Vehicle positioning and route prediction FFI resultatkonferens 2015-09-17 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 1 VPRP Project work packages Project duration From: 2013-07-01 To: 2016-12-31 2015-09-17 WP2 System design WP1 Project management WP3 Local map WP4 Vehicle posi oning Total project budget: 24,6 MSek WP5 Route predic on WP6 Global map FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 2 VCC Results for 2014-2015 Localization and mapping in AD-pilot • Focus on robust and high performing localization (WP 3) • Development of a high density map on a dedicated AD-route (WP 6) Localization and mapping research • Evaluation of localization performance using today’s standard sensors (WP 4.1) • Using GNSS sensors of dead reckoning (WP 4.2) Destination estimation and route prediction • • Clustering driving destinations (WP 5.2) Short range route prediction (WP 5.2) System design • Two fully equipped V60 test vehicles up and running (WP 2) • Six XC90 vehicles under construction, ready after 15w52 (WP 2) 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 3 Robust localization (WP 3) Compare: • Landmarks detected by the sensor system ( , ) & landmarks stored in a HD-map • Road shape estimated by the sensor system & road shape stored in a HD-map Landmarks can consist of: • • • • • 2015-09-17 Lane markings / road edges Barriers Traffic signs Magnets etc. FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 4 High density mapping (WP 6) 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 5 Example of map data Video 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 6 Localization evaluation (WP4.1) 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 7 Comparison L1 GPS carries phase usage (WP 4.2) 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 8 Clustering driving destinations (WP 5.2) Large similarities in trajectories from an origin to a destination Different parking locations diversities 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 9 Clustering driving destinations (WP 5.2) Large similarities in trajectories from an origin to a destination A new method for clustering driving destinations has been developed. 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 10 Short range route prediction (WP 5.2) • • 2015-09-17 The problem of short range (next link) prediction has been studied We have developed a new method which has two main benefits • low real time computational complexity • the prediction model can be sequentially updated for each new trip FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 11 Chalmers • Education: • Courses: • Probabilistic graphical models • Sensor data fusion • 2 Master thesis projects: • “Monocular simultaneous localisation and mapping for road vehicles” • “Simultaneous Localization and Mapping for Vehicle Localization using LIDAR Sensors” • 1 Bachelor thesis project: Fig 1: Identified and classifiable routes from data set. • “Prediction and classification of driver’s route” • Supervison: • Supervision of 2 industrial PhD students (see VCC and AB Volvo slides) • Research • Radar sensor maps for improved localization. Fig 2: SLAM with LIDAR data. 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 12 Chalmers – Radar sensor maps • Positioning problem • Use current sensor observations to position the vehicle in a map of known (sensor specific) landmarks. • Mapping problem • Use recoded sensor data from the vehicle to build up an accurate map of how the sensor sees the world. We call this map the sensor map. • Why radar maps? • Radars is an important sensor as they are robust against different weather conditions. • The radar sensor map • Radar landmarks in the map are described with position, extension and expected number of landmarks. • The radar map is estimate from batch data both where we assume that the host trajectory is known and when it is not (SLAM). Fig 3: Schematic view of a radar sensor map. 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 13 AB Volvo Update 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 14 SUMMARY VPRP – SO FAR • In general good progress and result • Accurate and depandable positioning is a fundamental, critical enabler for systems that relate to the long-term zero-accident vision • This research will have direct impact on our opportunities to reach targets on active safety and self-driving. We are at the research frontier. • Next time (Resultatkonferens) – more focus for partners Chalmers and AB Volvo • VCC project setup: • • • • Defined Target project AD Pilot in combination with Research project VPRP in combination with other Data Collection project running Good mixture with synergies Thank you for your time! Next time - maybe in a running test vehicle (XC90)! 2015-09-17 FFI RESULTATKONFERENS 2015-09-17, ANDERS ALMEVAD & JOAKIM LIN-SÖRSTEDT, AALMEVA1 & JSORSTED, VER1, PUBLIC 15
© Copyright 2024