liite 3/16 Opetussuunnitelma 2015 - 2016: kurssikuvaukset Taso: DI- ja jatko-opintotasoiset kurssit Laitos: Matematiikan ja systeemianalyysin laitos Kielet: suomi, ruotsi, englanti MS-E1000 Crystal Flowers in Halls of Mirrors: Mathematics meets Art and Architecture (6-10 cr) Responsible teacher: Kirsi Peltonen Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching Period: III-IV (Spring 2017), every other year Workload: Contact teaching: 6h/week x 12 weeks=72h, independent study: 90h (projects and reports) Learning Outcomes: Students will learn to find connections between mathematics and art and architecture. Real mathematics will be revealed through patterns, symmetries, structures, shapes and beauty in such a way that will enable the student to view our environment from a new perspective. By the end of the course, the students will be able to distinguish aspects from their own fields which can be presented, considered and developed using the language of modern mathematics. Content: During the course we will consider methods offered by various fields of mathematics which meet the needs of art and architecture. Through concrete projects, we will find phenomena and interpretations of these phenomena from both classical and modern mathematics. Possible topics from mathematics which may appear: Symmetries, systems of proportions, projections and perspectives. Geometric inversion, conformality and more general mapping classes. Tilings in the plane, polyhedrons and duality. Hopf fibration and other structures. On different types of geometries: spherical, hyperbolic, geometry of surfaces and minimal surfaces. Fractal geometry and dynamics. Kleinian groups, knot theory and contact structures. We will also, depending on the interest of the students, introduce artists and architects from different cultures: M.C. Escher, V. Vasarely, István Orosz, Eero Saarinen, Islamic art, Celtic knots, Sangaku. Assessment Methods and Criteria: There are no prerequisites from mathematics or art. Students must participate in 80% of the contact teaching. The course consists of project work completed in groups of at most six people at Aalto Design Factory. All steps of the project: planning, implementation, written reports and presentations will have an impact on grades. Individual input is also taken into account by reflections, portfolios, exercises and essays. Optional forms of completing the course can be provided, if required. A complete evaluation and monitoring of learning is performed during the course. Study Material: To be determined at the beginning of the course. Substitutes for Courses: Mat-1.3000 Kristallikukkia peilisaleissa: Matematiikka kohtaa taiteen ja arkkitehtuurin Grading Scale: 1-5 Language of Instruction: Finnish, English if needed Further Information: At most 36 participants can be accepted. Tentatively 12 art students, 12 architecture students and 12 others. No prerequisities from mathematics or art. The course can be included for example in methodological studies and it is suitable at every stage of studies and for students in every school. MS-E1010 Tieteen filosofia (5 op) 1 Vastuuopettaja: Ilpo Halonen Kurssin taso: maisteriopinnot, jatko-opinnot Opetusperiodi: I-II (syksy 2015), joka toinen vuosi Työmäärä toteutustavoittain: 48 t (luennot), 56 t (luentojen kertaus), 26 t (oheislukemisto) Osaamistavoitteet: Opintojakson jälkeen opiskelija pystyy ymmärtämään ja arvioimaan filosofista lähestymistapaa tieteeseen. Sisältö: Tieteen ja tieteellisen ajattelun tunnuspiirteiden systemaattinen tarkastelu sekä eri aikojen käsitykset tieteen tavoitteista, menetelmistä sekä tieteellisen tiedon luonteesta. Tieteen ja tekniikan suhde eri aikoina. Matemaattisten ja fysikaalisten tieteiden perusteet, tavoitteet ja menetelmät filosofisesta näkökulmasta. Myös historiallinen kehitys antiikin ajattelijoista tieteiden vallankumoukseen ja edelleen nykypäivän keskeisiin näkemyksiin asti. Logiikka ja argumentaatioteoria, tieteellinen päättely, sen luonne ja tavoitteet, tieteellinen selittäminen ja kausaliteetin ongelmat. Tieteen etiikka ja tieteellinen maailmankuva. Tiedon kasvuun ja tieteen kehitykseen liittyvät kysymykset. Toteutus, työmuodot ja arvosteluperusteet: Kirjallinen tentti. Oppimateriaali: Luentojen tiivistelmät ja tieto pakollisesta sekä suositeltavasta oheiskirjallisuudesta julkaistaan kurssin MyCourses-sivuilla kurssin kuluessa. Korvaavuudet: Mat-1.3013, Mat-1.3014, Mat-1.3015 Arvosteluasteikko: Hyväksytty/hylätty. Opetuskieli: Suomi pääosin. Pyydettäessä suoritettavissa englanniksi. Lisätietoja: ilpo.halonen@aalto.fi MS-E1010 Vetenskapens filosofi (5 sp) Ansvarig lärare: Ilpo Halonen Kursens status: Kursnivå: magisterstudier, fortbildningsstudier Undervisningsperiod: I-II (hösten 2015), vartannat år Arbetsmängd: 48 t (föreläsningar), 56 t (repetition av föreläsningar), 26 t (läsning av annan litteratur) Lärandemål: Opintojakson jälkeen opiskelija pystyy ymmärtämään ja arvioimaan filosofista lähestymistapaa tieteeseen. Innehåll: n systematiskt behandling av de utmärkande dragen i vetenskapen och det vetenskapliga tänkandet och uppfattningar under olika tidevarv om metoder och målsättningar för vetenskapen och arten av vetenskaplig kunskap. Grunder, målsättningar och metoder i de matematiska och fysikaliska vetenskaperna ur en filosofisk synvinkel. Den historiksa utvecklingen från antikens tänkare till den vetenskapliga revolutionen och vidare till centrala nutida åsikter. Logik och argumentationsteori. Vetenskaplig slutledning, dess natur och målsättningar. Vetenskapliga förklaringar och kausalitetsproblem. Vetenskapens etik och den vetenskapliga världsbilden. Frågor som gäller kunskapstillväxten och utvecklingen av vetenskapen. Metoder, arbetssätt och bedömningsgrunder: Skriftlig tentamen. Studiematerial: n sammanfattning av föreläsningar utges i kursens MyCourses-sidor på finska. Ersättande prestationer: Mat-1.3013, Mat-1.3014, Mat-1.3015 Bedömningsskala: Godkänt/Underkänt Undervisningsspråk: Huvudsakligen på finska. Kan på begäran avläggas på engelska. Tilläggsinformation: ilpo.halonen@aalto.fi MS-E1010 Philosophy of Science (5 cr) Responsible teacher: Ilpo Halonen Status of the Course: Level of the Course: master’s level, doctoral level 2 Teaching Period: I-II (Autumn 2015), every other year Workload: 48 hours (lectures), 56 t (repetition), 26 t (additional literature) Learning Outcomes: Opintojakson jälkeen opiskelija pystyy ymmärtämään ja arvioimaan filosofista lähestymistapaa tieteeseen. Content: The course deals mainly the foundations, objectives, and the methods in the mathematical and physical sciences from a philosophical point of view. The course proceeds historically from the philosophers of antiquity to the scientific revolution and from there to the essential modern philosophies. The characteristic features of science and of scientific thinking are systematically treated as well as concepts about the methods and the objectives of science and the nature of scientific knowledge during different periods. Systematical consideration of science and scientific thinking and the conceptions concerning objectives, methods and the nature of scientific knowledge during different times. Foundations, objectives and methods of mathematical and physical sciences from the philosophical point of view. The historical development from antiquity through the scientific revolution until the main perspectives of modern times. The scientific establishment of theories and concepts, scientific reasoning, its nature and objectives, scientific explanation and causality, the ethics of science and questions pertaining to the scientific world view, growth of knowledge and the development of science. Assessment Methods and Criteria: Written exam. Study Material: A summary of the lectures in Finnish can be found on the MyCourses pages during the course. Substitutes for Courses: Mat-1.3013, Mat-1.3014, Mat-1.3015 Grading Scale: Pass/Fail Language of Instruction: Primarily Finnish. Can be taken in English upon request. Further Information: ilpo.halonen@aalto.fi MS-E1011 Tieteen historia (5 op) Vastuuopettaja: Ilpo Halonen Kurssin taso: maisteriopinnot, jatko-opinnot Opetusperiodi: I-II (syksy 2016), joka toinen vuosi Työmäärä toteutustavoittain: 48 t (luennot), 56 t (luentojen kertaus), 26 t (oheislukemisto) Osaamistavoitteet: Opintojakson jälkeen opiskelija pystyy ymmärtämään ja arvioimaan, miten tiede on eri aikoina vaikuttanut maailmankuvaan ja miten maailmankuva (mahdollisesti) on vaikuttanut tieteeseen. Sisältö: Valitut kohdat tiedehistoriasta antiikista uudelle ajalle asti. Asioiden ymmärtäminen tieteen metodisen kehityksen ja tieteellisestä metodista esitettyjen teorioiden kannalta. Järjestelmällisen tieteenharjoituksen synty Kreikassa, Aristoteleen rooli filosofian ja tieteiden isänä, hänen teostensa asema keskiajan eurooppalaisissa yliopistoissa. Luonnontieteen nousu 1600-luvulla, ns. “tieteen suuri vallankumous”. Tämän vallankumouksen yhtenä tärkeänä teemana oli tähtitieteen kehitys. Em. kauden keskeisten matemaattis-fysikaalisten keksintöjen takaa löytyvät hahmot: mm. Kopernikus, Brahe, Kepler, Bacon, Galilei, Descartes, Newton ja Leibniz. Valittuja kohtia uudemmasta tiedehistoriasta (mm. Einstein). Toteutus, työmuodot ja arvosteluperusteet: Kirjallinen tentti. Oppimateriaali: Luentojen tiivistelmät ja tieto pakollisesta sekä suositeltavasta oheiskirjallisuudesta julkaistaan kurssin Noppa-sivuilla kurssin kuluessa. Substitutes for courses: Kurssin voi suorittaa myös pyydettäessä englanniksi kirjallisuustentillä. Korvaavuudet: Mat-1.3011, Mat-1.3012, Mat-1.3016 Arvosteluasteikko: Hyväksytty/hylätty. Opetuskieli: Suomi pääosin. Pyydettäessä suoritettavissa englanniksi. Lisätietoja: ilpo.halonen@aalto.fi 3 MS-E1011 Vetenskapshistoria (5 sp) Ansvarig lärare: Ilpo Halonen Kursnivå: magisterstudier, fortbildningsstudier Undervisningsperiod: I-II (hösten 2016), vartannat år Arbetsmängd: 48 t (föreläsningar), 56 t (repetition av föreläsningar), 26 t (läsning av annan litteratur) Lärandemål: Kan förstå och bedöma hur vetenskapen under olika tider har påverkat värdsbilden och hur världsbilden (eventuellt) har påverkat vetenskapen. Innehåll: Valda delar av vetenskapshistorien från antiken till nya tiden. Förståelse av olika fenomen med utgångspunkt i den metodiska utvecklingen av vetenskapen och de teorier som framställts beträffande vetenskapliga metoder. Uppkomsten av systematiska vetenskaper i Grekland, Aristoteles roll som filosofins och vetenskapens fader, och hans verks ställning i de medeltida europeiska universiteten. Den vetenskapliga uppgången under 1600-talet, “den stora vetenskapliga revolutionen”. Ett viktigt tema i denna revolution var utvecklingen i astronomi. Bakom de centrala matematisk-fysikaliska upptäckterna under perioden finns personer som t.ex. Kopernikus, Brahe, Kepler, Bacon, Galilei, Descartes, Newton och Leibniz. Valda delar av nyare vetenskapshistoria (bl.a. Einstein). Metoder, arbetssätt och bedömningsgrunder: Skriftlig tentamen. Studiematerial: En sammanfattning av föreläsningar utges i kursens MyCourses-sidor på finska. Ersättande prestationer: Kursen kan avläggas som självstudiekurs på engelska. Bedömningsskala: Godkänt/Underkänt Undervisningsspråk: Huvudsakligen på finska. Kan på begäran avläggas på engelska. Tilläggsinformation: ilpo.halonen@aalto.fi MS-E1011 History of Science (5 cr) Responsible teacher: Ilpo Halonen Level of the Course: master’s level, doctoral level Teaching Period: I-II (Autumn 2016), every other year Workload: 48 hours (lectures), 56 t (repetition), 26 t (additional literature) Learning Outcomes: After the course the student can understand and evaluate, how science has affected the world view and how the world view has (possibly) affected science. Content: The course examines the history of science by way of selected topics from antiquity to the twentieth century. The emphasis is on the methodological development of science and on the theories developed to deal with scientific method. Understanding the material from the methodological development of science point of view. The rise of systematic science in Greece. The role of Aristotle as the father of philosophy and science, and the status of his works in medieval universities. The great scientific advances made during the 17th century, often called “the great scientific revolution”, are treated. An important theme in this revolution was the development of astronomy. Behind the central mathematical-physical discoveries during the period were persons like Kopernikus, Brahe, Kepler, Bacon, Galilei, Descartes, Newton and Leibniz. In addition the course treats certain parts of more recent history of science (e.g. Einstein). Assessment Methods and Criteria: Written exam. Study Material: A summary of the lectures in Finnish can be found on the Noppa pages during the course. Substitutes for Courses: The course can be taken in English as a literature exam upon request. Grading Scale: Pass/Fail Language of Instruction: Primarily Finnish. Can be taken in English upon request. Further Information: ilpo.halonen@aalto.fi 4 MS-E1050 Graph theory (5 cr) Responsible teacher: Alexander Engström Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: I (Autumn) Workload: Lectures and tutored problem solving 36h (3x2h/week, 6 weeks), self-study about 100h. Learning Outcomes: The students will after the course understand the basic invariants of graphs and how they are related by regularity and structural graph theory. Content: Basic properties as connectivity, planarity and minor containment both in the deterministic and random setting. The Szemerédi regularity lemma, graph homomorphisms and graph limits; the graph minor theorem and the strong perfect graph theorem. Study Material: Graph Theory, Diestel, 4th edition; Large Networks and Graph Limits, Lovász. Substitutes for Courses: Mat-1.3050 Prerequisites: Mathematical maturity comparable to a bachelor in computer science, mathematics or operational research. Evaluation: 1-5 Language of Instruction: English MS-E1051 Combinatorics (5 cr) Responsible teacher: Alexander Engström Status of the Course: Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: II (Autumn) Workload: Lectures and tutored problem solving 36h (3x2h/week, 6 weeks), self-study about 100h. Learning Outcomes: The students will learn how to analyse combinatorial problems using algebraic and analytic methods. Content: Enumeration and generating functions; posets and their algebraic properties. Study Material: Analytic Combinatorics, Flajolet and Sedgewick; Supplied lecture notes on algebraic combinatorics. Substitutes for Courses: MS-C1050 Prerequisites: Mathematical maturity comparable to a bachelor in computer science, mathematics or operational research. Preferably some basic algebra and complex analysis. Evaluation: 1-5. Language of Instruction: English MS-E1059 Seminar on combinatorics (V) (V) (1-5 cr) Responsible teacher: Alexander Engström Status of the Course: Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional Level of the Course: master’s level, doctoral level Teaching period: I-V (academic year) Learning Outcomes: An overview of contemporary research trends in algebraic and topological combinatorics and an understanding of the basic elements of a good math talk. 5 Content: Seminar talks and discussions. Assessment Methods and Criteria: Active participation in seminars. Course Homepage: http://math.aalto.fi/~alex/ Evaluation: pass/fail Registration for Courses: Contact the teacher in charge. Language of Instruction: English MS-E1089 Seminar on Algebra, Number Theory, and Applications to Communications and Computing V (V) (2 cr) Responsible teacher: Camilla Hollanti Teaching period: I-V (2015-2016) Learning Outcomes: To get familiar with the research topics of algebra, number theory and their applications. Content: Research topics of algebra, number theory and their applications Assessment Methods and Criteria: Attendance 6 times, including one presentation Evaluation: Pass/fail Language of Instruction: English Further Information: http://math.aalto.fi/en/research/algnumb/seminar/ MS-E1110 Number theory (5 cr) Responsible teacher: Camilla Hollanti Status of the Course: Major in Applied Mathematics & Major in Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor in Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: II (Autumn). Workload: 24+12 (4+2). Learning Outcomes: - The student understands the basic concepts of number theory and is able to solve simple Diophantine equations and perform modular arithmetics. - The student is familiar with some applications of number theory in cryptography. Content: integer factorization, primes, pseudo primes, Diophantine equations, modular arithmetics, squares and nonsquares in modular arithmetics, primititive roots, applications to cryptography. Assessment Methods and Criteria: Lectures, exercises, exam, essay. Study Material: K. H. Rosen: Elementary number theory and its applications. 1993. Substitutes for Courses: Mat-1.3111, MS-C1110. Prerequisites: High school mathematics. MS-A040X OR MS-C1080 is recommended. Evaluation: 1-5. Language of Instruction: English MS-E1111 Galois theory (5 cr) Responsible teacher: Camilla Hollanti Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: IV (Spring 2016), every other year Workload: 6 hours x 6 weeks Content: To understand at an operative level the concepts of Galois extension and Galois correspondence. Ability to solve equations with algebraic methods. Assessment Methods and Criteria: Lectures, written exercises, possibility for an oral exam if needed. Study Material: Ian Stewart: Galois Theory, 3rd edition. 6 Substitutes for Courses: Mat-1.3110 Prerequisites: MS-C1080 Algebran perusrakenteet or similar. Evaluation: 1-5. Language of Instruction: English MS-E1280 Measure and integral (5 cr) Responsible teacher: Juha Kinnunen Status of the Course: Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: II (Autumn) Workload: lectures 24h (2x2h/week, 6 weeks), exercises 12h (1x2h/week, 6 weeks), self-study ca 100h Learning Outcomes: After this course you will know basic methods in measure and integration theory. Content: Outer measure (properties of measurable sets, characterizations of measurable sets, Lebesgue outer measure), measurable functions (properties of measurable functions, approximation by simple functions, Egoroff and Lusin theorems), integration (construction and properties of integral, Lebesgue integral, convergence theorems), Fubini’s theorem. Assessment Methods and Criteria: Homework assignments and attendance (50%), final exam (50%). Study Material: All material is available at the course homepage. Substitutes for Courses: MS-C1280. Prerequisites: MS-A000X, MS-A010X, MS-A020X, MS-A030X, MS-A050X, MS-C1540. Evaluation: 1-5 Language of Instruction: English MS-E1281 Real analysis (5 cr) Responsible teacher: Juha Kinnunen Status of the Course: Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: IV (Spring 2016), every other year Workload: 24h (2x2h/week, 6 weeks), exercises 12h (1x2h/week, 6 weeks), self-study ca 100h Learning Outcomes: After this course you will know how to apply real analysis methods in research. Content: Lebesgue spaces (Hölder’s and Minkowski’s inequalities, Riesz-Fischer theorem, dual spaces and weak convergence), Hardy-Littlewood maximal function (Vitali covering theorem, Marcinkiewicz interpolation theorem, maximal function theorem, Lebesgue’s differentiation theorem), convolution approximations, differentiation of Radon measures (Besicovitch covering theorem, Lebesgue points), Radon-Nikodym theorem, Riesz representation theorem, weak convergence and compactness for Radon measures, Sobolev spaces (Poincare and Sobolev inequalities). Assessment Methods and Criteria: Homework assignments and attendance (100%). Study Material: All material is available at the course homepage. Substitutes for Courses: Mat-1.3283 Prerequisites: MS-A000X, MS-A010X, MS-A020X, MS-A030X, MS-A050X, MS-C1280, MS-C1350, MS-C1540. Evaluation: 1-5 Language of Instruction: English MS-E1289 Seminar on analysis and geometry (V) (V) (1-5 cr) 7 Responsible teacher: Juha Kinnunen; Kirsi Peltonen Status of the Course: Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: I-V (academic year) Learning Outcomes: This is a research seminar. Content: We study the most recent methods and results in modern analysis and geometry. The talks are related, for example, to differential geometry, geometric analysis, harmonic analysis and partial differential equations. Substitutes for Courses: Mat-1.3284 Evaluation: hyv · Opintojaksot Language of Instruction: English MS-E1460 Functional analysis (5 cr) Responsible teacher: Ville Turunen Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor in Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: I (Autumn) Workload: Lectures 24h (2x2h/week, 6 weeks), exercises 12h (1x2h/week, 6 weeks), self-study ca 100h. Learning Outcomes: You will learn about norms and inner products in infinite-dimensional vector spaces. Related to these structures, you will understand basic properties of bounded linear operators and duality in Banach and Hilbert spaces, together with diagonalization of compact self-adjoint operators. Content: Bounded linear operators and functionals in Banach and Hilbert spaces, elementary spectral theory (Riesz Compactness Theorem, Uniform Boundedness Principle, Open Mapping and Closed Graph Theorems, Hahn-Banach Theorem, Riesz Hilbert Space Representation and Hilbert-Schmidt Spectral Theorems). Assessment Methods and Criteria: Weekly exercises (1/3) and an exam (2/3). Alternatively, just exam (100%). Study Material: Lecture notes (additional literature to be announced at the course homepage). Substitutes for Courses: Mat-1.3460 Principles of Functional Analysis. Prerequisites: MS-A000X, MS-A010X, MS-C1540. Evaluation: 1-5. Language of Instruction: English. MS-E1531 Differential geometry (5 cr) Responsible teacher: Kirsi Peltonen Status of the Course: Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: III (Spring 2016), every other year Workload: 36 + 18 (4 + 2) Learning Outcomes: This course is an introduction to the basic machinery behind the modern differential geometry: tensors, differential forms, smooth manifolds and vector bundles. The geometries lying above these structures are involved in several applications through mathematical analysis, physics, stochastics and statistical modells. The central goal is to become familiar with this particular language of abstract mathematics that opens the venue to apply geometric methods in different applications. A modern viewpoint to some of the classical Riemann, Finsler or Kähler model geometries is served in addition to the possibility to open the door to the beautiful worlds of contact and symplectic geometry that are present in the most recent progress of geometrization of 8 applications. The course provides basic skills to recognize geometric phenomena in mathematical analysis and applications. Content: Topics related to differential geometry varying from classical Riemannian geometry to modern geometries. More specified topics will be announced later. Assessment Methods and Criteria: Active participation in lectures and weekly excercises. Individual research projects that are related to the topics of the course. Always discuss beforehand with the lecturer before starting such a project. A traditional exam is also possible. Study Material: All material related to the course can be found from MyCourses pages of the course. There is no special book the course is following but excellent treatments in the spirit of the lectures are provided by: - John M. Lee: Introduction to Smooth Manifolds, Springer - John M. Lee: Riemannian Manifolds: An Introduction to Curvature, Springer. Substitutes for Courses: Mat-1.3531 Prerequisites: MS-A210, MS-A310, MS-C1530, MS-C1540 Evaluation: 1-5 Language of Instruction: English Further Information: The content of the course is part of a good mathematical education, which should self-evidently belong to the curriculum of every math major student. A highly open mind is necessary to gain the capability to apply methods provided by differential geometry to other sciences. Suitable to everybody interested in geometrization, especially those with a focus on fields in natural sciences where the connection is most visible like in general relativity and electromagnetism. Other potential fields are all sciences that make use of statistical or stochastic methods. MS-E1600 Probability theory (5 cr) Responsible teacher: Kalle Kytölä; Lasse Leskelä Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: III (Spring) Workload: 2 x 2h lectures,1 x 2h exercises sessions Learning Outcomes: After completing the course, the participant - Can compute the expected value of a random number as an integral with respect to a probability measure - Can compute probabilities related to independent random variables by using a product measure - Recognizes different types of convergence of a random sequence - Can explain how and when a random sum can be approximated by a Gaussian distribution - Can represent conditional probabilities with respect to the information content of a sigma-algebra Content: - Random numbers, vectors, and sequences - Integration with respect to a probability measure - Stochastic independence and product measure - Law of large numbers and the central limit theorem - Conditional expectation with respect to a sigma-algebra Study Material: TBA Substitutes for Courses: Mat-1.3601 Prerequisites: Familiarity with continuous functions and open sets (e.g. MS-C1540 Euklidiset avaruudet) Evaluation: 1-5 Language of Instruction: English 9 MS-E1601 Brownian motion and stochastic analysis (5 cr) Responsible teacher: Lasse Leskelä Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: II (Autumn 2015), every other year Workload: - 2 x 2h lectures - 1 x 2h exercises sessions Learning Outcomes: After completing the course the participant: - Can compute probabilities and expectations related to Brownian motion - Can define the stochastic integral - Recognizes random processes which are integrable with respect to Brownian motion - Can apply Itō’s formula to various functionals of Brownian motion Content: - Brownian motion - Stochastic integral - Itō’s formula and applications Study Material: TBA Substitutes for Courses: Mat-1.3602 Prerequisites: MS-E1600 Evaluation: hyv · Opintojaksot Language of Instruction: English MS-E1602 Large random systems (5 cr) Responsible teacher: Kalle Kytölä Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: IV (Spring 2016), every other year Workload: - 2 x 2h lectures - 1 x 2h exercises sessions Learning Outcomes: After completing the course the participant is able to: - Formulate mathematical models of various systems with a large number of interacting random components - Incorporate spacial structure and dynamics into probabilistic models - Estimate the asymptotics of probabilities and expected values in models with a size parameter - Formulate qualitative phase transitions in stochastic models and recognize them - Verify if a sequence of probability distributions on a metric space converges Content: Stochastic models with spatial and temporal structure - 0-1 laws - Large deviation estimates of rare events - Phase transitions in stochastic models - Convergence and tightness of probability measures Study Material: TBA Substitutes for Courses: Prerequisites: MS-E1600 Evaluation: hyv · Opintojaksot 10 Language of Instruction: English MS-E1609 Seminar on stochastics and statistics (V) (V) (1-5 cr) Responsible teacher: Sirkku Ilmonen; Kalle Kytölä; Lasse Leskelä Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional Level of the Course: master’s level, doctoral level Teaching period: I-V (academic year) Evaluation: hyv · Opintojaksot Language of Instruction: English MS-E1651 Numerical matrix computations (5 cr) Responsible teacher: Antti Hannukainen Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: I (Autumn) Workload: 24h (2x2h/week, 6 weeks), exercises 12h (1x2h/week, 6 weeks), self-study ca 100h Learning Outcomes: Students learn to analyze and solve problems in linear algebra that occur often in scientific computing, data fitting and optimization. The main focus is on solution of linear systems, least squares problems and eigenvalue problems. After the course, the students can choose the best solution method for each problem and have a good understanding on issues related to numerical stability of the applied algorithms. Content: Matrix decompositions and their numerical computation, eigenvalue iterations, sparse matrices, iterative solution of linear systems. Assessment Methods and Criteria: weekly exercises (33.3%), an exam (66.6%) Study Material: All essential material is included in the lecture notes that are available at the course’s homepage. Substitutes for Courses: Mat-1.3651 Prerequisites: MS-A000X, MS-A010X, MS-A020X, MS-A030X, MS-A050X. The courses MS- C1540 may also be useful. Evaluation: 1-5 Language of Instruction: English MS-E1652 Computational methods for differential equations (5 cr) Responsible teacher: Nuutti Hyvönen Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: II (Autumn) Workload: lectures 24h (2x2h/week, 6 weeks), exercises 12h (1x2h/week, 6 weeks), self-study ca 100h Learning Outcomes: You will familiarize yourself with the basic properties of initial value problems for systems of ordinary differential equations. You will learn the fundamental theory about linear multistep methods (definition, consistency, zero-stability, convergence) and Runge-Kutta methods (definition, order conditions, convergence). You will learn to identify a stiff system and to understand the difference between explicit and implicit numerical schemes. You will understand the signifigance of absolute stability and A-stability, and know how to examine the region of absolute stability for a given numerical method. You will get to know the basic principles of the discrete Fourier transform. You 11 will familiarize yourself with simple parabolic and hyperpolic initial/boundary value problems and learn how to discretize them with the help of difference schemes. You will practice implementing the introduced methods numerically. Content: Basic existence and uniqueness results for systems of ordinary differential equations. Linear multistep methods and Runge-Kutta methods: stability, convergence and numerical implementation. Discrete Fourier transform. Discretization of simple initial/boundary value problems for parabolic and hyperbolic partial differential equations. Assessment Methods and Criteria: Weekly exercises (33.3%) and an exam (66.7%). Study Material: All essential material is included in the lecture notes that are available at the course’s homepage. Substitutes for Courses: Mat-1.3652. Prerequisites: S-A000X, MS-A010X, MS-A020X, MS-A030X, MS-A050X. The courses MS-C1340, MS-C1350, MS-C1650, MS-E1651 may also be useful. Evaluation: 1-5 Language of Instruction: English MS-E1653 Finite element method (5 cr) Responsible teacher: Antti Hannukainen Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: III-IV (Spring) Workload: 48h (2x2h/week, 12 weeks), self-study ca 100h, project ca 20h Learning Outcomes: Students learn to derive and analyze weak form of an elliptic partial differential equation and to implement finite element solver in 2D. They will develop understanding on the principles of the error analysis of the finite element method and different factors affecting the accuracy of the solution. Content: The topic of the course is solution of elliptic partial differential equation using finite element method. Both algorithmic and theoretical aspects of the method are covered. Assessment Methods and Criteria: weekly exercises (50%), an exam (50%), project (pass/fail) Study Material: All essential material is included in the lecture notes that are available at the course’s homepage. Substitutes for Courses: MS-C1741 Prerequisites: MS-A000X, MS-A010X, MS-A020X, MS-A030X, MS-A050X. The courses MS-C1350, MS- C1540 may also be useful. Evaluation: 1-5 Language of Instruction: English MS-E1654 Computational inverse problems (5 cr) Responsible teacher: Nuutti Hyvönen Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; Master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: IV (Spring) Workload: lectures 24h (2x2h/week, 6 weeks), exercises 12h (1x2h/week, 6 weeks), self-study ca 100h Learning Outcomes: You will learn to identify an ill-posed inverse problem and to understand the restrictions its nature imposes on the solution process. You will familiarize yourself with several classical regularization methods for finding approximate solutions to linear ill-posed problems. You will learn to formulate an inverse problem as a Bayesian problem of statistical inference and to interpret the information contained in the resulting 12 posterior probability distribution. You will learn to numerically implement the introduced solution techniques. Content: The course’s topic is computational methods for solving inverse problems arising from practical applications. The course consists of two parts: the first three weeks focus on classic regularization techniques, the latter three weeks discuss statistical methods. Assessment Methods and Criteria: weekly exercises (25%), a home exam (75%). Study Material: All essential material is included in the lecture notes that are available at the course’s homepage. Substitutes for Courses: Mat-1.3626 Prerequisites: MS-A000X, MS-A010X, MS-A020X, MS-A030X, MS-A050X. The courses MS-C1340, MS-C1650, MS-E1460, MS-E1651, MS-E1652, MS-E2112 may also be useful. Evaluation: 1-5 Language of Instruction: English MS-E1659 Seminar on applied mathematics (V) (V) (1-5 cr) Responsible teacher: Nuutti Hyvönen; Antti Hannukainen Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional Level of the Course: master’s level, doctoral level Teaching period: I-V (academic year) Learning Outcomes: An overview of research on applied mathematics and mechanics at Aalto University and collaborating units. Content: Seminar talks and discussion on current research topics in applied mathematics and mechanics. The seminar usually convenes once a week during the academic year. Assessment Methods and Criteria: A seminar talk and active participation. Substitutes for Courses: Mat-1.3656, Mat-5.3753. Prerequisites: MS-A000X, MS-A010X, MS-A020X, MS-A030X, MS-A050X. The courses MS-C1340, MS-C1350, MS-C1650, MS-E1460, MS-E1651, MS-E1652, MS-E1653, MS-E1654, MS-1740, MS-1741, MS-1742, MS-1743 may also be useful. Evaluation: pass/fail Registration for Courses: Contact the teachers in charge. Language of Instruction: English MS-E1740 Continuum mechanics 1 (5 cr) Responsible teacher: Rolf Stenberg Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: I (Autumn) Workload: 24 h (2x2h/week, 6weeks), exercises 12 h (1x2h/week, 6 weeks) Learning Outcomes: You know the mathematical tools for modeling a continuum, i.e. a solid or a fluid. Content: Tensor calculus. The concepts of continuum mass and force. Kinematics. Balance laws. Assessment Methods and Criteria: Weekly exercises (1/3) and an exam (2/3). Study Material: O. Gonzalez, A. Stuart. A first course in continuum mechanics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2008. Substitutes for Courses: Mat-5.3740 Prerequisites: MS-A000X, MS-A010X,MS-A020X,MS-A030X Evaluation: 1-5. Language of Instruction: English 13 MS-E1741 Continuum mechanics 2 (5 cr) Responsible teacher: Rolf Stenberg Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: II (Autumn) Workload: Lecture 24 h (2x2h/week, 6weeks), exercises 12 h (1x2h/week, 6 weeks) Learning Outcomes: You are able to derive and analyze the main mathematical models for fluids and solids. Content: Constitutive laws. Inviscid fluids, Navier-Stokes equations. Linear and nonlinear elasticity. Assessment Methods and Criteria: Weekly exercises (1/3) and an exam (2/3). Study Material: O. Gonzalez, A. Stuart. A first course in continuum mechanics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2008. Substitutes for Courses: Mat-5.3740 Prerequisites: MS-E1740 Continuum mechanics 1. Evaluation: 1-5. Language of Instruction: English MS-E1742 Computational mechanics 1 (5 cr) Responsible teacher: Rolf Stenberg Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: IV (Spring) Workload: 24 h (2x2h/week, 6weeks), exercises 12 h (1x2h/week, 6 weeks) Learning Outcomes: You will learn how the finite element method is applied for problems which are constrained minimization problems with a Lagrange multiplier. Content: General variational problems. The finite element theory for approximating saddle-point problems. Applications to Stokes equations. Assessment Methods and Criteria: Weekly exercises (1/3) and an exam (2/3). Study Material: Larson, Mats G.; Bengzon, Fredrik. The finite element method: theory, implementation, and applications. Texts in Computational Science and Engineering, 10. Springer, Heidelberg, 2013. Substitutes for Courses: Mat-5.3750 Prerequisites: MS-E1653 Finite element method (5 cr). Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1743 Computational mechanics 2 (5 cr) Responsible teacher: Rolf Stenberg Status of the Course: Major of Applied Mathematics, Master’s Programme in Mathematics and Operations Research, optional; master’s level Minor of Mathematics, optional Level of the Course: master’s level, doctoral level Teaching period: V (Spring) Workload: 24 h (2x2h/week, 6weeks), exercises 12 h (1x2h/week, 6 weeks) Learning Outcomes: You will be able to apply the theory from MS-E1742 Computational mechanics 1 to a variety of problems in continuum mechanics. Content: Stabilized finite element methods; applications to the convection diffusion and 14 Stokes equations. Finite element methods in solid mechanics; the Timoshenko beam and the Reissner-Mindlin plate model Assessment Methods and Criteria: Weekly exercises (1/3) and an exam (2/3). Study Material: Lecture notes. Substitutes for Courses: Mat-5.3750 Prerequisites: MS-E1742 Evaluation: 1-5. Language of Instruction: English MS-E1980 Special assignment in mathematics (V) (V) (5-10 cr) Responsible teacher: Nuutti Hyvönen Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional Level of the Course: master’s level Teaching period: I-V (academic year) Workload: self-study ca 135h Learning Outcomes: Understands the mathematics related to the assignment. Is able to write a scientific report on the project. Content: An individual research assignment or a literature survey. Substitutes for Courses: Mat-1.3990, Mat-5.3751. Evaluation: 1-5 Language of Instruction: English/Finnish/Swedish (to be agreed with the teacher) Further Information: Before starting the special assignment, the topic must be agreed with a member of the faculty at the Department of Mathematics and Systems Analysis. MS-E1981 Individual studies in mathematics (V) (V) (1-10 cr) Responsible teacher: Nuutti Hyvönen Status of the Course: Major of Applied Mathematics & Major of Mathematics, Master’s Programme in Mathematics and Operations Research, optional Level of the Course: master’s level, doctoral level Teaching period: I-V (academic year) Content: Guest lectures, web-based teaching or other individual studies. The content and scope must be settled with the teacher in charge. Substitutes for Courses: Mat-1.2995, Mat-1.3980, Mat-1.3981 Evaluation: 1-5 or pass/fail Language of Instruction: English/Finnish/Swedish (to be agreed with the teacher) MS-E1990 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1991 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1992 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1993 Course with Varying Content V (V) (1-10 cr) 15 Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1994 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1995 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1996 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1997 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1998 Course with Varying Content V (V) (1-10 cr) Responsible teacher: Pekka Alestalo Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E1999 Matemaattiset ohjelmistot V (V) (1-5 op) Vastuuopettaja: Heikki Apiola Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi Lisätietoja: Vaihtuvasisältöinen. MS-E1999 Matematisk programvara V (V) (1-5 sp) Ansvarig lärare: Heikki Apiola Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska Tilläggsinformation: Innehåll varieras. MS-E1999 Mathematical software V (V) (1-5 cr) Responsible teacher: Heikki Apiola Evaluation: 1-5 · Courses Language of Instruction: Finnish Further Information: Content varies. MS-E2108 Systeemianalyysin erikoistyöt (V) (V) (5-8 op) Vastuuopettaja: Enrico Bartolini; Harri Ehtamo; Raimo Hämäläinen; Ahti Salo; Kai Virtanen Kurssin taso: Maisteritaso Opetusperiodi: I, II, III, IV, V 16 Työmäärä toteutustavoittain: Itsenäinen työskentely 130h Osaamistavoitteet: Kirjallisen ja tieteellisen raportointitaidon kehittäminen. Sisältö: Yksilöllinen itsenäinen tutkimustehtävä; aihe teollisuudesta, laboratoriosta tai muualta korkeakoulusta. Tarkemmat ohjeet kurssin www-sivuilta. Toteutus, työmuodot ja arvosteluperusteet: Työselostus Korvaavuudet: Mat-2.4108 Sovelletun matematiikan erikoistyöt Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: sopimuksen mukaan MS-E2108 Specialarbeten i systemanalys (V) (V) (5-8 sp) Ansvarig lärare: Enrico Bartolini; Harri Ehtamo; Raimo Hämäläinen; Ahti Salo; Kai Virtanen Kursnivå: Magisternivå Undervisningsperiod: I, II, III, IV, V Arbetsmängd: Självständiga studier 130h Lärandemål: Utveklandet av den skriftliga och vetenskapliga raporteringsförmoga. Innehåll: En individuell forskningsuppgift. Temat från industrin, laboratoriet eller högskolan. Ett huvudändåmål är utveckling av studentens skriftliga raporteringsförmåga. Närmare uppgifter från kursen www-sidor. Metoder, arbetssätt och bedömningsgrunder: Arbetsrapport Ersättande prestationer: Mat-2.4108 Specialarbeten i systemanalys Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: enligt överenskommelse MS-E2108 Independent research projects in systems analysis (V) (V) (5-8 cr) Responsible teacher: Enrico Bartolini; Harri Ehtamo; Raimo Hämäläinen; Ahti Salo; Kai Virtanen Level of the Course: Master’s level Teaching Period: I, II, III, IV, V (Autumn and Spring) Workload: Autonomous studies 130h Learning Outcomes: Written and scientific reporting skills. Content: An individual research project; topics from industry or from research projects of the laboratory. Students can also propose their own topics. The topics need to be discussed and approved by one of the teachers. One of the main aims is to get experience in writing a research report. Assessment Methods and Criteria: Written report Substitutes for Courses: Mat-2.4108 Independent research projects in systems analysis Evaluation: 1-5 · Courses Language of Instruction: To be agreed with the teacher MS-E2112 Multivariate statistical analysis (5 cr) Responsible teacher: Sirkku Ilmonen Status of the Course: Major of Applied Mathematics & Major of Systems and Operations Research, Master’s Programme in Mathematics and Operations Research, optional; Minor of Systems and Operations Research, optional Level of the Course: master’s level, doctoral level Teaching period: III-IV (Spring) Workload: Lectures 24h (2), Exercises 24h (2), Project work 40h, Other autonomous studies 40h. Learning Outcomes: This course is an introduction to multivariate statistical analysis. The goal is to learn basics of common multivariate data analyzing techniques and to use the methods in practice. Software R is used in the exercises of this course. Content: Multivariate Location and Scatter, Principal Component Analysis (PCA), Bivariate Correspondence Analysis, Multivariate Correspondence Analysis (MCA), Canonical Correlation Analysis, Discriminant Analysis, Classification, Clustering. 17 Assessment Methods and Criteria: Exam and compulsory project work. Study Material: K. V. Mardia, J. T. Kent, J. M. Bibby: Multivariate Analysis, Academic Press, London, 2003 (reprint of 1979) and lecture slides. Substitutes for Courses: Mat-2.3112 Statistical Multivariate Methods P Prerequisites: At least one statistics/probability course and one matrix algebra course. Evaluation: 1-5 Language of Instruction: English MS-E2113 Jonoteoria (3-6 op) Vastuuopettaja: Harri Ehtamo Kurssin taso: Maisteritaso Opetusperiodi: Ei luennoida tänä lukuvuonna Osaamistavoitteet: Johdatteleva kurssi jonoteoriaan. Sisältö: Jonoilmiöiden tarkastelu stokastisena prosessina, ääretön tai äärellinen käyttäjäjoukko, yksi tai useampi palveluyksikkö, jonokurit, prioriteetit, sisäkkäiset jonot, jonojen käsittely Markov-prosesseina. Sovellutuksia palvelujärjestelmistä ja tietoliikennetekniikan piiristä. Korvaavuudet: Korvaa kurssin Mat-2.4113 Jonoteoria L Korvaava kurssi ELEC-E7450 Performance analysis Esitiedot: 1. ja 2. vuoden matematiikka, MS-C2111 Stokastiset prosessit Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi MS-E2113 Köteori (3-6 sp) Ansvarig lärare: Harri Ehtamo Kursnivå: Magisternivå Undervisningsperiod: Föreläses ej detta läsår Lärandemål: Undervisa elementär köteori. Innehåll: Köfenomen betraktade som stokastiska processer, oändligt eller ändligt många kunder, en eller flere serviceenheter, ködisciplin, prioriteringar, inre köer, behandling av köer som Markov-processer. Tillämpningar inom servicesystem och telekommunikation. Ersättande prestationer: Mat-2.4113 Köteori Ersättande kurs ELEC-E7450 Performance analysis Förkunskaper: 1. och 2. årets matematik, MS-C2111 Stokastiska processer Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska MS-E2113 Queuing Theory (3-6 cr) Responsible teacher: Harri Ehtamo Level of the Course: Master’s level Teaching Period: Not lectured this academic year Learning Outcomes: Introductory course to queueing theory. Content: Queuing problems as stochastic processes, the problems including finite or infinite set of users and servers, queuing disciplines, queues as Markov processes. Applications include various serving systems, telecommunication systems etc. Substitutes for Courses: Mat-2.4113 Queuing Theory Substitutive course ELEC-E7450 Performance analysis Prerequisites: 1st and 2nd year math, MS-C2111 Stochastic Processes Evaluation: 1-5 · Courses Language of Instruction: Finnish MS-E2114 Investment science (5 cr) Responsible teacher: Eeva Vilkkumaa Status of the Course: Optional course of the Systems and Operations Research major. 18 Optional course of the Systems and Operations Research minor. Level of the Course: Master’s level Teaching period: IV (Spring) Workload: Lectures 24h (4) Exercises 24h (4) Assignment 25h Autonomous studies 55h Content: Instruments of investment science and finance, risk analysis, term structure of interest rates, pricing of derivatives, optimization of investment portfolio return. Assessment Methods and Criteria: Exam and assignments Study Material: D.G. Luenberger: Investment Science, Oxford University Press, 1998. Substitutes for Courses: Mat-2.3114 Investment science Prerequisites: 1st and 2nd years math, applied probability Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2117 Riskianalyysi (5 op) Vastuuopettaja: Ahti Salo Kurssin asema: Systems and Operations Research -pääaineen valinnainen kurssi. Systems and Operations Research ja Multi-Disciplinary Energy Studies -sivuaineiden valinnainen kurssi. Kurssin taso: Maisteritaso Opetusperiodi: III - IV Työmäärä toteutustavoittain: Luento-opetus 24h (2) Laskuharjoitukset 24h (2) Harjoitustyöt 20h Itsenäinen työskentely 60h Sisältö: Kurssi perehdyttää riskinalyysin keskeisimpiin menetelmiin ja antaa valmiudet soveltaa niitä erilaisten teknis-taloudellisten järjestelmien riskitarkasteluissa (ml. riskien tunnistaminen ja arviointi, riskienhallintatoimenpiteiden vertailu ja priorisointi, riskiviestintä). Käsiteltäviä menetelmiä ovat muun muassa vikapuut, syy-seuraus-kaaviot sekä todennäköisyyspohjainen turvallisuusanalyysi. Kurssilla perehdytään myös todennäköisyyksien estimointiin sekä asiantuntija-arvioiden että tilastollisten menetelmien pohjalta. Luennot ja laskuharjoitukset sisältävät riskianalyysien laatimista ja käyttöä havainnollistavia esimerkkejä. Toteutus, työmuodot ja arvosteluperusteet: Tentti ja harjoitustyöt Oppimateriaali: M. Modarres: Risk Analysis in Engineering: Techniques, Tools and Trends; Bilal M. Ayyub: Risk Analysis in Engineering and Economics Korvaavuudet: Mat-2.3117 Riskianalyysi Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi MS-E2117 Riskanalys (5 sp) Ansvarig lärare: Ahti Salo Kursens status: Valfri kurs inom huvudämnet Systems and Operations Research. Valfri kurs inom biämnen Systems and Operations Reserach och Multi-Disciplinary Energy Studies. Kursnivå: Magisternivå Undervisningsperiod: III - IV Arbetsmängd: Föreläsningar 24h (2) Övningar 24h (2) Studiearbeten 20h Självständiga studier 60h Innehåll: Introducering av de centrala modellerna och metoderna som används vid riskanalys av olika system. Modeller för ekonomiska risker. Mer djupgående behandling 19 av risk- och osäkerhetsbegreppen samt presentation av konkreta tillämpningar inom området. Metoder, arbetssätt och bedömningsgrunder: Tentamen och övningsarbeten Studiematerial: M. Modarres: Risk Analysis in Engineering: Techniques, Tools and Trends; Bilal M. Ayyub: Risk Analysis in Engineering and Economics Ersättande prestationer: Mat-2.3117 Riskanalys Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska MS-E2117 Risk Analysis (5 cr) Responsible teacher: Ahti Salo Status of the Course: Optional course of the Systems and Operations Research major. Optional course of the minors Systems and Operations research and Multi-Disciplinary Energy Studies. Level of the Course: Master’s level Teaching Period: III - IV (Spring) Workload: Lectures 24h (2) Exercises 24h (2) Assignments 20h Autonomous studies 60h Content: The aim of the course is to introduce methods and models applied in the risk analysis of various systems, including the models and approaches of economic risk management. The course also provides a deeper view over concepts for handling risk and uncertainty. Finally, practical examples on risk analyses are presented. Assessment Methods and Criteria: Exam and assignments Study Material: M. Modarres: Risk Analysis in Engineering: Techniques, Tools and Trends; Bilal M. Ayyub: Risk Analysis in Engineering and Economics Substitutes for Courses: Mat-2.3117 Risk Analysis Evaluation: 1-5 · Courses Language of Instruction: Finnish MS-E2129 Systeemien identifiointi (5 op) Vastuuopettaja: Kai Virtanen Kurssin asema: Systems and Operations Research -pääaineen valinnainen kurssi. Systems and Operations Research -sivuaineen valinnainen kurssi. Kurssin taso: Maisteritaso Opetusperiodi: I - II Työmäärä toteutustavoittain: Luento-opetus 24h (2) Laskuharjoitukset 24h (2) Harjoitustyöt 20h Itsenäinen työskentely 60h Osaamistavoitteet: Kurssi antaa perusvalmiudet dynaamisten systeemien matemaattiseen mallintamiseen ja identifiointiin. Sisältö: Dynaamisten järjestelmien siirtofunktio- ja tilaesitysmallit ja mallintaminen; systeemiteoriaa. Dynaamisten järjestelmien identifiointi: epäparametriset menetelmät, herätteet ja koesuunnittelu, mallirakenteet, ennustevirhemenetelmät, parametrien estimointi, mallin rakenteen valinta, mallin validointi. Toteutus, työmuodot ja arvosteluperusteet: Tentti, harjoitustyöt ja laskuharjoitukset. Kaksi tenttitehtävää voi korvata harjoitustöillä ja kaksi tenttitehtävää voi korvata aktiivisella osallistumisella laskuharjoituksiin. Oppimateriaali: L. Ljung, T. Glad: Modeling of Dynamic Systems, Prentice Hall, 1994. Saatavissa myös ruotsinkielisenä, kustantaja Studentlitteratur Korvaavuudet: Mat-2.4129 Systeemien identifiointi Esitiedot: MS-C2128 Ennustaminen ja aikasarja-analyysi Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi 20 MS-E2129 Systemidentifiering (5 sp) Ansvarig lärare: Kai Virtanen Kursens status: Valfri kurs inom huvudämnet Systems and Operations Research och biämnet Systems and Operations Research. Kursnivå: Magisternivå Undervisningsperiod: I - II Arbetsmängd: Föreläsningar 24h (2) Övningar 24h (2) Studiearbeten 20h Självständiga studier 60h Innehåll: Överförings- och tillståndsmodeller av dynamiska system, modellering; systemteori. Identifiering av dynamiska system: oparametriska metoder, insignaler och experimentplanering, modellstruktur, felpredikteringsmetoder, estimering av parameter, val av modelstruktur, validering av modellen. Metoder, arbetssätt och bedömningsgrunder: Tentamen, övningar och övningsarbeten. Två examuppgifter kan ersätta med övningsarbeten och två examuppgifter kan ersätta med övningar. Studiematerial: L. Ljung, T. Glad: Modeling of Dynamic Systems, Prentice Hall, 1994. Finns även på svenska, förläggare Studentlitteratur Ersättande prestationer: Mat-2.4129 Systemidentifiering Förkunskaper: MS-C2128 Prediktering och tidsserieanalys Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska MS-E2129 System Identification (5 cr) Responsible teacher: Kai Virtanen Status of the Course: Optional course of the Systems and Operations Research major and minor. Level of the Course: Master’s level Teaching Period: I - II (Autumn) Workload: Lectures 24h (2) Exercises 24h (2) Assignments 20h Autonomous studies 60h Content: Transfer function and state space models of dynamic systems, modeling; systems theory. Identification of dynamic systems: nonparametric methods, inputs and design of experiments, model structures, prediction error methods, estimation of parameters, model structure selection, model validation. Assessment Methods and Criteria: Exam and assignments. Two exercises in the exam can be replaced by the assignments. Study Material: L. Ljung, T. Glad: Modeling of Dynamic Systems, Prentice Hall, 1994. Available in Swedish, publisher Studentlitteratur Substitutes for Courses: Mat-2.4129 System identification Prerequisites: MS-C2128 Prediction and Time Series Analysis Evaluation: 1-5 · Courses Language of Instruction: Finnish MS-E2130 Matemaattinen malliajattelu (3-6 op) Vastuuopettaja: Kai Virtanen Kurssin asema: Systems and Operations Research pääaineen ja sivuaineen valinnainen kurssi. Kurssin taso: Maisteritaso Opetusperiodi: I - II 21 Työmäärä toteutustavoittain: Itsenäinen työskentely 100h (viikottaiset verkkoluennot, harjoitukset ja kommentoinnit) Harjoitustyö 25h Sisältö: Johdatus systeemiajatteluun ja matemaattisten mallien käyttöön eri alojen sovellutuksissa. Mallin muodostaminen, differentiaali- ja differenssiyhtälömallit, stokastiset mallit, optimointiin perustuva mallintaminen, dynaamisten järjestelmien simulointi. Toteutus, työmuodot ja arvosteluperusteet: Viikottaiset verkkoluennot, harjoitustehtävät ja kommentoinnit sekä vapaaehtoinen harjoitustyö. Oppimateriaali: S. Pohjolainen (toim.): Matemaattinen mallinnus, WSOYpro, 2010. Lisälukemistona: F.R. Giordano, M.D. Weir, W.P. Fox: A First Course in Mathematical Modeling, Brooks/Cole, 1997 Korvaavuudet: Mat-2.3130 Matemaattinen malliajattelu L Esitiedot: 1. ja 2. vuoden matematiikka Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi Lisätietoja: Laajuus 4 op ja vapaaehtoisen harjoitustyön kanssa 5 op. Kurssi on verkkopohjainen. Syksyllä järjestetään mallinnuksen peruskurssi ja sekä syksyllä että keväällä vaihtuva-aiheisia jatkokursseja. Jatkokurssien suoritukset (3 op) kurssikoodilla MS-E2195. MS-E2130 Matematiskt modelltänkande (3-6 sp) Ansvarig lärare: Kai Virtanen Kursens status: Valfri kurs inom huvudämnet Systems and Operations Research och biämnet Systems and Operations Research. Kursnivå: Magisternivå Undervisningsperiod: I - II Arbetsmängd: Självständiga studier 100h (web föreläsningar och övningar varje vecka) Studiearbete 25h Innehåll: Inledning till systemtänkande och användning av matematiska modeller vid tillämpningar inom olika områden. Konstruktion av modeller, differential- och differensekvationsmodeller, stokastik modeller, modellering baserad på optimering, simulering av dynamiska system. Metoder, arbetssätt och bedömningsgrunder: En nätföreläsning, övningar ch kommenter per vecka, och övningsarbete. Studiematerial: S. Pohjolainen: Matemaattinen mallinnus, WSOYpro, 2010. Tilläggsmaterial: F.R. Giordano, M.D. Weir, W.P. Fox: A First Course in Mathematical Modeling, Brooks/Cole, 1997 Ersättande prestationer: Mat-2.3130 Matematiskt modelltänkande Förkunskaper: 1. och 2. årets matematik Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska Tilläggsinformation: Omfattning 4 sp och med frivilligt övningsarbete 5 sp. Kursen är nätbaserad. På hösten arrangeras grundkurs i modellering och både på hösten och på våren varierande fortsättningskurser. Fortsättningkurser (3 sp) avläggas under koden MS-E2195. MS-E2130 Mathematical Modelling (3-6 cr) Responsible teacher: Kai Virtanen Status of the Course: Optional course of the Systems and Operations Research major and minor. Level of the Course: Master’s level Teaching Period: I - II (Autumn) Workload: Autonomous studies 100h (weekly web lectures and assignments) Assignment 25h 22 Content: An introduction to systems thinking and utilization of mathematical models in different application areas. Construction of models, differential and difference equation models, modeling based on optimization, simulation of dynamic systems. Assessment Methods and Criteria: Weekly lectures, exercises and commentation in Internet and assignment. Study Material: S. Pohjolainen: Matemaattinen mallinnus, WSOYpro, 2010. Background literature: F.R. Giordano, M.D. Weir, W.P. Fox: A First Course in Mathematical Modeling, Brooks/Cole, 1997 Substitutes for Courses: Mat-2.3130 Mathematical Modelling Prerequisites: 1st and 2nd year math Evaluation: 1-5 · Courses Language of Instruction: Finnish Further Information: 4 cr and with optional assignment 5 cr. Course will be held as an Internet course. Basic course of modeling is held in autumn and various advanced courses both in autumn and spring. The advanced courses (3 cr) are passed with course code MS-E2195. MS-E2133 Systems analysis laboratory II (5 cr) Responsible teacher: Kai Virtanen Status of the Course: Compulsory course of the Systems and Operations Research major. Optional course of the Systems and Operations Research minor. Level of the Course: Master’s level Teaching period: I - II (Autumn) Workload: Lectures 4h Exercises 48h (4) Autonomous studies 75h Learning Outcomes: Get familiar with problem solving in operations research. Content: Two fairly large assignments on the implementation and analysis of mathematical models. The assignments deal with optimization and stabilization and control of a large scale system. Assessment Methods and Criteria: Assignments and written reports Substitutes for Courses: Mat-2.4133 Systems analysis laboratory II Prerequisites: MS-E2139 Nonlinear Programming, MS-E2148 Dynamic Optimization. Taking the course simultaneously with MS-E2129 System Identification is recommended Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2134 Decision making and problem solving (5 cr) Responsible teacher: Eeva Vilkkumaa Status of the Course: Compulsory course of the Systems and Operations Research major. Level of the Course: Master’s level Teaching period: I (Autumn) Workload: Lectures 24h (4) Exercises 24h (4) Assignment 40h Autonomous studies 40h Learning Outcomes: After completing this course the student 1. knows the central concepts in decision analysis, 2. can structure and model problems with multiple attributes, decision dynamics and uncertainty for aiding decision-making, 3. understands the assumptions underlying decision analytic models and why behavior of real decision makers may differ from the behavior that these models would predict, and 4. knows how to use optimization methods in conjunction with decision analysis. Content: Models for decision making: subjective values, multi-objective decision making 23 and optimization, group decision making, decision under uncertainty, dynamics of decision making. Assessment Methods and Criteria: Exam and assignments Study Material: Lecture slides and exercises are the primary course material. Additional literature includes F. Eisenführ, M. Weber, T. Langer: Rational Decision-Making, Springer, 2010, Clemen, R.T. (1996): Making Hard Decisions: An Introduction to Decision Analysis, 2nd edition and French, S. (1988): Decision Theory: An Introduction to the Mathematics of Rationality. Substitutes for Courses: Mat-2.3134 Decision Making and Problem Solving P Prerequisites: MS-C2105 Introduction to Optimization, applied probability Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2136 Special topics in decision making (V) (V) (3-6 cr) Responsible teacher: Raimo Hämäläinen; Ahti Salo Status of the Course: Optional course of the Systems and Operations Research major. Optional course of the minors Systems and Operations Research and Multi-Disciplinary Energy Studies. Level of the Course: Master’s level Teaching period: will be announced later Content: Annually varying topics on decision making. Substitutes for Courses: Mat-2.4136 Special Topics in Decision Making Evaluation: 0-5 or pass/fail Language of Instruction: English MS-E2139 Nonlinear programming (5 cr) Responsible teacher: Kimmo Berg Status of the Course: Alternative course of the Systems and Operations Research major. Alternative course of the Systems and Operations Research minor (MSc). Optional course of the Mathematics minor (MSc). Level of the Course: Master’s level Teaching period: II (Autumn) Workload: Lectures 24h (4) Exercises 24h (4) Voluntary home exercises 15h Autonomous studies 70h Learning Outcomes: Present different convexity properties and concepts of convex analysis. Interpret and explain the optimality conditions and use them to calculate optimal solutions. Analyze different optimization algorithms and use them to solve optimization problems. Content: The first part of the course teaches the optimization theory: convexity, necessary and sufficient optimality condition and their derivation, the interpretation of Lagrange multipliers, and duality. The second part teaches numerical optimization: unconstrained, convex, and constrained optimization. Applications from natural sciences, engineering and economics. Assessment Methods and Criteria: Exam. Extra points can be earned by doing homework. Study Material: M.S. Bazaraa, H.D. Sherali, C.M. Shetty: Nonlinear Programming, Theory and Algorithms, Wiley and Sons 1993/2006. 2nd (blue or red) or 3rd (green) edition is ok. Substitutes for Courses: Mat-2.3139 Nonlinear Programming P Prerequisites: 1st and 2nd year math Evaluation: 1-5 · Opintojaksot Language of Instruction: English 24 MS-E2140 Linear programming (5 cr) Responsible teacher: Enrico Bartolini Status of the Course: Alternative course of the Systems and Operations Research major. Optional course of the Systems and Operations Research minor. Level of the Course: Master’s level Teaching period: I (Autumn) Workload: Lectures 24h (4) Exercises 24h (4) Assignments 20h Autonomous studies 60h Learning Outcomes: After completing this course the student 1. can formulate a wide variety of optimization problems, which solutions can be used for making better decisions (e.g. allocating resources, selecting routes and assigning tasks), as (mixed integer) linear programming problems, 2. understands the theoretical foundation of the Simplex algorithm and duality, and knows the special characteristics of network and integer programming problems, and 3. can solve (mixed integer) linear programming problems using optimization software. Content: The simplex method, dual of the linear program, interior point algorithms, integer programming. Applications to transportation problems, network problems and production planning. Assessment Methods and Criteria: Exam and assignments. Bonus points from home work and exercise sessions Study Material: D. Bertsimas, J.N. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific 1997 Substitutes for Courses: Mat-2.3140 Linear Programming P Prerequisites: MS-C2105 Introduction to Optimization Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2142 Optimointiopin seminaari (V) (V) (5 op) Vastuuopettaja: Enrico Bartolini; Raimo Hämäläinen; Ahti Salo; Kai Virtanen Kurssin asema: Systems and Operations Research pää- ja sivuaineen valinnainen kurssi. Kurssin taso: Maisteritaso. Opetusperiodi: mahdollisesta luennoinnista ilmoitetaan myöhemmin Työmäärä toteutustavoittain: Seminaari 36h (3) Itsenäinen työskentely 90h Osaamistavoitteet: Syventää systeemi- ja operaatiotutkimuksen opintoja ja kehittää valmiuksia hyvien seminaariesitysten pitämiseen. Sisältö: Vaihtuva-alainen seminaari, joka voidaan suorittaa toistuvasti. Aihe ja järjestäminen ilmoitetaan myöhemmin. Toteutus, työmuodot ja arvosteluperusteet: toteutus: seminaari työmuodot ja arvostelu: läsnäolo, esitelmät ja kotitehtävät Korvaavuudet: Mat-2.4142 Optimointiopin seminaari L Esitiedot: MS-C2105 Optimoinnin perusteet Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi MS-E2142 Seminarium i optimeringslära (V) (V) (5 sp) Ansvarig lärare: Enrico Bartolini; Raimo Hämäläinen; Ahti Salo; Kai Virtanen Kursens status: Valfri kurs inom huvudämnet Systems and Operations Research och biämnet Systems and Operations Research. 25 Kursnivå: Magisternivå Undervisningsperiod: meddelas senare Arbetsmängd: Seminarium 36h (3) Självständiga studier 90h Lärandemål: Fördjupa studier i systems- och operationsforskning samt undervisa at ge seminarieföredrag. Innehåll: Varierar årligen. Möjlighet att delta flera gånger. Teman meddelas senare. Metoder, arbetssätt och bedömningsgrunder: Seminarium, föredrag och hemuppgifter Ersättande prestationer: Mat-2.4142 Seminarium i optimeringslära Förkunskaper: MS-C2105 Grundkurs i optimering Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska MS-E2142 Seminar on Optimization (V) (V) (5 cr) Responsible teacher: Enrico Bartolini; Raimo Hämäläinen; Ahti Salo; Kai Virtanen Status of the Course: Optional course of the Systems and Operations Research major and minor. Level of the Course: Master’s level Teaching Period: will be announced later Workload: Seminar 36h (3) Autonomous studies 90h Learning Outcomes: Special topics in systems- and operation research. A special emphasis is also on learning presentation skills. Content: Varies yearly with a possibility to take part multiple times. The subject of the seminar is announced later. Assessment Methods and Criteria: Seminar, presentation and assignments Substitutes for Courses: Mat-2.4142 Seminar on Optimization Prerequisites: MS-C2105 Introduction to Optimization Evaluation: 1-5 · Courses Language of Instruction: Finnish MS-E2143 Network optimization (5 cr) Responsible teacher: Enrico Bartolini Level of the Course: Master’s level Teaching period: Not lectured this academic year. Exam according to agreement Workload: Autonomous studies Learning Outcomes: An advanced course in optimization. Content: Graphs and network flow formulations. Maximal flow, transportation, assignment, and shortest path problems. Linear programming simplex algorithm, the dual-, and primal-dual algorithm for network problem. Assessment Methods and Criteria: Homework exercises from the course book. Study Material: D. Bertsekas: Network Optimization, Athena Scientific, 1998. Substitutes for Courses: Mat-2.4143 Network Optimization P Prerequisites: MS-C2105 Introduction to Optimization or MS-E2140 Linear Programming Evaluation: pass/fail Language of Instruction: English MS-E2144 Optimoinnin matemaattinen teoria (V) (V) (3-6 op) Vastuuopettaja: Kimmo Berg Kurssin taso: Maisteritaso Opetusperiodi: Ei luennoida tänä lukuvuonna Sisältö: Vuosittain vaihtuva-aiheinen optimoinnin teorian jotain osa-aluetta, kuten konveksi optimointi tai funktionaalien optimointi, käsittelevä opintojakso. Toteutus, työmuodot ja arvosteluperusteet: Tentti 26 Korvaavuudet: Mat-2.4144 Optimoinnin matemaattinen teoria L Esitiedot: MS-E2139 Nonlinear programming tai MS-E2140 Linear programming tai MS-E2148 Dynamic optimization Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi MS-E2144 Matematisk optimeringsteori (V) (V) (3-6 sp) Ansvarig lärare: Kimmo Berg Kursnivå: Magisternivå Undervisningsperiod: Föreläses ej detta läsår Innehåll: Årligen varierande tema som behandlar något delområde inom optimering Metoder, arbetssätt och bedömningsgrunder: Tentamen Ersättande prestationer: Mat-2.4144 Matematisk optimeringsteori Förkunskaper: MS-E2139 Nonlinear programming eller MS-E2140 Linear programming eller MS-E2148 Dynamic optimization Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska MS-E2144 Optimization Theory (V) (V) (3-6 cr) Responsible teacher: Kimmo Berg Level of the Course: Master’s level Teaching Period: not given this academic year Content: Annually changing topic of some of the mainstream themes in optimization Assessment Methods and Criteria: Exam Substitutes for Courses: Mat-2.4144 Optimization Theory Prerequisites: MS-E2139 Nonlinear Programming or MS-E2140 Linear Programming or MS-E2148 Dynamic optimization Evaluation: 1-5 · Courses Language of Instruction: Finnish MS-E2146 Integer programming (5 cr) Responsible teacher: Enrico Bartolini Status of the Course: Optional course of the Systems and Operations Research major and minor. Level of the Course: Master’s level Teaching period: IV (Spring) Workload: Lectures 24h (4) Exercises 24h (4) Home exercises 20h Assignment 20h Autonomous studies 40h Learning Outcomes: Be able to formulate a wide variety of optimization problems in integer and binary variables. Explain, interpret, and compare the most important families of algorithms in the general case and in special cases. Discuss the concept of complexity theory and relate it with the topics of the course. Content: Optimization problems including integer variables together with most common algorithms: branch and bound, cutting plane, dynamic programming, approximation and heuristics. Complexity analysis. Dual problem and its relation to the network problem. Lagrangian relaxation. Column generation algorithms. Assessment Methods and Criteria: Exam, assignment and home exercises Study Material: Laurence A. Wolsey: Integer Programming, Wiley-Interscience Publication, 1998. Substitutes for Courses: Mat-2.4146 Integer Programming P Prerequisites: MS-E2140 Linear Programming 27 Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2148 Dynamic optimization (5 cr) Responsible teacher: Kimmo Berg Status of the Course: Compulsory course of the Systems and Operations Research major. Optional course of the Systems and Operations Research minor. Level of the Course: Master’s level Teaching period: III (Spring) Workload: Lectures 24h (4) Exercises 24h (4) Voluntary home exercises 15h Autonomous studies 65h Learning Outcomes: The students learn 1. the basic notions and classes of dynamic optimization problems, 2. to build and solve dynamic optimization models. Content: Optimization methods for dynamic systems: dynamic programming, calculus of variations, maximum principle, numerical solution methods. Application examples on engineering, economics and biology. Assessment Methods and Criteria: Exam. Bonus points from home work and exercise sessions Study Material: D.E. Kirk: Optimal Control Theory; M.I. Kamien, N.L. Schwarz: Dynamic Optimization - the Calculus of Variations and Optimal Control in Economics and Management; D.P. Bertsekas: Dynamic Programming and Optimal Control, vols I and II; lecture notes Substitutes for Courses: Mat-2.3148 Dynamic optimization Prerequisites: 1st and 2nd years math Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2152 Peliteoria (V) (V) (5 op) Vastuuopettaja: Harri Ehtamo Kurssin asema: Systems and Operations Research pää- ja sivuaineen valinnainen kurssi. Kurssin taso: Maisteritaso Opetusperiodi: I-II Työmäärä toteutustavoittain: Luento-opetus 24h (2) Laskuharjoitukset 24h (2) Vapaaehtoiset kotitehtävät 15h Itsenäinen työskentely 65h Osaamistavoitteet: Johdatteleva kurssi peliteoriaan Sisältö: Strategisen muodon pelit ja Nashin tasapaino; toistetut pelit ja folkteoreemat; laajennetun muodon pelit ja osapelitäydellisyys; epätäydellinen informaatio ja Bayesin pelit; Nashin tasapainon evoluutiobiologinen tulkinta. Toteutus, työmuodot ja arvosteluperusteet: Tentti. Lisäpisteitä kotitehtävistä saa yhden tenttitehtävän verran. Oppimateriaali: R. Gibbons: A Primer in Game Theory, Prentice Hall, 1992. Korvaavuudet: Mat-2.3152 Peliteoria L Esitiedot: MS-C2105 Optimoinnin perusteet, todennäköisyyslaskenta Arvosteluasteikko: 1-5 · Opintojaksot Opetuskieli: suomi MS-E2152 Spelteori (V) (V) (5 sp) Ansvarig lärare: Harri Ehtamo 28 Kursens status: Valfri kurs inom huvudämnet Systems and Operations Research och biämnet Systems and Operations Research. Kursnivå: Magisternivå Undervisningsperiod: I-II Arbetsmängd: Föreläsningar 24h (2) Övningar 24h (2) Frivilliga hemuppgifter 15h Självständiga studier 65h Lärandemål: Undervisa elementär spelteori Innehåll: Strategiska spel och Nash-jävikt; repeterade spel och folkteorem; utvidgade spel och delspelperfektionen; ofullständigt information och Bayes spel; blandad strategi, vetande och jämvikt; evolutiobiologisk interpretation av Nash-jämvikt. Metoder, arbetssätt och bedömningsgrunder: Tentamen. Extrapoäng av hemuppgifter, circa en examuppgift Studiematerial: R. Gibbons: A Primer in Game Theory, Prentice Hall, 1992. Ersättande prestationer: Mat-2.3152 Spelteori Förkunskaper: MS-C2105 Grundkurs i optimering, tillämpad sannolikhetskalkyl Bedömningsskala: 1-5 · Studieperioder Undervisningsspråk: finska MS-E2152 Game Theory (V) (V) (5 cr) Responsible teacher: Harri Ehtamo Status of the Course: Optional course of the Systems and Operations Research major and minor. Level of the Course: Master’s level Teaching Period: I-II Workload: Lectures 24h (2) Exercises 24h (2) Voluntary assignments 15h Autonomous studies 65h Learning Outcomes: Introductory course to game theory Content: Strategic form games and Nash equilibrium; repeated games and folk theorems; extensive form games and subgame perfectness; incomplete information and Bayesian games; evolutionbiological interpretation of game theory. Assessment Methods and Criteria: Exam. Bonus points from home work Study Material: R. Gibbons: A Primer in Game Theory, Prentice Hall, 1992. Substitutes for Courses: Mat-2.3152 Game Theory Prerequisites: MS-C2105 Introduction to Optimization, applied probability Evaluation: 1-5 · Courses Language of Instruction: Finnish MS-E2153 Multiple criteria optimization (3-6 cr) Responsible teacher: Matteo Brunelli Level of the Course: Master’s level Teaching period: I, II, III, IV, V (Autumn and Spring) Workload: Autonomous studies 75h Learning Outcomes: To familiarize the students with multi-criteria optimization Content: One and multi-objective decision making, utility function, Pareto-optimality, theory of vector maximization, goal programming, interactive algorithms. Applications. Assessment Methods and Criteria: Home assignments Study Material: K.M. Miettinen: Nonlinear Multiobjective Optimization, Kluwer 1999 Substitutes for Courses: Mat-2.4153 Multiple Criteria Optimization P Prerequisites: MS-C2105 Introduction to Optimization or MS-E2139 Nonlinear Programming or MS-E2140 Linear Programming Evaluation: 1-5 · Opintojaksot 29 Language of Instruction: English Further Information: 3 cr. Course is taken as an independent study, see the course web site for instructions MS-E2170 Simulation (V) (V) (5 cr) Responsible teacher: Joona Tuovinen; Kai Virtanen Status of the Course: Optional course of the Systems and Operations Research major and minor. Level of the Course: Master’s level Teaching period: IV (Spring) Workload: Lectures 20h (4) Exercises 10h (2) Demo 3h Autonomous studies, including project 80h Learning Outcomes: The course has two alternative topics. Spring 2016 will be on topic I. Topic I: The course gives basic skills for analysis of queuing phenomena through discrete-event system simulation. Topic II: The course’s objective is to provide capabilities to identify, model and understand a variety of economic, organizational and socio-technical systems. After the course, students will recognize principles of systems thinking and are able to apply them to study the system of interest. Students will also be able to construct a system dynamics simulation model for problem solving. Content: The topic of the course varies. The course has two alternative topics at the moment. Topic I: Simulation of systems including discrete events and queues: random number generation, construction of a model, input models, output data analysis, model validation. Topic II: During the course, we will discuss the analysis and control of dynamic system, model building and validation. We will also go through the basics of Vensim-software and present some practical applications. Assessment Methods and Criteria: Assignments and a case study Study Material: Topic I: Law, A.M. ja W.D. Kelton, Simulation Modeling and analysis, McGraw-Hill, 2002. Topic II: Sterman J.D., Business Dynamics: Systems Thinking and Modeling for a Complex World, McGraw-Hill. Substitutes for Courses: Mat-2.3170 Simulation Prerequisites: 1st and 2nd year math courses Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2174 Computational methods in operations research (V) (V) (3-6 cr) Responsible teacher: Enrico Bartolini Level of the Course: Master’s level Teaching period: V (Spring) Workload: Lectures 20h (4) Exercises 20h (4) Home exercises 20h Assignments 40h Autonomous studies 25h Learning Outcomes: Give students basic skills to implement mathematical algorithms to solve different problems. Content: Column generation and stabilization, Benders and Lagrangian decomposition, branch-and-price, cutting planes with branch-and-price systems, metaheuristics. Applications in vehicle routing and transportation problems. Assessment Methods and Criteria: Exam, assignments and home exercises Substitutes for Courses: Mat-2.4174 Programming of Mathematical Algorithms P 30 Prerequisites: MS-E2140 Linear Programming, MS-E2146 Integer programming Evaluation: 1-5 · Opintojaksot Language of Instruction: English Further Information: 5 cr. From master to graduate students who know the basics of programming (preferrably Java, Fortran, C or C++). MS-E2177 Operaatiotutkimuksen projektityöseminaari (V) (V) (5 op) Vastuuopettaja: Ahti Salo Kurssin asema: Systems and Operations Research -pää- ja sivuaineiden valinnainen kurssi. Kurssin taso: Maisteritaso Opetusperiodi: III - IV Työmäärä toteutustavoittain: Luento-opetus 14h Projektityö 115h (170h projektipäällikkö) Osaamistavoitteet: Harjaannuttaa opiskelijat projektiluontoiseen operaatiotutkimuksen mallien ja menetelmien soveltamiseen. Sisältö: Ryhmätyöskentelyä eri aiheita käsittelevien teknis-taloudellisten projektien puitteissa. Mallien rakentaminen ja soveltaminen, projektien suunnittelu, toteutus ja raportointi. Opintoretkiä yrityksiin ja tutkimuslaitoksiin. Toteutus, työmuodot ja arvosteluperusteet: Osallistuminen seminaariin ja projektityöt Oppimateriaali: Luentokalvot Korvaavuudet: Mat-2.4177 Operaatiotutkimuksen projektityöseminaari L Esitiedot: MS-C2105 Optimoinnin perusteet sekä todennäköisyyslaskenta Arvosteluasteikko: hyväksytty/hylätty Opetuskieli: suomi Lisätietoja: Laajuus 5 op, projektipäällikölle 7 op. Rajoitettu osallistujamäärä, lähinnä systeemi- ja operaatiotutkimuksen pääaineopiskelijoille MS-E2177 Projektarbetsseminarium i operationsanalys (V) (V) (5 sp) Ansvarig lärare: Ahti Salo Kursens status: Valfri kurs inom huvudämnet Systems and Operations Research och biämnet Systems and Operations Research. Kursnivå: Magisternivå Undervisningsperiod: III - IV Arbetsmängd: Föreläsningar 14h Projektsarbete 115h (170h projektledare) Lärandemål: Att rutinera studeranden för att tillämpa operationsforsknings modeller och metoder i arbeten av projektnatur. Innehåll: Arbete i grupp övas inom ramen för teknisk-ekonomiska projekt. Konstruktion och tillämpning av modeller, planering och utförande av projekt. Studie-excursioner till företag och forskningsanstalter. Metoder, arbetssätt och bedömningsgrunder: Närvaro på seminaren och projectarbete Studiematerial: Föreläsningtransparents Ersättande prestationer: Mat-2.4177 Projektarbetsseminarium i operationsanalys Förkunskaper: MS-C2105 Grundkurs i optimering samt tillämpad sannolikhetskalkyl Bedömningsskala: godkänd/underkänd Undervisningsspråk: finska Tilläggsinformation: Omfattning 5 sp, för projektledare 7 sp. Begränsat antal deltagare, främst för huvudämnestuderande MS-E2177 Seminar on Case Studies in Operations Research (V) (V) (5 cr) Responsible teacher: Ahti Salo Status of the Course: Optional course of the Systems and Operations Research major 31 and minor. Level of the Course: Master’s level Teaching Period: III - IV (Spring) Workload: Lectures 14h Project work 115h (170h project leader) Learning Outcomes: To equip students with skills needed in project-oriented application of methods and models of operations research. Content: Teamwork is practiced in the context of techno-economic projects. Building and application of models. Project planning, execution and reporting. Excursions to companies and research organizations. Assessment Methods and Criteria: Participation in seminar and project work Study Material: Lecture slides Substitutes for Courses: Mat-2.4177 Seminar on Case Studies in Operations Reserach Prerequisites: MS-C2105 Introduction to Optimization and applied probability Grading Scale: pass/fail Language of Instruction: Finnish Further Information: 5 cr, for project leader 7 cr. Restricted number of participants, mainly for students majoring in Systems and operations research MS-E2191 Graduate seminar on operations research (V) (V) (5 cr) Responsible teacher: Harri Ehtamo Status of the Course: Optional course of the Systems and Operations Research major. Level of the Course: Master’s level Teaching period: Not organized this academic year Learning Outcomes: Seminar on topics of current interest in systems and operations research, mainly for postgraduate but also for undergraduate students. Content: The course can be taken repeatedly. The topic varies annually and is announced separately in the beginning of the term. Assessment Methods and Criteria: Seminar, presentation, and homework exercises Substitutes for Courses: Mat-2.4191 Graduate seminar on operations research Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2192 Systems research seminar (V) (V) (1-6 cr) Responsible teacher: Raimo Hämäläinen Level of the Course: Master’s level Teaching period: The arrangement will be announced later Content: Presentations on new topics and problems in systems analysis, decision making and risk management given by participants and visitors. Substitutes for Courses: Mat-2.4192 Systems Research Seminar P Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2193 Independent studies in systems analysis (V) (V) (1-9 cr) Responsible teacher: Enrico Bartolini; Harri Ehtamo; Raimo Hämäläinen; Ahti Salo; Kai Virtanen Level of the Course: Master’s level Teaching period: I - II, III - V (Autumn and Spring) Learning Outcomes: The course makes it possible to take courses from other universities. Content: Independent studies or supplementing normal course offerings. Credit by agreement. Substitutes for Courses: Mat-2.4193 Independent Studies in Systems Analysis and Applied Mathematics P 32 Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2194 Research course in systems science (V) (V) (1-6 cr) Responsible teacher: Raimo Hämäläinen; Ahti Salo Level of the Course: Master’s level Teaching period: I, II, III, IV, V (Autumn and Spring) Content: Advanced graduate course on topics of current interest in systems research given mainly by visitors. The description of courses offered each year can be found at the homepage. Substitutes for Courses: Mat-2.4194 Research Course in Systems Science P Evaluation: 1-5 · Opintojaksot Language of Instruction: English Further Information: Credit can also be earned by individual agreement by taking courses offered by the Doctoral Education Network in Systems Analysis, Decision Making and Risk Management, see http://sal.aalto.fi/en/gradschool/courses/ MS-E2195 Web-based courses in systems analysis (V) (V) (1-6 cr) Responsible teacher: Kimmo Berg; Matteo Brunelli; Kai Virtanen Status of the Course: Optional course of the Systems and Operations Research minor. Level of the Course: Master’s level Teaching period: I - II, III - V (Autumn and Spring) Content: Independent studies with web-based teaching material produced by the Systems Analysis Laboratory and selected foreign universities. See the available courses at the web pages Assessment Methods and Criteria: Exam or homework Substitutes for Courses: Mat-2.4195 Web-based courses in systems analysis Evaluation: 1-5 · Opintojaksot Language of Instruction: English MS-E2198 Luovan ongelmanratkaisun seminaari (V) (V) (5-8 op) Vastuuopettaja: Raimo Hämäläinen; Esa Saarinen Kurssin asema: Systems and Operations Research -pää- ja sivuaineiden valinnainen kurssi. Kurssin taso: Maisteritaso Opetusperiodi: I - II Työmäärä toteutustavoittain: Seminaari 33h (3) Esitelmä 10h Itsenäinen työskentely 85h Osaamistavoitteet: Kurssin tavoitteena on laajentaa ja moniulotteistaa osallistujien ajattelua ja kirjallista ilmaisua, antaa työvälineitä henkilökohtaisen henkisen muutoksen hallintaan, itsensä tuntemiseen ja luovaan vuorovaikutukseen sekä lisätä systeemiälyä koskevaa ymmärrystä. Sisältö: Perus- sekä jatko-opiskelijoille tarkoitettu vaihtuvasisältöinen seminaari, jossa paneudutaan luovan ongelmanratkaisun kysymyksiin eri metodisilla lähestymistavoilla. Toteutus, työmuodot ja arvosteluperusteet: Esitelmä, aktiivinen osallistuminen ja kirjalliset työt Korvaavuudet: Mat-2.4198 Luovan ongelmanratkaisun seminaari L Esitiedot: MS-C2197 Filosofia ja systeemiajattelu Arvosteluasteikko: hyväksytty/hylätty Opetuskieli: suomi Lisätietoja: Vaihtuvasisältöinen. Kurssi voidaan suorittaa myös koodilla TU-E3130. Esitietona MS-C2197 Filosofia ja systeemiajattelu. Osallistujamäärä on rajoitettu ja kurssilaisten valintamenettely ilmoitetaan esitietokurssin suorittaneille sähköpostitse. 33 MS-E2198 Seminarium i kreativ problemlösning (V) (V) (5-8 sp) Ansvarig lärare: Raimo Hämäläinen; Esa Saarinen Kursens status: Valfri kurs inom huvudämnet Systems and Operations Research och biämnet Systems and Operations Research. Kursnivå: Magisternivå Undervisningsperiod: I - II Arbetsmängd: Seminaari 33h (3) Föredrag 10h Självständiga studier 85h Lärandemål: Målet med kursen är att utvidga och göra mera mångsidigt deltagarnas tänkande och skriftligt uttryck, ge verktyg för personlig växt, självkännedom och kreativ interaktion, och öka förståelse av systemintelligens. Innehåll: Seminarium för grund- och fortsättningsstuderande. Betoning på frågor i kreativ problemlösning och relevanta metoder för dessa. Metoder, arbetssätt och bedömningsgrunder: Föredrag, aktivt deltagande och essä. Ersättande prestationer: Mat-2.4198 Seminarium i kreativ problemlösning Förkunskaper: MS-C2197 Filosofi och systemtänkande Bedömningsskala: godkänd/underkänd Undervisningsspråk: finska Tilläggsinformation: Innehåll varieras. Kursen kan ocskå avläggas under koden TU-E3130. Registrering är begränsad. MS-E2198 Seminar of Creative Problem Solving (V) (V) (5-8 cr) Responsible teacher: Raimo Hämäläinen; Esa Saarinen Status of the Course: Optional course of the Systems and Operations Research major and minor. Level of the Course: Master’s level Teaching Period: I - II (Autumn) Workload: Seminar 33h (3) Presentation 10h Autonomous studies 85h Learning Outcomes: The aim of the course is to expand and deepen participant’s thinking and capabilities for written expression. It provides tools for participant’s mental growth and change management, improving self-knowledge and abilities for creative interaction, and brings about understanding regarding systems intelligence. Content: The course is arranged for undergraduate and graduate students, and the contents vary yearly. Themes deal with creative problem solving and systems intelligence. Assessment Methods and Criteria: Presentation, active participation and written assignments. Substitutes for Courses: Mat-2.4198 Seminar of Creative Problem Solving Prerequisites: MS-C2197 Philosophy and Systems Thinking Grading Scale: pass/fail Language of Instruction: Finnish Further Information: Content varies. The course can also be passed with course code TU-E3130. Registration is restricted. 34
© Copyright 2025