Math 1425.P70 Examples for 4.1 Name ______________________________________________________ Evaluate. 1) ∫ x15 dx 2) ∫ 19 dx 3) ∫ 9x7 dx 4) ∫ (5x2 + 1) dx 5) ∫ (8x2 - 3x) dx 6) ∫ (10t2 - 4t - 7) dt Examples for 4.1 7) ∫ (x - 3)2 dx 8) ∫ (x3 - 5x) dx 9) ∫ (3x8 - 7x3 + 6) dx 10) ∫ 15x-8 dx 11) ∫ 61 dx x 12) ∫ 37 dx x2 13) ∫ 12x3 14) ∫ (x4/3 - 3x5/2) dx 19) f'(x) = x2 + 8, f(3) = 61 x dx Solve the problem. 20) Find a company's total-cost function if its 15) marginal cost function is C'(x) = 10x - 7 and its fixed cost is $12. ∫ 8e4x dx 21) Find a company's total-cost function if its 16) ∫ marginal cost function is C'(x) = 5x2 - 7x + 4 and C(6) = 260. (x 6 + e3x) dx Find f such that the given conditions are satisfied. 17) f'(x) = 5x2 - 7x + 4, f(0) = 2 22) A company finds that its marginal revenue from the sale of the xth unit of its product is given by R'(x) = 9x 2 - 4. Assuming that R(0) = 0, find the total-revenue function R. 18) f'(x) = x - 6, f(2) = 0 23) A company has found that its expenditure rate per day (in hundreds of dollars) on a certain type of job is given by E'(x) = 10x + 11, where x is the number of days since the start of the job. Find the expenditure if the job takes 6 days. Math 1425.P70 Examples for 4.1, page 2 Answer Key Testname: 1425_SECTION4_1 1) 1 16 x +C 16 2) 19x + C 9 3) x8 + C 8 4) 5 3 x +x+C 3 5) 8 3 3 2 x - x +C 3 2 6) 10 3 t - 2t2 - 7t + C 3 7) 1 3 x - 3x2 + 9x + C 3 8) x4 5x2 +C 4 2 9) 1 9 7 4 x - x + 6x + C 3 4 10) - 15 -7 x +C 7 11) 61 ln x + C 37 12) +C x 13) 8 9/2 x +C 3 14) 3 7/3 6 7/2 x - x +C 7 7 15) 2e4x + C x7 e3x 16) + +C 7 3 17) f(x) = 5 3 7 2 x - x + 4x + 2 3 2 18) f(x) = x2 - 6x + 10 2 19) f(x) = x3 + 8x + 28 3 20) C(x) = 5x2 - 7x + 12 5 7 21) C(x) = x 3 - x 2 + 4x + 2 3 2 22) R(x) = 3x3 - 4x 23) $24,600 Math 1425.P70 Examples for 4.1, page 3
© Copyright 2025