5G New Physical Layer
Design and Test
November, 2014
Sang-Kyo Shin
Keysight EEsof EDA
Agenda
– Objective
– Multi-Carrier Waveform Techniques
• OFDM vs. FBMC
• FBMC signal processing
• Reference transmitter and receiver modeling, simulation and test
– MIMO and Digital Beamforming Techniques
• Diversity, Spatial Multiplexing
• Multi-user, Massive MIMO
• Modeling and Simulation Case studies
5G & mmWave
Workshop
Page 2
5G Enabling Devices >> New 5G R&D Challenges
Advanced signal processing
New waveforms
•
•
Legacy OFDM enhancement
FBMC, GFDM, UFDM
•
•
•
Multiple MIMO modes and beamforming
Network interference suppression
Adaptive channel estimation / equalization
Full duplex communications
•
•
•
Amplifier
•
•
•
Envelope tracking
Digital predistortion
Wide, multi bands
Multi-antenna
•
•
•
Access
•
•
Self interference cancellation
Dual polarization antenna
Real time operation
Non-orthogonal
multiple access
Random / scheduled /
hybrid
•
Multi-band
Multiple radio access technologies
•
•
Impedance matching
Mutual coupling
Multi-band, multi-RAT port
sharing
FD / Massive MIMO
GSM/EDGE/WCDMA/HSPA/LTE
WiFi/BT/WiGig/GNSS/5G
•
•
•
Traditional cellular bands <6GH
WiFi, BT, GNSS bands
5G mmWave bands
5G & mmWave
Workshop
Page 3
What we have for early 5G research today?
W1906BEL, 5G baseband exploration library
• 5G candidate physical layer modeling source codes for early research customer
• Committed by Keysight evolving toward world’s first 5G standard compliant library
MATLAB_Script
M1 {MATLAB_Script@Data Flow Models}
Modeling New Physical Layer
– Provide 5G candidate
waveform
• Multi-carrier modem
Tx/Rx processing chain
• FBMC,OFDM, etc…
– Usable with 4G standard
library
Multi-Antenna Techniques
– Advanced / adaptive signal
processing
• MIMO
• Digital beamforming
– Combined 2D/3D MIMO
channel simulation(W1715)
Algorithm Design / Verification
– Real world simulation
environments with
polymorphic language
selection
• Custom C++ model builder
• MATLAB®
• MATLAB® Script™
5G & mmWave
Workshop
Tackling Multi-Domain Issues
– Integrated to advanced
platform
• SystemVue/ADS/EMPro/
GG
• Keysight Instruments
Page 4
Agenda
– Objective
– Multi-Carrier Waveform Techniques
• OFDM vs. FBMC
• FBMC signal processing
• Reference transmitter and receiver modeling, simulation and test
– MIMO and Digital Beamforming Techniques
• Diversity, Spatial Multiplexing
• Multi-user, Massive MIMO
• Modeling and Simulation Case studies
5G & mmWave
Workshop
Page 5
Waveform Requirements
Figure 1.
– OFDM vs. FBMC
Spectrum Using
different filter overlap
factor
• Enable efficient multiple access
• High density of users
• Carrier assignment schemes in asynchronous
context
Figure 2.
– FBMC Fragmented
Spectrum
• Efficient usage of the allocated spectrum
• Robustness to narrow-band jammers and impulse
noise
Figure 3.
• High performance spectrum sensing
– Prototype Filter
Design
• Low computational complexity
– Filter overlap factor
K : number of
multicarrier symbols
which overlap in the
time domain
• Compatibility OFDM vs. NEW
5G & mmWave
Workshop
Page 6
Waveform Design Considerations for 5G
Waveform
Bandwidth /
Frequency
Advanced Multi-Carrier Waveforms1
OFDM
3GHz
FBMC / OFDM / Others
10GHz
Single carrier
30GHz
90GHz
>> Wider BW, Higher Fc, More robustness against phase noise
New RAT
OFDMA/
NOMA?
NOMA/
OFDMA?
Note1:
•
•
•
•
•
Orthogonal Frequency Division Multiplexing(OFDM)
Filter Bank Multicarrier(FBMC)
Universal Filtered Multicarrier(UFMC)
Generalized Frequency Division Multiplexing(GFDM)
Biorthogonal Frequency Division Multiplexing(BFDM)
5G & mmWave
Workshop
Page 7
OFDM
Advantage
Drawback
– Good spectral efficiency
– Some loss of spectral efficiency due to Cyclic
Prefix insertion
– Resistance against multipath interference
– Efficiently implemented using FFTs and IFFTs
– Imperfect synchronization cause loss of
orthogonality
– Subcarrier nulls correspond to peaks of
adjacent subcarriers for zero inter-carrierinterference
– Large peak to average power ratio(PAR) leads to
amplifier inefficiency
– High out-of-band power
– Subcarrier intermodulation must be reduced
frequency
f1
f2
5G & mmWave
Workshop
Page 8
Synthesis Filter bank
Symbol
de-mapping
Symbol
de-mapping
FFT
S / P
P / S
IFFT
Sub-carrier
mapping
Symbol
mapping
Sub-carrier
de-mapping
OFDM baseband signal processing blocks
Sub-carrier
de-mapping
post processing
OQAM
FFT
Poly Phase
Network
S / P
P / S
Poly Phase
Network
IFFT
OQAM
preprocessing
Sub-carrier
mapping
Symbol
mapping
OFDM vs. FBMC
Analysis Filter bank
FBMC baseband signal processing blocks
5G & mmWave
Workshop
Page 9
FBMC Signal Processing Block
OQAM preprocessing
𝐶2𝑅𝑘
𝑑0, 𝑛
Synthesis Filter Bank
𝜃0, 𝑛
𝛽0, 𝑛
x
x
𝛽1, 𝑛
x
x
.
.
.
.
.
.
𝑑1, 𝑛
𝛽 0, 𝑛
𝐴0(𝑧 2 )
↑ 𝑀/2
+
𝑧 −1
𝐴1(𝑧 2 )
𝑰𝑭𝑭𝑻
.
.
.
↑ 𝑀/2
.
.
.
↓ 𝑀/2
x
𝜃 0, 𝑛
𝑆𝑢𝑏𝐶𝐻
Proc
x
x
.
.
.
𝐴𝑀 − 1(𝑧 2 )
↑ 𝑀/2
.
.
.
𝛽 1, 𝑛
↓ 𝑀/2
𝐵 1(𝑧 2 )
.
.
.
.
.
.
Transform
Poly phase
filtering
FBMC transmitter
P/S
Conversion
𝑭𝑭𝑻
↓ 𝑀/2
S/P
Conversion
𝐵 𝑀 − 1(𝑧 2 )
𝑆𝑢𝑏𝐶𝐻
Proc
𝑅𝑒
x
x
.
.
.
𝛽 𝑀 − 1, 𝑛
𝜃𝑀 − 1, 𝑛
𝑆𝑢𝑏𝐶𝐻
Proc
Transform
x
Sub
channel
processing
𝑅2𝐶𝑘
𝑑 1, 𝑛
𝑅𝑒
.
.
.
x
Poly phase
filtering
𝑑 0, 𝑛
𝜃1, 𝑛
x
𝑧 −1
𝑑𝑀 − 1, 𝑛
Staggering
𝐵 0(𝑧 2 )
𝑧 −1
+
𝑧 −1
𝜃𝑀 − 1, 𝑛 𝛽𝑀 − 1, 𝑛
𝐶2𝑅𝑘
OQAM postprocessing
𝑠[𝑚]
𝜃1, 𝑛
𝐶2𝑅𝑘
Analysis Filter Bank
𝑅2𝐶𝑘
𝑑 𝑀 − 1, 𝑛
𝑅𝑒
𝑅2𝐶𝑘
Destaggering
FBMC receiver
5G & mmWave
Workshop
Page 10
OQAM Preprocessing
𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑜 𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
𝑐𝑘 𝑙
𝑅(. )
𝜃𝑘 𝑛 = 1, 𝑗, 1, 𝑗, 1, . .
↑2
𝑓𝑜𝑟 𝑘 𝑒𝑣𝑒𝑛
+
𝑐𝑘 𝑙
𝑗𝐼(. )
↑2
𝑧 −1
𝑅(. )
↑2
𝑧 −1
↑2
𝑑𝑘 𝑛
x
𝑥𝑘 𝑛
𝜃𝑘 𝑛 = 𝑗, 1, 𝑗, 1, 𝑗. .
+
𝑓𝑜𝑟 𝑘 𝑜𝑑𝑑
𝑗𝐼(. )
𝜃 pattern 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑑𝑘 𝑛
x
𝑥𝑘 𝑛
• A time offset of half a QAM symbol period(T/2) is applied to either the real part or the
imaginary part of the QAM symbol
• For two successive sub-channels, say m and m+1, the offset are applied to the real part of
the QAM symbol in sub-channel , while it is applied to the imaginary part of the QAM
symbol in sub-channel m+1.
5G & mmWave
Workshop
Page 11
Poly Phase Network Filter Bank
𝑑0, 𝑛
𝜃0, 𝑛
𝛽0, 𝑛
x
x
𝐴0(𝑧 2 )
↑ 𝑀/2
+
𝑀−1
𝑠𝑚 =
∞
.
𝑘=0 𝑛=−∞
𝜃1, 𝑛
𝛽1, 𝑛
x
x
𝑑1, 𝑛
𝑠𝑚
.
.
.
.
.
.
𝑧 −1
𝑰𝑭𝑭𝑻
𝐴1(𝑧 2 )
.
.
.
↑ 𝑀/2
.
.
.
+
.
.
.
* Filter overlap factor K : number of multicarrier symbols which
overlap in the time domain.
𝑤ℎ𝑒𝑟𝑒:
𝑑𝑘 , 𝑛 𝜃𝑘 , 𝑛 𝑔𝑘 𝑚 − 𝑛𝑀/2
M is number of subcarriers
𝑑𝑘 , 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑑 𝑠𝑦𝑚𝑏𝑜𝑙
𝜃𝑘 , 𝑛 𝑖𝑠 𝑗
(𝑘 + 𝑛 )
𝑔𝑘 (m) is impulse response of the filters
* OFDM can be implemented by set K as 1
5G & mmWave
Workshop
Page 12
Sub-channel Equalization
Maximal ratio combined diversity reception
t[𝑘]
transmitted
symbol
Channel
Estimation
𝑤i
H[z]
Evaluation of MRC weighted target values
𝑦[𝑘]
distorted subcarrier
sequence
2
𝑍-1
𝑍-1
𝑣𝑘 𝑛 =
X
𝑤0
X
+
𝑤1
X
+
𝑙=0
𝑤2
𝑤𝑘 , 𝑙, 𝑛 𝑦𝑘 𝑛 − 𝑙
𝑙 = number of tap
𝑣𝑘 𝑛
3-tap Complex FIR frequency sampling-design
5G & mmWave
Workshop
Page 13
OQAM post processing
𝑟𝑒𝑎𝑙 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
𝜃pattern 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝜃𝑘 𝑛
𝑓𝑜𝑟 𝑘 𝑒𝑣𝑒𝑛
𝑥𝑘 𝑛
x
𝑑𝑘 𝑛
↓2
𝑅(. )
𝑐𝑘 𝑙
𝑧 −1
+
−1
↓2
𝑗
↓2
𝑧 −1
𝑗
𝑧
𝜃𝑘 𝑛
𝑓𝑜𝑟 𝑘 𝑜𝑑𝑑
𝑥𝑘 𝑛
x
𝑑𝑘 𝑛
𝑅(. )
𝑐𝑘 𝑙
+
𝑧
−1
↓2
5G & mmWave
Workshop
Page 14
Modeling / Simulation Example for FBMC Systems
Random
bit
generation
Symbol
Mapping
FBMC
Reference
Source
LO source
Phase/
Power
Modulator
Wireless
Channel
AWGN
FO,IQ Im
Demodulator
FO,IQ Im
ADC
Jitter /
Q noise
FBMC
Reference
Receiver
BER/FER
Measurem
ent
TEST
O1 {Oscillator@Data Flow Models}
REF
Im
11010
•••
•••
•••
•••
B1 {RandomBits@Data Flow Models}
M1 {Mapper@Data Flow Models}
ModType=QPSK [ModType]
Re
FBMC_Source_1
BERFER {BER_FER@Data Flow Models}
QUAD
OUT
Mod OUT
FBMC_Source
MAPPER
Freq
Phase
Q
I
Amp
Taps
Channel
Out
Noise
Density
Freq
Phase
Q
DeMod
I
Amp
DEMAPPER
Im
FBMC_Receiver
Re
C4 {CxToRect@Data Flow Models} M2 {Modulator@Data Flow Models}
C1 {CommsChannel@Data Flow Models}
D3 {Demodulator@Data Flow Models} R3 {RectToCx@Data Flow Models}
ModelType=Pedestrian_A A1 {AddNDensity@Data Flow Models}
NDensityType=Constant noise density
OutputType=I/Q
NDensity=10e-12 W [NDensity]
FCarrier=1e9 Hz
FBMC_Receiver_2
• • • Node
•••
•••
Bits
D2 {Demapper@Data Flow Models}
ModType=QPSK [ModType]
Simulation parameters
5G & mmWave
Workshop
•••
Page 15
Performance Analysis with Real Hardware
SYSTEMVUE
RFIC DUT
M8190A 12 GSa/S Arbitrary
Waveform Generator
Reference Source
I
Digital Modem Source
for Linear Modulation
Frame Structure
Idle
Preamble
Data Payload
Automatic waveform
creation & download
DSSS System
X
Custom modem
design
: Replaceable
in C++, .m or
SV DSP
parts formats
BBIQ - RF
Q
Spreading Code
Generator
BPSK, QPSK, ..., up to 4096-QAM
8-PSK, 16-PSK, 16-APSK, 32-APSK
16-Star QAM, 32-Star-QAM,
and Custom APSK
Preamble_ModType=BPSK [Preamble_ModType]
Payload_ModType=16-QAM [Payload_ModType]
I
5G Reference
Library
Q
Digital Modem Receiver
Feedward
Filter
-
Decision
Device
-
Feedback
Filter
RF - BBIQ
Reference
Receiver
M9703A AXIe 12-bit High-Speed
Digitizer/Wideband Digital Receiver
Interleaving to get 4ch @ 3.2 GSa/s
Decision Feedback Equalizer
Fast Computation Algorithm
CIR--->DFE coefficients
{DigMod_ReceiverL_FastDFE}
FrameSync_Algorithm=DiffCorr
FreqSync_Mode=CIR Corr
TrackingAlgorithm=LMS
TEST
REF
BERFER {BER_FER@Data Flow Models}
•
•
Wider BW (63 GHz BW)
Higher Sampling (160 GSa/s)
BER/FER Measurement
Infiniium 90000 Q-Series Oscilloscope
5G & mmWave
Workshop
Page 16
Agenda
– Objective
– Multi-Carrier Waveform Techniques
• OFDM vs. FBMC
• FBMC signal processing
• Reference transmitter and receiver modeling, simulation and test
– MIMO and Digital Beamforming Techniques
• Diversity, Spatial Multiplexing
• Multi-user, Massive MIMO
• Modeling and Simulation Case studies
5G & mmWave
Workshop
Page 17
Motivation
– Higher requirement for system capacity and spectral efficiency(bits/s/Hz)
– To overcome traditional approaches ( expand bandwidth, higher modulation order,
multiple access)
– The MIMO for better use the spatial resource
• The capacity is increased by a multiplication of the number of antennas
S
C B log 2 1 bit / s M
N
5G & mmWave
Workshop
Page 18
Classification
y1
X1
Multi-user
Increase system
efficiency
Multi streams/users
Spatial division multiplexing
Receive Diversity
MIMO
Multi-user MIMO
.
.
.
.
.
.
X1, X2
y1, y2
Use spatial channel
information?
-X2, X1*
Matrix
Space-time block coding (STBC)
Transmit Beamforming
• Open-loop MIMO
• Closed-loop MIMO
5G & mmWave
Workshop
M >> K >> 1
Massive MIMO
Page 19
K terminals
y2
X2
Transmit Diversity
Massive multi-users
S streams
Spatial Expansion
Spatial multiplexing
Improve user throughput
M antennas
Spatial diversity
Improve robustness
Transmit Diversity
– Use transmit diversity to diminish the effects of fading by
transmitting the same information from two different
antennas
X1, X2
y1, y2
– The data from the second antenna is encoded differently
to distinguish it from the primary antenna
-X2, X1*
– The transmit diversity feature uses ST(space-time) or
SF(space-frequency) block encoding to differentiate the
signals between Antenna 1 and Antenna 2
– The user equipment (UE) must be able to recognize that
the information is coming from two different locations and
properly decode the data.
SFBC:
Tx0
Tx1
f1
f2
x2
x1
x 2 * x1 *
STBC:
t1
t2
* complex conjugate
5G & mmWave
Workshop
Page 20
Spatial Multiplexing
– Operation Concept
• Transmission of multiple spatial data streams over
different antennas in the same RB
y1
X1
h11
h21
• The dimension of spatial channels is increased and
system capacity increased
h12
h22
– Relevant signal processing
• Perform Layer mapping and Pre-coding to lower the
receiver complexity and reduce the signal interference
between antennas
• Statistic correlation between vector(h11,h12) and
vector(h21,h22 )
X2
y2
x: transmitted signal,
y: received signal,
H: spatial channel matrix,
Hij: channel coefficient from the jth transmit
antenna and the ith receive antenna.
y=Hx
y1=h11x1+h12x2+n1
y2=h21x1+h22x2+n2
5G & mmWave
Workshop
Page 21
Modeling and Simulation for MIMO
– MIMO Tx/Rx simulation under Rayleigh fading and AWGN channel
– Explore different decoding algorithms and performance evaluation
• ML, MMSE-SIC, ZF-SIC, MMSE-Linear, ZF-Linear
AWGN
Fading Channel
I5 {IID_Gaussian@Data Flow Models}
StdDev=0.707 V [1/sqrt(2)]
Im
[ ]
Re
I6 {IID_Gaussian@Data Flow Models}
StdDev=707.1e-6 V [StdDev]
Im
Re
R3 {RectToCx@Data Flow Models}
P1 {Pack_M@Data Flow Models}
NumRows=2 [ChannelNumRows]
NumCols=2 [ChannelNumCols]
Format=ColumnMajor
I7 {IID_Gaussian@Data Flow Models}
StdDev=0.707 V [1/sqrt(2)]
R1 {RectToCx@Data Flow Models}
[ ]
P2 {Pack_M@Data Flow Models}
NumRows=2 [RxNumRows]
NumCols=1 [RxNumCols]
Format=ColumnMajor
I2 {IID_Gaussian@Data Flow Models}
StdDev=707.1e-6 V [StdDev]
DEMAPPER
M o d Type
Ch a n n e l Re s ponse
•••
11010
•••
•••
[ ]
•••
MAPPER
B2 {RandomBits@Data Flow Models}
Re c o v e re d Data
M5 {Mapper@Data Flow Models}
ModType=QPSK [ModType]
MIMO_Decoder
MIMO_Encoder
P3 {Pack_M@Data Flow Models}
NumRows=2 [TxNumRows]
M1 {MIMO_Encoder@5G Advanced Modem Models}
NumCols=1 [TxNumCols]
Mode=Spatial Multiplexing [Mode]
Format=ColumnMajor
NumTx=2 [NumTx]
Transmit with MIMO coding
Re c e i v e d Data
M2 {Mpy@Data Flow Models}
A4 {Add@Data Flow Models}
M3 {MIMO_Decoder@5G Advanced Modem Models}
Mode=Spatial Multiplexing [Mode]
DecoderMethod=ML [DecoderMethod]
ModType=QPSK [ModType]
DebugFlag=0
[ ]
U1 {Unpack_M@Data Flow Models}
NumRows=2 [TxNumRows]
NumCols=1 [TxNumCols]
Format=ColumnMajor
•••
•••
Node
•••
•••
Bits
D1 {Demapper@Data Flow Models}
ModType=QPSK [ModType]
MIMO decoding and demapper
5G & mmWave
Workshop
Page 22
Multi-User MIMO
Capacity Comparison
SU−MIMO: 𝑀𝑙𝑜𝑔(1 + 𝑆𝑁𝑅)
𝑆𝑁𝑅
MU-MIMO: 𝑀𝑙𝑜𝑔 1 + 𝑀 𝑙𝑜𝑔𝑈 , 𝑈 → ∞
M: TX antenna number, U: Total user number
MU-MIMO Scenario
Received signal at UE k:
The challenge for MU-MIMO is to find orthogonal
users and design precoding W to minimize the
second term with the restrictions of user grouping,
power, latency and complexity
Hk: kth user’s channel, W k: weight vector, Sk: data symbol
5G & mmWave
Workshop
Page 23
Multi-User MIMO
Advantages
Disadvantages
– Multiple access capacity gain (proportional to
BS antennas)
– BS needs to know channel state information at
transmitter (CSIT). The challenges include
– more immune to propagation limitations such
as channel rank loss, antenna correlation and
LOS
– Maintain spatial multiplexing gain without large
antenna number at terminals
• TDD vs. FDD for CSIT
• CSI feedback path bandwidth, Code book
design
– Complexity of the scheduling procedure at BS
• User grouping scheduling, power allocation
and latency requirements
5G & mmWave
Workshop
Page 24
Modeling and Simulation for Capacity Estimation
Channel transfer matrix
I1 {IID_Gaussian@Data Flow Models}
StdDev=0.707 V [1/sqrt(2)]
Im
[ ]
Re
Capacity measurement
User scheduling
H
Power_Selected
P
W_Selected
W
User Scheduler
R2 {RectToCx@Data Flow Models}
P4 {Pack_M@Data Flow Models}
NumRows=1 [NumRx]
NumCols=4 [NumTx]
Format=ColumnMajor
D2 {Distributor@Data Flow Models}
BlockSize=1
UserScheduler {MATLAB_Script@Data Flow Models}
TotalUsers=100 [TotalUsers]
NumTx=4 [NumTx]
NumRx=1
TotalPower=10 [SNR]
123
R
Channel Capacity
H_Selected
H
SumRate {MATLAB_Script@Data Flow Models}
NumTx=4 [NumTx]
Noise=1
NumRx=1
A1 {Average@Data Flow Models}
NumInputsToAverage=100
S4 {Sink@Data Flow Models}
StartStopOption=Samples
I3 {IID_Gaussian@Data Flow Models}
StdDev=0.707 V [1/sqrt(2)]
Simulation condition
Sum Capacity
– Transmit antenna number (M) : 4
– Total number of user : from 4 to 100
– SNR=10dB
– Power allocation by waterfilling algorithm
User K: 4->100
5G & mmWave
Workshop
Page 25
Massive MIMO
– Originally envisioned for time division duplex(TDD1), but can
potentially be applied in frequency division duplex(FDD)
.
.
.
.
.
.
K terminals
– Brings huge improvements in throughput and energy efficiency
when combined with simultaneous scheduling of a large number of
UEs
S streams
– System Model : M transmit antenna with maximum S streams, K
users each with a single antenna
Massive multi-users
M antennas
– The use of a very large number of service antennas operated fully
coherent and adaptive
M >> K >> 1
Massive MIMO
Note1 : Prefer TDD as not enough resources for pilots and CSI feedback.
5G & mmWave
Workshop
Page 26
Massive MIMO Operation and Challenges
Operation
Challenges
– Acquire Channel State Information from uplink
Pilots / Data
– Pilot contamination: interference from other cells
– Reciprocity calibration and adjustment
– Pre-coding1 to support multi-stream
transmission
– MMSE receiver with beamforming
• Maximum ratio combining(MRC) : interference
and noise are both white in the space
• Interference rejection combining(IRC): colored
interference
Note1 : Linear pre-coding [maximum ratio transmission(MRT), zero-forcing(ZF)].
Non-linear pre-coding [Dirty paper coding(DPC)], full CSI required
• Blind channel estimation?
• Coordination and planning?
– New pre-coder with low-complexity, low-PAPR
– Hardware performance
• I/Q imbalance, A/D resolution, PA linearity
• Phase noise, clock distribution
– Synchronization at low SNR
– Understand mmWave MIMO channel
5G & mmWave
Workshop
Page 27
Modeling and Simulation for Large Number of Antennas
Transmit
Beamformer
Multi-CH
Modulator
Multi-CH
Envelope Adder
Multi-CH
AWGN
Multi-CH
De-Modulator
Receive
Beamformer
O1 {Oscillator@Data Flow Models}
Frequency=1000000 Hz
Power=.010 W
T1 {Tx_Beamformer@5G Advanced Modem Models}
BeamformingType=Calculate by antenna …
NumOfAntx=4
NumOfAnty=4
Dx=0.5
Dy=0.5
Theta=0 °
Phi=0 °
M2 {MultiCh_Demodulator@5G Advanced Modem Models}
NumChannels=1
FCarrier=1e6 Hz
InitialPhase=0 ° [[0]]
AmpSensitivity=1 [[1]]
MirrorSignal=NO
ShowIQ_Impairments=NO
M4 {MultiCh_AddEnv@5G Advanced Modem Models}
OutputFc=Center
InPhi
LO
weights
Tx
Beamformer
InTheta
quad_output
ref
MultiChannel
Modulator
output
input
input
MultiCh
Noise Density
output
MultiChannel
Demodulator
weights
Rx
Beamformer
input
output
Env
M1 {MultiCh_Modulator@5G Advanced Modem Models}
NumChannels=1
FCarrier=1e6 Hz
InitialPhase=0 ° [[0]]
AmpSensitivity=1 [[1]]
ConjugatedQuadrature=NO
MirrorSignal=NO
ShowIQ_Impairments=NO
M6 {MultiCh_AddNDensity@5G Advanced Modem Models}
NDensityType=Constant noise density
NDensity=0.0 W
Scripting
•
•
•
•
Multiuser scheduling
Capacity analysis
Quick algorithm
implementation and test
Calibration
R1 {Rx_Beamformer@5G Advanced Modem Models}
NumOfTxAnts=16
ABF_Algorithm=Sample Matrix Inversion
BlockSize=1024
Plotting
•
•
•
Antenna pattern review
Interference analysis
between different
streams
Beam pattern vs. precoding analysis(MRT,ZF)
5G & mmWave
Workshop
Page 28
Channel Sounding / Parameter Extraction / Simulation
Channel
impulse
response
Reference transmit
signal(chirp/pn)
channel
H[z]
t[𝑘]
𝑧[𝑘]
∑
•
•
•
PDP (Path delay, path loss)
AOA, AOD
Doppler shift
Channel
parameters
Estimation
algorithms
CIR
correlation
Channel sounding
Parameters estimation
Statistics & modeling
•
•
•
Scenario selection
Network layout
Antenna parameters
•
•
•
•
•
AS AoA/AoD
PAS
Doppler spectrum
Correlation
Rician K factor
Large/Small scale
parameters
generation
Fading coefficient
generation
Input signal
𝑥[𝑘]
¤
ESPRIT
Subspace based algorithm
Maximum estimating
number of path is limited by
number of Rx, will be fail
under NLOS scenario
cannot estimate path loss
and path delay
small computing amount
SAGE
Maximum likelihood
estimation algorithm
No limitation for number
of path, suitable for both
LOS and NLOS scenarios
Can estimate all the
channel parameters
including path loss and path
delay of each path
Iteration needed, large
computing amount
faded signal
𝑦[𝑘]
SystemVue Simulation
5G & mmWave
Workshop
Page 29
Prototyping and Testing in Real Time Hardware
– Move forward from largely theoretical massive MIMO research to real hardware
implementation and test
– Open FPGA and download custom algorithms for MIMO and Beamforming
– Test and measure in real-time
CUSTOM
ALGORITHMS
FPGA
ARRAY
M9703
REAL-TIME PROCESSING
Up to 40 Channels x 1GHz wide
5G & mmWave
Workshop
Page 30
Summary
– Early research task start with huge math and software simulation
– Connected solution between Design/Simulation and Test/Verification
– Real time, Multi-channel, wide-band are key themes for 5G research
– Hardware-Software-People
5G & mmWave
Workshop
Page 31
© Copyright 2025