CenterforNanostructuredGraphene (CenterofExcellence) Participants at AAU Thomas Garm Pedersen Søren J. Brun Morten Thomsen René Petersen Graphene antidot lattice External Participants DTU Nanotech Project This center aims at producing, characterizing and modeling devices built by nanostructuring graphene. In particular, structures made from socalled antidot lattices are studied. These are regular arrays of holes that turn graphene into a semiconductor. They also lead to interesting effects in plasmonics and nanofludics. An important aim is to fabricate and model transistors based on this platform. In the Aalborg node of the center, we develop, implement and apply theoretical tools to study the properties of nanostructured graphene and related materials. Homepage Center: www.cng.dtu.dk/ Thomas Garm Pedersen: http://homes.nano.aau.dk/tgp/ Full antidot-based device including contact regions Recent Publications 2012 1. J. G. Pedersen and T. Garm Pedersen, “Dirac model of an isolated graphene antidot in a magnetic field”, Phys. Rev. B 85, 035413 (2012). 2. J. G. Pedersen and T. Garm Pedersen, “Band gaps in graphene via periodic electrostatic gating”, Phys. Rev. B 85, 235432 (2012). 3. T. Garm Pedersen and J. G. Pedersen, “Transport in graphene antidot barriers and tunneling devices”, J. Appl. Phys. 112, 113715 (2012). 4. J. G. Pedersen, T. Gunst, T. Markussen, and T. Garm Pedersen, “Graphene antidot lattice waveguides”, Phys. Rev. B. 86, 245410 (2012). 5. J. G. Pedersen, M.H. Brynildsen, H. Cornean, and T. Garm Pedersen, “Optical Hall conductivity in bulk and nanostructured graphene beyond the Dirac approximation”, Phys. Rev. B. 86, 235438 (2012). 2013 6. T. Garm Pedersen and J. G. Pedersen, ”Self-consistent tight-binding model of B- and N-doping in graphene”, Phys. Rev. B. 87, 155433 (2013). 7. J. G. Pedersen and T. Garm Pedersen, “Hofstadter butterflies and magnetically induced band gap quenching in graphene antidot lattices”, Phys. Rev. B. 87, 235404 (2013). 8. M.L. Trolle and T. Garm Pedersen, “Second harmonic generation in carbon nanotubes induced by transversal electrostatic field”, J. Phys.: Condens. Matter. 25, 325301 (2013). 9. M.L. Trolle, U.S. Møller, and T. Garm Pedersen, “Large and stable band gaps in spin-polarized graphene antidot lattices”, Phys. Rev. B. 88, 195418 (2013). 2014 10. X. Zhu, W. Wang, W. Yan, M.B. Larsen, P. Bøggild, T. Garm Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography”, Nano Lett. 14, 2907 (2014). 11. S.J. Brun, M. Thomsen, and T. Garm Pedersen, “Electronic and optical properties of graphene antidot lattices: Comparison of Dirac and tight-binding models”, J. Phys.: Condens. Matter 26, 265301 (2014). 12. M.L. Trolle, G. Seifert, and T. Garm Pedersen, “Theory of excitonic second harmonic generation in monolayer MoS2”, Phys. Rev. B. 89, 235410 (2014). 13. M. Thomsen, S.J. Brun, and T. Garm Pedersen, “Dirac model of electronic transport in graphene antidot barriers”, J. Phys.: Condens. Matter 26, 335301 (2014). 2015 14. T. Garm Pedersen, “Self-consistent model of edge doping in graphene”, Phys. Rev. B. 91, 085428 (2015). 15. M. Thomsen, S.J. Brun, and T. Garm Pedersen, “Stability and magnetization of free-standing and grapheneembedded iron membranes”, Phys. Rev. B. 91 125439 (2015). 16. R. Petersen and T. Garm Pedersen, “Bandgap scaling in bilayer graphene antidot lattices”, Accepted J. Phys.: Condens. Matter. 17. S.J. Brun and T. Garm Pedersen, “Intense and tunable second-harmonic generation in biased bilayer graphene”, Accepted Phys. Rev. B.
© Copyright 2025