CSE325 Computer Science and Sculpture Prof. George Hart 2. Polyhedra in Art + Sculpture A Historical View Polyhedra • • • • From Greek: poly=many + hedra=seats Singular: Polyhedron Def: 3D object bounded by flat surfaces Many types: – Platonic solids – Archimedean solids – Convex / concave • Long history of use in 3D design In Two Dimensions: Polygons • Greek gon = “knee” • Regular polygon: equal lengths equal angles • Allow “stars” • Terminology: – corner = vertex – plural: vertices • Number prefixes: 3) tri4) tetra5) penta6) hexa7) hepta8) octa9) ennea10) deca… Examples: Regular Polygons Five “Regular” Polyhedra • • • • Every face identical Every face regular Every vertex identical Only 5 are possible – Euclid gives proof • “Platonic Solids” • Plato described them – (known earlier) Dodecahedron=12 sides Icosahedron=20 tetrahedron octahedron cube Some Dodecahedra 12 isosceles triangles 12 rhombi Regular: 12 pentagons “rhombic dodechedron” 12 isosceles triangles 12 kites 12 irregular pentagons Some Non-convex Dodecahedra concave dodecahedron “small stellated dodecahedron” (12 pentagrams) A torus is not convex Historical Examples • • • • • • Stone, ivory, wood carving Bronze casting Drawing, woodcut, engraving, etc Painting Stone or wood tiling (mosaics = “intarsia”) Wood, glass, or metal assembly Guess: How old is the oldest existing dodecahedron? Prehistoric Scotland Carved stone from circa 2000 B.C.E. Hundreds known. Most are cube-based. I don’t know of any icosahedron-based examples. Roman Dice ivory stone Roman Dodecahedra Bronze, unknown function Roman Icosahedron Paolo Uccello (1397-1475) Small stellated dodecahedron mosaic mazzocchio (donut hat) Piero della Francesca (1410? - 1492) Truncated tetrahedron Icosahedron in cube Leonardo da Vinci (1452-1519) Illustrations for Luca Pacioli's 1509 book The Divine Proportion Leonardo da Vinci Illustrations for Luca Pacioli's 1509 book The Divine Proportion Compare “Solid Edges” to Lines Leonardo da Vinci “Elevated” Forms Leonardo Doodles Leonardo Doodles Leonardo Cube structure Leonardo’s Ludo Geometrico ludo geometrico = “geometry game” = “make systematic modifications” Leonardo Torus variations Luca Pacioli (1445-1514) Portrait of Pacioli, by Jacopo de Barbari, 1495 Luca Pacioli The Divine Proportion “Golden ratio” Luca Pacioli Pacioli + Leonardo Printed as woodcuts in 1509 Fra Giovanni da Verona, 1520’s Intarsia by Giovanni da Verona Albrecht Durer (1471-1528) Melancholia I, 1514 Albrecht Durer Painter’s Manual, 1525 Net of snub cube Albrecht Durer Find the error! Painter’s Manual, 1525 Daniele Barbaro (1513-1570) La Practica della Perspectiva, 1568 Wentzel Jamnitzer (1508-1585) Perspectiva Corporum Regularium, 1568 Wentzel Jamnitzer Wentzel Jamnitzer Wentzel Jamnitzer (oldest chiral icosahedral image) Johannes Kepler (1571-1630) (detail of inner planets) Johannes Kepler Harmonice Mundi, 1619 Kepler: Archimedean Solids Faces regular, vertices identical, but faces need not be identical Johannes Kepler Regular Dodecahedron Rhombic Dodecahedron Johannes Kepler Symbolism from Plato: Octahedron = air Tetrahedron = fire Cube = earth Icosahedron = water Dodecahedron = the universe Augustin Hirschvogel (1503-1553) Lorenz Stoer Geometria et Perspectiva, 1567 Lorenz Stoer Geometria et Perspectiva, 1567 Jean Cousin Livre de Perspective, 1560 Nicolas Neufchatel Portrait of Johann Neudorfer and his Son, 1561 Hans Lencker Perspectiva, 1571 Hans Lencker Perspectiva, 1571 Lorenzo Sirigatti La pratica di prospettiva, 1596 Paul Pfinzing Optica, 1616 Jean-Francois Niceron Thaumaturgus Opticus, 1638 Jean Dubreuil La Perspective Pratiq, 1642 Jean Dubreuil La Perspective Pratiq, 1642 Tomb of Sir Thomas Gorges Salisbury Cathedral, 1635 Lorenz Zick (1594-1666) Turned Ivory Spheres Modern Asian example Jacques Ozanam Geometrie pratique, 1684 Alain Manesson Mallet La Geometrie Pratique, 1702 Abraham Sharp (1651-1742) Geometry Improv'd, 1718 Brook Taylor New Principles of Linear Perspective, 1719 Brook Taylor New Principles of Linear Perspective, 1719 Paul Heinecken Lucidum Prospectivae Speculum 1727 Thomas Malton Compleat Treatise on Perspective, 1779 Christoph Nilson Anleitung zur Linearperspective, c. 1800 Max Brückner Vielecke und Vielflache, 1900 M.C. Escher (1898-1972) Stars, 1948 M.C. Escher Double Planetoid, 1949 M.C. Escher Waterfall, 1961 M.C. Escher Reptiles, 1943 Conclusions • Polyhedra, especially the five Platonic solids, have been an element of Western art for centuries. • Beauty of symmetry • Challenging models to show mastery of perspective • Symbolic meaning assigned by Plato • Mathematical foundation for artistry • Good starting point for computer constructions
© Copyright 2025