2015-09-24 LOW ENERGY HOSPITALS – RESULTS FROM THE RESEARCH PROJECT HVORDAN REDUSERE ENERGIBRUKEN MED 50% M.Sc Trond Thorgeir Harsem, Norconsult Associate Professor - Oslo and Akershus University College of Applied Sciences, Norway M.Sc Janne Grindheim, Norway trond.thorgeir.harsem@norconsult.com 1 Objectives ● Energy consumption in hospitals in focus • Reducing energy consumption with 50% (in total) without compromising health, comfort and staff efficiency ● Low-energy hospitals - the project • The work, studies, technical solutions, simulations, requirements, energy savings ● Conclusion and recommendations as result of our work • Energy-efficiency, guidelines, control, technical solutions, human factors, energy savings 2 1 2015-09-24 Low Energy Hospitals ● Low Energy Hospitals is an innovation project whose goal is to find and promote feasible design measures which can halve the energy consumption in new hospitals built in Norway ● Led by Norconsult AS, Norway's largest multi-disciplinary consulting engineering company, supported by the Norwegian Research Council and matching funds from private sector partners and research organisation: • • • • • • • Helse Sør-Øst - Norway’s largest regional health authority Nordic Office of Arcitecture - a leading architecture company in Norway GK-Norway - a large supplier of HVAC equipment and services in Scandinavia SAAS - designs and delivers complete building automation systems Siemens Healthcare - global supplier of medical equipment Norconsult Information Systems - IT solutions for building sector in Scandinavia SINTEF - Research organisation for technology and innovation 3 Focus on Hospital Energy Consumption ● Healthcare buildings represents 10% of the total heated area of commercial buildings in Norway ● Healthcare building use twice as much energy than other commercial buildings ● Healthcare building use 20% of the energy consumption in commercial buildings in Norway 2 2015-09-24 Focus on Hospital Energy Consumption ● Specific energy consumption for hospitals pr. year Large university hospitals 400-500 kWh/m2 Local hospitals Requirement of technical regulations and energy label Building Category TEK-10 Smal Houses, holyday homes of 150 m2 120+1600m2 oppv.BRA Apartment building Children's garden Office building school building University / College Hospital Nursing homes Hotels Sports building Business Buildings Culture Building Light industrial / garage Total net energy - maximum values (kWh/m2 heated BRA per year) TEK-07 Diff Tek10- Energy label Energy label A B Tek07 125+1600m2 oppv.BRA Energy label C 115 140 150 120 160 120 150 165 135 180 -5 -5 -10 -15 -15 -20 79 67 90 84 79 95 118 100 135 126 118 143 158 134 180 168 158 191 300(335) 325 -25 179 268 358 215(250) 220 170 210 165 175(190) 235 240 185 235 180 185 -20 -20 -15 -25 -15 -10 136 135 109 129 105 106 203 202 164 194 158 159 271 269 218 258 210 212 tilsv. TEK07? 3 2015-09-24 Healthcare - energy consumption Hospital building category with the largest specific energy consumption ● The energy consumption is spread on the following categories ● Thermal Electrical cooling power % 9,6 % 22,3 % 1 483 725 93 22,5 % Ventilation cooling 167 453 10 2,5 % Room cooling 566 822 35 8,6 % Thermal heating kWh/year kWh/m2 632 667 40 1 470 095 92 Ventilation Fans Light Ventilation heating 1 828 830 114 27,7 % Room heating Sum 443 297 6 592 889 28 412 6,7 % 100,0 % Equipment Organisation - projects Phase 1 State of the art Functional planning Building envelope Hospital equipment HVAC Integration & control Phase 2 Develop Models Simulations Phase 3 Energy Guidelines Functional planning Building envelope Hospital equipment HVAC Integration & control Phase 4 Publication and dissemination of results 8 4 2015-09-24 Phase 1: State of the art Collect data and review : • Requirements - energy-related requirements for new hospitals in Norway - systems & components • Today's design practice - how newer hospitals have been designed in Norway, and Best practice how future hospitals may be designed • Energy and power use - data from 4 reference hospitals Rikshospitalet, Ahus, Elverum, Ringerike Phase 2 : Modelling and Simulation Activities for Phase 2 ● Collect all candidates for energy design improvements in a list of Best Energy Practices (BEPs), choose top 12 for in-depth research ● Construct a virtual hospital model, build zonal energy areas calibrated with data collected in Phase 1 ● This model will be the main tool for quantitative investigation in Phase 2, to validate the chosen BEPs ● Verify that goal of 50 % energy reduction has been reached. [W] Varmetilskudd/kjøling 44000 42000 40000 38000 36000 34000 32000 30000 28000 26000 24000 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 4 1 1 1 1 1 4 4 6 1 6 1 6 6 1 6 6 6 6 5432 0 1 2 3 4 5 6 1 2 5432 3 4 5 5432 6 7 8 5 32 5 32 5 32 5432 5432 Tid [h] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Internlaster Oppvarming Varmebatteri Kjøling Kjølebatteri Solstråling 5 2015-09-24 Phase 3 : Guidelines Activities for Phase 3 ● Develop energy guidelines for hospitals design ● Write standard templates for new hospital design and equipment specifications. ● Publications and seminars Results Large potential for demand control – – – – – – – • Polikliniske og dagpasienter etter når på døgnet de blir behandlet Pasienter • Ventilation Heating Cooling Daylight Sunshading Lighting Small and large equipment 3000 2000 1000 0 0 2 4 6 8 1012 1416 18 2022 Time på døgnet Building construction – – – – – U-value Super insulation Infiltration Layout PCM - Phase Change Materials 12 6 2015-09-24 Potential for energy demand control Ny Molde Nytt Østfold New designs: ventilation energy still dominates Ventilation heat Vent. fan energy Net energy demand kWh/m2 AHL St.Olavs (inkl .vent.befukting) Hot water 1a. Romoppvarming 0,0 Nye Kirkenes 0 1b. Ventilasjonsvarme 14,0 16,9 25,7 2. Varmtvann 51,0 47,0 3a.Vifter 46,7 3b. Pumper 28,6 4. Belysning 54,0 5. Teknisk utstyr 49,0 29,8 6a. Romkjøling 35 6b. Vent.kjøling 30,0 4,0 31,8 54,0 2,7 Potential for energy demand control ● Ventilation and lighting have highest potential for demand-control. • • • • Local room heating (1a) is more difficult to demand-control due to time lag Domestic hot water (2) already on demand, and water-saving taps installed Most hospital technical equipment (5) is already on-demand Room cooling (6a) is fixed by continuous process and IT equipment demands Today's energy consumption (kWh/m2) Demand-controlled (kWh/m2) Reduction 1a Local room heating 55 47 1b Ventilation heating 2 Hot water 110 20 22 20 80% 3a Ventilation fan 50 25 50 % 20 % 4 Artificial lighting 50 40 5 Techn. equipment 65 65 6 a Room cooling 35 26 6b Ventilation cooling 15 15 25 % 400 260 35 % Total net energy 7 2015-09-24 Potential for energy demand control Ventilation ● Energy saving potential for demand control at room level is up to 50 % ● Decouples heating from air handling; much less driving with foot og gas and brake pedals : ● Large ventilation air flows have a cooling effect; room heater starts to counteract ● Important side-effects of lower airflows: • • Lower Specific Fan Power: power varies as speed Higher effectiveness of heat recovery: very important in hospitals which have only 55% recovery rate ● Good results used with DCV in Børås hospital; contributes to very low energy consumption (105 kWh/m² in building energy) ● DCV will be even more important as we move toward "passive house" hospitals -> large cooling demand Design for demand control No easy recipe! Can start by dividing into functional areas • Good hospital logistics and patient flow will generally enable good demand control also • Similar functions are usually grouped together • Enables better zonal control, especially for corridors and other connecting areas in hospitals • Easier to maintain correct pressure relationships for ventilation. • Challenge to maintain flexibility New Molde hospital design, NSW, 2011 8 2015-09-24 Design for demand control Identify the smallest spaces for room demand-control • • Patient rooms, bathrooms, treatment rooms, meeting rooms… Suggestion: attach a schedule for occupancy and equipment usage for each room in the room program; this will help HVAC designers Choose optimal control strategy for each room/space • • • • Room type will determine control variables: time of day, CO2, or presence detection Patient rooms and other small rooms controlled by presence detector, with modulating temperature on top Sensing of CO2 not for treatment rooms or OP rooms due to high ventilation rates New sensing methods are coming, and their installed costs are being reduced. May have applications in technical areas, labs. Energy distribution - healthcare equipment ● Large medical imaging equipment: 25% of total energy ● Small healthcare medical equipment: 75% of total energy utilization for healthcare equipment utilization for healthcare equipment 9 2015-09-24 Power Flow - Hospitals specific equipment Power (kW) 100% ? 50% Time Procedure time Pause 19 PET/CT scan- Power consumption Peak power 100% Standby 25% 10 2015-09-24 CT scan - Power consumption Peak power 100% Standby 11% Angiography - Power consumption Peak power 100% Standby 13% 11 2015-09-24 MRI - Power consumption Peak power 100% Standby 43% Belysning i sykehus - ulike systemløsninger Primære rom - ulike systemløsninger for belysning i ulike sykehusarealer med medisinsk funksjon - legekontor, undersøkelses- og behandlingsrom, laboratorium, ultralys, røntgen og dialyse Sekundære rom - ulike systemløsninger for belysning i ulike sykehusarealer - kantine, kjøkken, venterom, kontor, garderober, lager, toaletter, korridor mv. Definisjoner: • Lux - Lysstyrke • Ra - Fargegjengivelse • Kelvin - Fargetemperatur 24 12 2015-09-24 Belysning i sykehus - primære rom ● ● ● ● ● ● ● Legekontor - konsultasjon Undersøkelse - og behandlingsrom Laboratorium Ultralyd og røntgen Dialyse Småkirurgi Medisinrom 25 Belysning i sykehus - sekundære rom ● ● ● ● ● ● ● ● ● ● ● ● Toaletter og garderober Korridor Oppholdsrom, kjøkken og kantine Treningsrom, lekerom Kontor, og vaktrom Møterom Trapperom Heiser Skyllerom, vaskerom, renhold Lager, osv Tekniske rom Utomhus Kilde: Fagerhult 26 13 2015-09-24 Belysning i sengerom ● Energieffektiv belysning i et rom hvor man må ta hensyn til - pasienters velvære - sykehusansattes ulike arbeidsoppgaver - undersøkelser - hvile - leselys for liggende og sittende pasienter/pårørende ● Krav blendfri ulike scenarier døgnrytme Kilde: Fagerhult 27 Sengerom med bad ● ● ● ● Liggende pasienter har direkte innsyn mot himling og armaturer Man kan unngå blending ved bruk av avdekning eller indirekte belysning Generell belysning må kunne gi inntil 1000 lux ved lege undersøkelse Dynamisk belysning er enklest å gjennomføre med LED 28 14 2015-09-24 Belysning i operasjonsstuer ● Energieffektiv belysning mht arbeidslys til sykehuspersonalet - før, etter og under operasjon - type operasjon / inngrep - men også pasienters velvære Stikkord; ● allmennbelysning ● arbeidsbelysning ● ergonomisk lys ● energibruk ● lysstyring 29 Operasjonsrom, røntgen og ultralyd ● ● ● ● Høykrevende visuelt arbeidsoppgave Blending fra generell belysning må være sperret Blending fra operasjonslampe som gir 40 000-160 000 må være fullstendig sperret LED belysning kan brukes til ergonomisk lys - lys spesielt tilpasset medisinsk funksjon etter lysfarge og intensitet. 30 15 2015-09-24 Legionella ensure tap water solutions Heat treatment without using energy FoU-seksj.. 32 16 2015-09-24 33 34 17 2015-09-24 35 36 18 2015-09-24 Spesifikasjon av veksler Temp inn kaldt vann Temp ut kaldt vann Legionella sikker inn Legionella sikker ut Effekt (kW) LMTD Vannm primær (l/s) Vannm sekundær (l/s) K-verdi (U*A) 6 'C 0,5 l/s Veksl_1 22 % 0,11 l/s T2 11,1 'C Veksler 1 5 50 80 10 20 13,95 0,106 0,068 1,43 t1 t2 T1 T2 T4 65,0 'C Ctrl + k t2 21,2 78 % T1 80 'C Spesifikasjon av veksler Veksler 1 Temp inn kaldt vann t1 5 Temp ut kaldt vann t2 50 Legionella sikker inn Legionella sikker ut T1 T2 80 10 Effekt (kW) LMTD Vannm primær (l/s) Vannm sekundær (l/s) K-verdi (U*A) 6 'C 0,5 l/s Veksl_1 20 % 0,10 l/s T2 6,3 'C 40 13,95 0,212 0,136 2,87 T4 65,0 'C Ctrl + k t2 21,1 80 % T1 80 'C 19 2015-09-24 Spesifikasjon av veksler Veksler 1 Temp inn kaldt vann t1 5 Temp ut kaldt vann t2 50 Legionella sikker inn Legionella sikker ut T1 T2 80 10 40 Effekt (kW) LMTD Vannm primær (l/s) Vannm sekundær (l/s) 13,95 0,212 0,136 2,87 K-verdi (U*A) 6 'C 0,5 l/s 82 % 0,41 l/s T2 31,4 'C Veksl_1 T4 40,0 'C Ctrl + k t2 46,4 18 % T1 80 'C Spesifikasjon av veksler Temp inn kaldt vann Temp ut kaldt vann Legionella sikker inn Legionella sikker ut Effekt (kW) LMTD Vannm primær (l/s) Vannm sekundær (l/s) K-verdi (U*A) Vannm 0,5 l/s t1 40 % 0,20 l/s 6 'C Veksl_2 t1 t2 T1 T2 Veksler 1 Veksler 2 5 5 50 70 80 80 10 10 40 20 13,95 0,212 0,136 2,87 7,21 0,073 0,068 2,77 T3 17,22 'C Ctrl + w 64 % 0,32 l/s t2 27,32 T4 60 % 0,30 l/s 40,0 'C T2 30,61 Veksl_1 36 % Ctrl + k t3 58,44 T1 Lavtemperatur kilde eks. varmepumpe 80 'C Høy temperaturkilde 20 2015-09-24 Vannm 0,5 l/s t1 40 % 0,20 l/s 6 'C Veksl_2 T3 17,22 'C Ctrl + w 64 % 0,32 l/s t2 27,32 T4 60 % 0,30 l/s 40,0 'C T2 30,61 Veksl_1 36 % Ctrl + k t3 58,44 T1 Lavtemperatur kilde eks. varmepumpe 80 'C Høy temperaturkilde Climate zones in Norway Normal annual temperature <-8 -7 - -6 -5 - -4 -3 - -2 -1 - -0 1-2 3-4 5-6 7-8 21 2015-09-24 Simulationmodel 43 Heating and cooling demand 4000000 3500000 3000000 Heating Load 2500000 Cooling Load 2000000 Varmeeffekt [W] Kjøleeffekt [W] 1500000 1000000 500000 Utetemp. [°C] -4,8 -3,2 -2,4 -1,6 -0,8 -0,3 0,3 0,8 1,3 1,9 2,5 3 3,4 3,9 4,4 4,9 5,3 5,8 6,3 6,7 7,2 7,8 8,4 8,9 9,5 10 10,6 11,1 11,5 12 12,6 13,1 13,6 14,1 14,7 15,2 15,8 16,5 17,1 17,8 18,6 19,8 21,8 0 22 2015-09-24 Demand profiles during a week Room heating Ventilation heating & cooling Room and process cooling Lighting and other electrical Heating and cooling energy in kWh 23 2015-09-24 Interacting heating and cooling Building 2 Building 1 Heating system Cooling system arme Building X Building 3 Heating Borehole Freecooling Heatstoreage Source for HP HP - COP Cooling 47 47 50% Load 10% Energy Gas Oil Bio 70/50 °C Radiator 35/30 °C Floorheating 50/30 °C Ventilation 70 °C 50 °C Temperature level DOWN Tapwater Heatpump / Cooling engine 15/20 °C Balancing Act Equipment Temperature level UP Serverroom Ventilation 0 - 12 °C 48 24 2015-09-24 Temperature requirement Heat: • Radiator: 90/70, 80/60, 70/50 ºC • Consequence :αrad=f(∆T) , αconv = 1,7(∆T)¹/³ => + 30% radiator size Heat coil ventilation: • Temp: 80/60, 50/30 ºC Consequence : • Regulation • Larger coil + 49 System outline 70/30 °C 70/50 °C 50/30 °C 50 25 2015-09-24 51 51 23 °C 52 52 26 2015-09-24 System Outline 70/30 °C- System 70/50 ’C 50/30 ’C 53 Tur- og returtemperaturer - Nytt anlegg, sekundær-nærvarme Supply and Return flow secondary side 80 70 Tur Ret rad/Tur vent 50 Retur Lineær (Tur) Lineær (Ret rad/Tur vent) 40 30 Lineær (Retur) 20 10 Utetemperaur ['C] 54 15,7 14,1 12,6 11,3 7,8 9,8 6,3 4,8 1,7 3,3 0,2 -1,3 -2,8 -4,3 -5,8 -7,4 -10 -8,9 0 -12 V anntem peratur ['C ] 60 FoU-seksj.. 27 2015-09-24 Fluid temperature in borehole over 25 years Simulation from a hospital north in Norway with an annual outdoor temperature at Zero Degrees Celsius. Simulations results with Earth Energy Designer (Eskilson et al., 2010, from Lund University, Sweden). Overview interacting heating and cooling system 56 28 2015-09-24 Simulation in different hospital area Hospital area Area (m2) Bed ward Public area Day treatment area Surgical Operation area Office and administration area 2 231 916 478 687 1 347 Polyclinic area Imaging area Lab area 1 470 1 303 255 Patient hotel Acute area Total: 850 757 10 294 57 Results from simulations No Alternative system input System COP Savings (%) 1 Reference 80/60 oC – heat pump 2,31 0 2 Reduced return temperature ventilation coil 40 oC 2,44 5 3 Reduced return temperature ventilation coil 30 oC 2,48 7 4 Reduced return temperature ventilation coil 25 oC 2,50 8 5 Dimension temperature ventilation coil 45/25 oC 2,54 9 6 Return temperature radiator 50 oC 2,78 17 7 Return temperature radiator 45 oC 2,86 19 8 Return temperature radiator 65/45 oC 2,82 18 9 Dimension system temperature 70/50 oC 3,68 37 10 Reduced condensation temperature heat pump from 53 to 50 oC 3,20 28 11 Dimension system temperature: 60/40 oC 4,17 45 12 Return temperature radiator 55/35 oC 4,17 45 13 Improved heat pump A++ 14 Change the evaporation temperature from 8 to 10 oC 58 4,81 5,13 52 58 56 29 2015-09-24 Temperature fluctation through a year 1,5 and 5 meters from the borehole 59 59 Temperature fluctation through a specific period of a year 60 30 2015-09-24 Temperature fluctation through a year 1,5 and 5 meters from the borehole - n=50 11'C 61 61 Temperature fluctation through a year 1,5 and 5 meters from the borehole n =100 9'C 62 62 31 2015-09-24 Guidelines developed in the project: 63 Conclusion 50 % reduction of energy consumption is possible when taking into account interdisciplinary design and engineering • Demand control • Optimizing technical solutions with focus on temperatures • Requirements for technical equipment • Integrated technical design and installations • Education of technical staff 64 32 2015-09-24 65 Thank you for your attention trond.thorgeir.harsem@norconsult.com 33
© Copyright 2025