Svetssimulering – utmaningar och möjligheter Jens Gunnars, Inspecta Technology AB Fogningsdagarna 2015, Svetskommissionen, Sundsvall 16-17 april 2015 1 2015-04-16 Welding simulation – challenges and possibilities Jens Gunnars, Inspecta Technology AB Fogningsdagarna 2015, Svetskommissionen, Sundsvall 16-17 april 2015 2 2015-04-16 Outline 3 • Effects from Welding and Residual Stresses • Residual Stress Modeling • Measurement Methods • Validations • Weld Residual Stress Design • Examples • Conclusions 2015-04-16 Effects from welding and residual stresses • Welding induces deformation and residual stresses • Deformation and warping may influence function and appearance of components • Residual stress has a significant role for component life time, cracking and ageing o Stress corrosion cracking, fatigue, fracture, creep, impact damage, …, … o Tensile residual stresses decrease the reliability and useful life of a component o Compressive residual stresses increase the reliability What is residual stress? • Residual stress are caused by non-uniform plastic deformation due mechanical loading or local rapid heating/cooling, phase changes, solidification and difference in expansion, … • Most manufacturing processes generate residual stresses at different scales: − − − − − Casting, rolling, bending, forging Turning, milling, grinding Welding, soldering Peening, burnishing Surface hardening, nitriding, …, … • Residual stress don’t leave any outward sign. Residual stress remain after removal of all external loads. • They are self balanced within a component, and in all components they are both tensile and compressive • They have large influence on reliability => we need to understand residual stress distributions in components Why predict weld residual stresses by simulation? • Not possible to measure non-destructively residual stresses in typical components • Assessment of components in operation − Residual stress is important to accurately determine intervals and detection targets for inspections − Assess found defects in detail to assure safe operation • Possibility to design for beneficial residual stresses in new components − Improve the tolerance to surface damage − Increase the useful life of a component − Design and optimization of welding and treatments in order to reduce or create compressive stress 300 250 200 as-welded 150 100 after pressure test 50 In operation 0 Pf=0 Pf=0.84 Pf=1.23 -50 0 0.2 0.4 0.6 u/t 0.8 1 Residual Stress Modelling 2015-04-16 Weld Residual Stress Finite Element Analysis Residual stress are caused by − Nonhomogeneous plastic deformation due to local rapid heating/cooling, and due to applied mechanical loading/BCs, and − Solidification and difference in thermal expansion − Phase transformations − … Factors in welding simulation: • Spatial geometry and modeling (weld geometry, bead size, interacting welds, 3D effects, …) • Modeling of welding heat sources • Material modeling and properties • Post weld treatments designed to reduce or modify the stress field 2015-04-16 Modeling of welding heat source • It is important to have suitably accurate heat source model for the welding method − Residual stresses occur as a consequence of material heating and cooling during welding − We do not model the processes in the arc (plasma) and melted pool (flow in liquid). − The liquid weld pool is modeled by an equivalent heat conduction model representing the welding method analyzed − A heat source calibration procedure is required when using a 3D analytical Rosenthal type travelling heat source in a 2D FE model • Basic information required for the modelling: − WPS: • Welding method, details specific to welding method • Welding voltage, current and travel speed • Pre-heating and interpass temperature • Number of weld beads – weld protocol/micrograph − Convection conditions − Temperature dependent thermal properties [ IR picture of weld pool, Visual analysis of welding processes, Ogawa 2012 ] Material modeling is challenging in welding simulation Identify and quantify relevant deformation conditions: § Large strains, >5% § Cyclic loading, 1 - 10 major plastic cycles § All physical and mechanical properties as a function of the full temperature range, 20 C to 1500 C Conduct testing: § § § § § Need material data for parent and weld materials Monotonic and effect of cyclic loading Relevant strain ranges and temperatures Biaxal compression and tension Specimen heat treatment (annealed conditions) Formulate constitutive model § § § § § Type of hardening (isotropic, kinematic, mixed, …) Temperature effects Rate effects, Annealing, recovery and saturation Phase changes Measurement of Residual Stress 2015-04-16 Methods for measuring residual stresses Destructive methods – relaxation techniques: • Hole drilling and measurement by strain gauge • Incremental Deep Hole Drilling (IDHD) technique • Contour method • Slitting, Layer removal o Uncertainty in all methods is 20% in challenging cases and assumptions for evaluation Non-destructive methods – diffraction techniques: • Neutron diffraction • X-ray diffraction (standard, synchrotron high energy) • Research: Ultrasonic methods, magnetic methods Slitting; Circumferential mean stress estimate 1 1 σ = Et − D 1 D0 Validation – International Blind Round Robin lead by the US nuclear authority for validation of weld residual stress simulation 2015-04-16 International Weld Residual Stress Validation Project - lead by US NRC Project aims and problem description: Project aims: ‒ Determine the relevance of weld residual stress FE modelling, for nickel base Alloy 82/182 welds between ferritic nozzle and stainless steel pipe ‒ a) b) Validate predicted stress profiles through comparison with experimental measurements (iDHD) ‒ d) Identify uncertainties associated with the modeling process • Predictions were made blind, with limited access to underlying data. • Predict the residual stresses for a nozzle mockup containing the following welds: a) Buttering b) Dissimilar metal weld (DMW) c) Fill-in / Back weld (RBW) d) Safe end weld (SSW) 14 2015-04-16 c) Fill-in Weld Weld residual stress analysis Incremental Deep Hole Drilling (DHD/iDHD) International Weld Residual Stress Validation Project - lead by US NRC 2015-04-16 International project for validation of weld residual stresses Validation project by U.S. Nuclear Regulatory Commission, 2010 Participants in the project for comparison of blindly measured and calculated residual stresses: Hoop stress profile after welding the stainless steel pipe – comparison of experiments and detailed modelling by Inspecta 17 2015-04-16 Conclusions from the NRC international validation project 1 8 • Weld residual stresses in dissimilar metal welds has been validated in a blind round robin managed by U.S. NRC, with 16 leading organizations. • Measurements were performed by incremental deep hole drilling (iDHD). • Inspecta is one of the modeling groups with best agreement with the experimentally measured residual stress profiles, during all phases of the blind round robin. • It was large scatter between the predicted residual stress profiles from different analysis groups. • Our results show that reliable predictions can be achieved if detailed and careful modeling is used, especially with respect to heat source modeling and high temperature properties and material hardening behavior. • The material model should consider the constraints for the welding geometries of interest and the relevant deformation cycles. Biaxial material testing is recommended if applying mixed hardening models. Residual Stress Design 19 2015-04-16 Residual Stress Design Produce beneficial residual stress by design of welding and/or surface treatments. (A) Design of welding and welds § Design of new welds Optimized weld joint geometry, sequence of beads and joints, heat input, pre-heating, active cooling, etc § Design of repairs and weld overlays Optimization and qualification weld overlay repairs for the actual loading, geometry and welding. Weld overlay Original weld 20 Surface treatment methods (B) Surface treatment methods: ‒ Shoot peening, hammer penning, ultrasonic impact peening ‒ Cold hole expansion ‒ Roller burnishing, cold rolling ‒ Water jet cavitation peening, laser shock peening, … • Produce local plastic deformation • Optimize controlling parameters to the actual process, material and operational loads in order to assure the effect o Simulations are very useful • Monitoring of controlling process parameters during manufacturing. 21 Reducing Residual Stress • Stress relaxation methods include: − PWHT (annealing) − Local PWHT − Pre-straining, over pressurizing − Machining and grinding − … • Accurate selection and control of procedure to avoid e.g. micro structural changes − Detailed specification of procedure and limits − Validate procedure effectiveness 22 Examples 23 2015-04-16 Beneficial sequence of welds – Example for nozzle weld Before: After: 24 2013-11-27 Effect of bending on weld residual stresses Roller Plate Bending Machine Assess the difference by bending before or after welding: As welded Bending 25 2014-09-23 Result: welding after bending 26 2014-09-23 Result: bending after welding 27 2014-09-23 Optimization of burnishing process – Example Validation - Predicted and measured compressive stress from well chosen burnishing of bearing steel: 28 Optimization – identification governing process parameters and optimized limits for the process Weld overlay repair Original weld – as welded Overlay weld Original weld Validation of the effect of PWHT to Weld Residual Stress in nickel base weld (Alloy 182) to CS – full scale mockup Path1 - Final state mock-up (Block 1) 30 Recommendations for WRS profiles in nickel base welds Alloy 182 Updated Appendix in the ProSACC fracture mechanical handbook (current handbook version is SSM 2008:01) Example: Weld Type III.1 t =35 mm, R= 300mm Effect of operational loads – example nozzle in cladded vessel Insticksstuts i plåterat kärl 32 2013-11-27 Analysis considering 3D effects for 5 bead weld in stainless steel 33 2013-11-27 Conclusions • Improved residual stresses increase design life and reliability • Welding Design and Adapted Surface Treatments have the potential to produce beneficial residual stress • Optimize to the actual process, material and operational loads is needed in order to assure the effect • Monitoring of parameters is necessary during production for the quality assurance of critical equipment 34 Thank you! Questions and ideas? For more information contact: Jens Gunnars, +46 8 5011 3087, jens.gunnars@inspecta.com 35 Fogningsdagarna 2015 Svetskommissionen Svetssimulering – möjligheter och utmaningar Jens Gunnars, Inspecta Technology AB Svetsning ger deformationer som ibland kan påverka funktion och utseende. För att innan tillverkningen säkerställa symmetri och deformation inom toleranser, så kan svetssimulering användas för att ta fram lämpliga stöd, initiala vinklar i riggar samt svetssekvens. Detta är särskilt användbart inför tillverkning av dyrbara lågserieobjekt, eller vid användning av mer höghållfasta material som ger slankare konstruktioner. Svetsning ger även restspänningar vilka ofta har stor inverkan på komponenters livslängd och driftsäkerhet. Efter svetsning finns i materialet restspänningar i nivå med materialets sträckgräns. Restspänningarna är självbalanserande i komponenten och visar inga yttre tecken. Detta kan vara en bidragande orsak till att restspänningar är mindre kända och sällan beaktas vid produktutveckling. Restspänningar har stor inverkan på bland annat utmattning, spänningskorrosion och slagskador. Den ökade förståelsen för hur restspänningarna uppstår vid svetsning har gett möjligheten att gå ifrån att enbart acceptera de restspänningar som uppkommer, till att istället designa för att skapa mer gynnsamma restspänningar. Olika strategier kan användas för att inkludera restspänningar, i samverkan mellan konstruktion och tillverkning. Förbättringspotentialen kan vara stor genom att begränsa dragspänningar i högt påkända ytor eller uppnå kompressiva spänningar. Analys av restspänningar innebär modelleringstekniska utmaningar. Validering är viktigt för beräkning och även för de mätmetoder som finns. Det finns också utmaningen att medvetandegöra tillverkare och brukare om möjligheterna, samt nyutveckling i för hållande till användning av standarder.
© Copyright 2024