° TE, x = 45° TE ja * = 60° TE + = kohtisuora tulokulma, * = 45° TE, o = 45° TM + = kohtisuora tulokulma, * = 45° TE, o = 45° TM © Esju Oy 2006 page: 24 Tarvainen Timo (1997) Häiriösuojatun radiokaiuttoman huoneen suunnittelu. Oulun yliopisto, sähkötekniikan osasto. Lisensiaatintyö, 86 s. Combined tools • • 3-D electromagnetics + circuit simulations + measurements Example: a concept high-speed connector to antenna coupling APLAC 8.10 User: ESJU Oy May 18 2006 -70.00 P -80.00 [dBm -90.00 -70 0 500 1000 1500 2000 -80 measured simulated -90 -100.00 -100 -110.00 0.000 -110 750.000M 1.500G f/Hz 2.250G 3.000G P coupled ant[ ON THE EFFECT OF HIGH SPEED CONNECTOR SHIELDS DISTRIBUTED CONTACT RESISTANCE TO RADIATED EMISSIONS, EMC Europe 2006, Barcelona, Spain On the Effect of Mobile Device Shape Characteristics to Interconnection Noise Coupling to an RF Chip Antenna, EPEP 2006, Scottsdale, Arizona, USA © Esju Oy 2006 page: 25 frequency [MHz] 2500 3000 PWB filter assembly example • • Circuit models are often computationally quite efficient • Combine with electromagnetic models for accuracy + efficiency BUT, it can be impossible to get accurate results when 3-D geometry counts Parasitic examples (Pi filter: C = 5.6p, L = 56n, 5o ohm ports) Aplac 7.61 User: ESJU Oy Feb 20 2002 0.00 S21 -30.00 Cpar dB IN -60.00 Cfilt Rfilt Lpar -90.00 -120.00 1 0.000 OUT Cfilt Lpar Lpar Rpar Rpar 750.000M Aplac CST coplnar © Esju Oy 2006 page: 26 1.500G f/Hz 2.250G CST Vias 3.000G Computational electromagnetics future • Parallel processing • Integration of tools • Multiple scales • EMC fingerprints, MOR (Model Order Reduction) • Handling non-linearity • Total CEM solutions • Multiphysics Further information at: http://www.ewh.ieee.org/soc/cpmt/tc12/ © Esju Oy 2006 page: 27 Look for presentations from FDIP'06 workshop Summary • Huge amount of EMC type problems can be solved today • Complete device models are coming, but not yet quite there • Computational capacity increases very quickly with respect to time © Esju Oy 2006 page: 28
© Copyright 2024