Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 jacobson@stanford.edu March 29, 2005 Sizes of Atmospheric Constituents Mode Diameter (mm) Gas molecules 0.0005 Aerosol particles Small < 0.2 Medium 0.2-2 Large 1-100 Hydrometeor particles Fog drops 10-20 Cloud drops 10-200 Drizzle 200-1000 Raindrops 1000-8000 Number (#/cm3) 2.45x1019 103-106 1-104 <1 - 10 1-1000 1-1000 0.01-1 0.001-0.01 Table 13.1 Particles and Size Distributions Particle Agglomerations of molecules in the liquid and / or solid phases, suspended in air. Includes aerosol particles, fog drops, cloud drops, and raindrops Example 13.1. - Idealized particle size distribution 10,000 particles of radius between 0.05 and 0.5 mm 100 particles of radius between 0.5 and 5.0 mm 10 particles of radius between 5.0 and 50 mm Example 13.2. Number of size bins needs to be limited 105 grid cells 100 size bins 100 components per size bin --> 109 words = 8 gigabytes to store concentration Volume Ratio Size Structure Volume of particles in one size bin (13.1) i Vrat i 1 (13.2) i1 i 1Vrat Volume-diameter relationship for spherical particles i di3 6 Volume Ratio Size Structure Variation in particle sizes with the volume ratio size structure Fig. 13.1 Volume Ratio Size Structure Volume ratio of adjacent size bins 1 N B 1 N B Vrat 1 Example 13.3. ---> d1 = 0.01 mm dNB = 1000 mm NB = 30 size bins Vrat = 3.29 (13.3) 3 N B 1 dN B d 1 Volume Ratio Size Structure Number of size bins ln d N B d1 NB 1 ln Vrat Example 13.4. d1 = 0.01 mm ---> ---> dNB = 1000 mm Vrat =4 NB = 26 size bins Vrat =2 NB = 51 size bins 3 (13.4) Volume Ratio Size Structure Average volume in a size bin 1 i i,hi i,lo 2 (13.5) Relationship between high- and low-edge volume (13.6) i,hi Vrat i,lo Substitute (13.6) into (13.5) --> low edge volume 2i i,lo 1 Vrat (13.7) Volume Ratio Size Structure Volume width of a size bin (13.8) 2i Vrat 1 2i1 2i i i,hi i,lo 1 Vrat 1 Vrat 1 Vrat Diameter width of a size bin (13.9) 13 13 6 Vrat 1 13 13 1 3 di di,hi di,lo i,hi i,lo di 2 13 1 V rat Particle Concentrations Number concentration in a size bin vi ni i (13.10) Number concentration in a size distribution (13.11) NB ni ND Volume concentration in a size bin vi i1 (13.12) NV v q,i q1 Surface area concentration in a size bin ai ni 4ri2 ni di2 (13.13) Particle Concentrations Mass concentration in a size bin mi (13.14) NV NV NV q1 q 1 q 1 m q,i cm q vq,i cm p,i v q,i c m p,i vi Volume-averaged mass density (g cm-3) of particle of size i (13.15) NV vi,q q q1 p,i N V v i,q q 1 Particle Concentrations Example 13.5 mq,i = 3.0 mg m-3 for water mq,i = 2.0 mg m-3 for sulfate di = 0.5 mm = 1.0 g cm-3 for water = 1.83 g cm-3 for sulfate v q,i v q,i mi vi i ni ai = 3 x 10-12 cm3 cm-3 for water = 1.09 x 10-12 cm3 cm-3 for sulfate q q ---> ---> ---> ---> ---> ---> ---> = 5.0 mg m-3 = 4.09 x 10-12 cm3 cm-3 = 6.54 x 10-14 cm3 = 62.5 partic. cm-3 = 4.8 x 10-7 cm2 cm-3 Lognormal Distribution Bell-curve distribution on a log scale Geometric mean diameter 50% of area under a lognormal curve lies below it Geometric standard deviation 68% of area under a lognormal curve lies between +/-1 one geometric standard deviation around the mean diameter Lognormal Distribution cm ( m33cm -3-3) m dvdv (mm p ) / d log Dp / d log1010D Describes particle concentration versus size 10 2 10 1 10 0 10-1 10-2 10-3 0.001 D1 D2 0.01 0.1 Particle diameter (D p , mm) 1 Fig. 13.2a Lognormal Distribution p ) / d log -3 3 cm 3 -3 dv ( dv (mm D m m cm ) / d log10 D 10 p The lognormal curve drawn on a linear scale 10 2 10 1 10 0 10-1 10-2 10-3 0 0.05 0.1 0.15 Particle diameter (D p , mm) Fig. 13.2b Lognormal Parameters From Data Low-pressure impactor -- 7 size cuts 0.05 - 0.075 mm 0.5 - 1.0 mm 0.075 - 0.12 mm 1.0 - 2.0 mm 0.12 - 0.26 mm 2.0- 4.0 mm 0.26 - 0.5 mm Lognormal Parameters From Data Natural log of geometric mean mass diameter 1 ln DM ML 7 m j ln d j j1 Total mass concentration of particles (mg m-3) ML 7 mj j 1 (13.16) Lognormal Parameters From Data Natural log of geometric mean volume diameter 1 7 ln DV v j ln d j VL j 1 Total volume concentration of particles (cm3 cm-3) VL 7 vj j 1 vj mj cm j (13.17) Lognormal Parameters From Data Natural log of geometric mean area diameter 1 7 ln DA a j ln d j AL (13.18) j1 Total area concentration of particles (cm2 cm-3) AL 7 a j j1 aj 3m j c m j rj Lognormal Parameters From Data Natural log of geometric mean number diameter 1 7 ln DN n j ln d j NL j1 Total number concentration of particles (partic. cm-3) NL 7 n j j1 nj mj cm j j (13.19) Lognormal Parameters From Data Natural log of geometric standard deviation ln g 1 7 2 d j m j ln ML DM j 1 1 7 2 d j a j ln AL D A j1 (13.20) 1 7 2 d j v j ln VL D V j 1 1 7 2 d j n j ln NL D N j1 Redistribute With Lognormal Parameter Redistribute mass concentration in model size bin (13.21) 2 d D ln M Ldi i M mi exp 2 di 2 ln g 2 ln g Redistribute volume concentration (13.22) 2 d D ln VLdi i V vi exp 2 di 2 ln g 2 ln g Redistribute area concentration (13.23) 2 d D ln A L di i A ai exp 2 di 2 ln g 2 ln g Redistribute With Lognormal Parameter Redistribute number concentration (13.24) 2 d D ln N L di i N ni exp 2 di 2 ln g 2 ln g Exact volume concentration in a mode 0 0 VL vd dd 6 (13.25) 3 9 2 nd d dd D N exp ln g N L 2 6 3 Lognormal Modes 10 5 D 10 N 3 D p (x=n, a, v) dx/d log Dp (x=n,a,v) dx / d log1010D Number (partic. cm-3), area (cm2 cm-3), and volume (cm3 cm-3) concentrations distributed lognormally 10 1 10-1 10 -3 0.001 n A DV a v 0.01 0.1 Particle diameter (D p , mm) 1 Fig. 13.3 Lognormal Param. for Cont. Particles Nucleation Parameter Mode g 1.7 NL (particles cm-3) 7.7x104 DN (mm) 0.013 AL (mm2 cm-3) 74 DA (mm) 0.023 VL (mm3 cm-3) 0.33 DV (mm) 0.031 Accumulation Mode 2.03 1.3x104 0.069 535 0.19 22 0.31 Coarse Mode 2.15 4.2 0.97 41 3.1 29 5.7 Table 13.2 Quadramodal Size Distribution Size distribution at Claremont, California, on the morning of August 27, 1987 6 10 105 2 300 -3 da (mm cm )/d log D 250 10 p 4 10 103 2 10 -3 dn (No. cm ) /dlog D 3 200 -3 dv (mm cm ) /d log D 10 p 150 10 p 101 0 10 100 10 -1 0 50 0.01 0.1 1 Particle diameter (D p , mm) 10 Fig. 13.4 Marshall-Palmer Distribution Raindrop number concentration between di and di+di (13.30) ni di n 0e r di din0 n0 r R = value of ni at di = 0 = 8.0 x 10-6 partic. cm-3 mm-1 = x Rmm-1 = rainfall rate (1-25 mm hr-1) Total number concentration and liquid water content nT n0 r w L 106 w n0 4r Marshall-Palmer Distribution Example 13.6. R = 5 mm hr-1 di = 1 mm di+di = 2 mm ---> ni = 0.00043 partic. cm-3 ---> nT = 0.0027 partic. cm-3 ---> wL = 0.34 g m-3 Modified Gamma Distribution Number concentration (partic. cm-3) of drops in size bin i (13.30) g g g ri ni ri Ag ri exp g r c,g Modified Gamma Distribution Parameters Cloud Type Ag g g (mm) Liquid Water Conten t (g m-3) Numb er Conc. (partic. cm-3) rcg Stratocumulus base 0.2823 5.0 1.19 5.33 0.141 100 Stratocumulus top 0.19779 2.0 2.46 10.19 0.796 100 Stratus base 0.97923 5.0 1.05 4.70 0.114 100 Stratus top 0.38180 3.0 1.3 6.75 0.379 100 Nimbostratus base 0.08061 5.0 1.24 6.41 0.235 100 Nimbostratus top 1.0969 1.0 2.41 9.67 1.034 100 Cumulus congestus 0.5481 4.0 1.0 6.0 0.297 100 4.97x10-8 2.0 0.5 70.0 1.17 0.01 Light rain Table 13.3 Modified Gamma Distribution Example 13.7. Find number concentration of droplets between 14 and 16 mm in radius at base of a stratus cloud ---> ---> ---> ri ri ni = 15 mm = 2 mm = 0.1506 partic. cm-3 Full-Stationary Size Structure Average single-particle volume in size bin (i) stays constant. When growth occurs, number concentration in bin (ni) changes. Advantages: • Covers wide range in diameter space with few bins • Nucleation, emissions, transport treated realistically Disadvantages: • When growth occurs, information about the original composition of the growing particle is lost. • Growth leads to numerical diffusion Full-Stationary Size Structure Demonstration of a problem with the full-stationary size bin structure Fig. 13.5 Full-Moving Structure Number concentration (ni) of particles in a size bin does not change during growth; instead, single-particle volume (i) changes. Advantages: • Core volume preserved during growth • No numerical diffusion during growth Disadvantages: • Nucleation, emissions, transport treated unrealistically • Reordering of size bins required for coagulation Full-Moving Structure Preservation of aerosol material upon growth and evaporation in a moving structure Fig. 13.6 Full-Moving Structure Particle size bin reordering for coagulation Fig. 13.7 Quasistationary Structure Single-particle volumes change during growth like with full-moving structure but are fit back onto a full-stationary grid each time step. Advantages and Disadvantages: • Similar to those of full stationary structure • Very numerically diffusive Quasistationary Structure After growth, particles in bin i have volume i’, which lies between volumes of bins j and k j i k Partition volume of i between bins j and k while conserving particle number concentration (13.32) ni n j nk and particle volume concentration (13.33) ni i n j j nk k Solution to this set of two equations and two unknowns (13.34) k i n j ni k j ij nk ni k j Moving-Center Structure Single-particle volume (i) varies between i,hi and i,lo during growth, but i,hi, i,lo, and di remain fixed. Advantages: • Covers wide range in diameter space with few bins • Little numerical diffusion during growth • Nucleation, emission, transport treated realistically Disadvantages: • When growth occurs, information about the original composition of the growing particle is lost Moving-Center Structure dv m ( m33 cm-3-3 ) /d log dv (mm cm ) / d log1010DpDp Comparison of moving-center, full-moving, and quasistationary size structures during water growth onto aerosol particles to form cloud drops. 10 7 Moving-center Full-moving 105 103 10 Quasistationary Initial 1 10 -1 0.1 1 10 Particle diameter (D , mm) p 100 Fig. 13.8
© Copyright 2024