LOW ENERGY HOSPITALS - Sustainable Business Hub

2015-09-24
LOW ENERGY HOSPITALS – RESULTS FROM
THE RESEARCH PROJECT
HVORDAN REDUSERE ENERGIBRUKEN MED 50%
M.Sc Trond Thorgeir Harsem, Norconsult
Associate Professor - Oslo and Akershus University College of
Applied Sciences, Norway
M.Sc Janne Grindheim, Norway
trond.thorgeir.harsem@norconsult.com
1
Objectives
●
Energy consumption in hospitals in focus
• Reducing energy consumption with 50% (in total) without
compromising health, comfort and staff efficiency
●
Low-energy hospitals - the project
• The work, studies, technical solutions, simulations, requirements,
energy savings
●
Conclusion and recommendations as result of
our work
• Energy-efficiency, guidelines, control, technical solutions, human
factors, energy savings
2
1
2015-09-24
Low Energy Hospitals
●
Low Energy Hospitals is an innovation project whose goal is to find and promote
feasible design measures which can halve the energy consumption in new hospitals built
in Norway
●
Led by Norconsult AS, Norway's largest multi-disciplinary consulting engineering
company, supported by the Norwegian Research Council and matching funds from
private sector partners and research organisation:
•
•
•
•
•
•
•
Helse Sør-Øst - Norway’s largest regional health authority
Nordic Office of Arcitecture - a leading architecture company in Norway
GK-Norway - a large supplier of HVAC equipment and services in Scandinavia
SAAS - designs and delivers complete building automation systems
Siemens Healthcare - global supplier of medical equipment
Norconsult Information Systems - IT solutions for building sector in Scandinavia
SINTEF - Research organisation for technology and innovation
3
Focus on Hospital Energy Consumption
●
Healthcare buildings represents 10%
of the total heated area of
commercial buildings in Norway
●
Healthcare building use twice as
much energy than other
commercial buildings
●
Healthcare building use 20% of the
energy consumption in
commercial buildings in Norway
2
2015-09-24
Focus on Hospital Energy Consumption
●
Specific energy consumption for hospitals pr. year
Large university hospitals
400-500 kWh/m2
Local hospitals
Requirement of technical regulations
and energy label
Building Category
TEK-10
Smal Houses, holyday homes of 150 m2
120+1600m2
oppv.BRA
Apartment building
Children's garden
Office building
school building
University / College
Hospital
Nursing homes
Hotels
Sports building
Business Buildings
Culture Building
Light industrial / garage
Total net energy - maximum values
(kWh/m2 heated BRA per year)
TEK-07 Diff
Tek10- Energy label Energy label
A
B
Tek07
125+1600m2
oppv.BRA
Energy label
C
115
140
150
120
160
120
150
165
135
180
-5
-5
-10
-15
-15
-20
79
67
90
84
79
95
118
100
135
126
118
143
158
134
180
168
158
191
300(335)
325
-25
179
268
358
215(250)
220
170
210
165
175(190)
235
240
185
235
180
185
-20
-20
-15
-25
-15
-10
136
135
109
129
105
106
203
202
164
194
158
159
271
269
218
258
210
212
tilsv. TEK07?
3
2015-09-24
Healthcare - energy consumption
Hospital building category with the largest specific energy
consumption
● The energy consumption is spread on the following categories
●
Thermal Electrical
cooling power
%
9,6 %
22,3 %
1 483 725
93
22,5 %
Ventilation cooling
167 453
10
2,5 %
Room cooling
566 822
35
8,6 %
Thermal
heating
kWh/year kWh/m2
632 667
40
1 470 095
92
Ventilation Fans
Light
Ventilation heating
1 828 830
114
27,7 %
Room heating
Sum
443 297
6 592 889
28
412
6,7 %
100,0 %
Equipment
Organisation - projects
Phase 1
State of the art
Functional
planning
Building
envelope
Hospital
equipment
HVAC
Integration &
control
Phase 2
Develop Models
Simulations
Phase 3
Energy
Guidelines
Functional
planning
Building
envelope
Hospital
equipment
HVAC
Integration &
control
Phase 4
Publication and dissemination of results
8
4
2015-09-24
Phase 1: State of the art
Collect data and review :
•
Requirements - energy-related requirements for
new hospitals in Norway - systems & components
•
Today's design practice - how newer hospitals
have been designed in Norway, and Best practice how future hospitals may be designed
•
Energy and power use - data from 4 reference
hospitals Rikshospitalet, Ahus, Elverum, Ringerike
Phase 2 : Modelling and Simulation
Activities for Phase 2
●
Collect all candidates for energy design improvements in
a list of Best Energy Practices (BEPs), choose top 12
for in-depth research
●
Construct a virtual hospital model, build zonal energy
areas calibrated with data collected in Phase 1
●
This model will be the main tool for quantitative
investigation in Phase 2, to validate the chosen BEPs
●
Verify that goal of 50 % energy reduction has been
reached.
[W]
Varmetilskudd/kjøling
44000
42000
40000
38000
36000
34000
32000
30000
28000
26000
24000
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
4
1
1
1
1
1
4
4
6
1
6
1
6
6
1
6
6
6
6
5432
0
1
2
3
4
5
6
1
2
5432
3
4
5
5432
6
7
8
5 32
5 32
5 32
5432
5432
Tid [h]
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Internlaster
Oppvarming
Varmebatteri
Kjøling
Kjølebatteri
Solstråling
5
2015-09-24
Phase 3 : Guidelines
Activities for Phase 3
●
Develop energy guidelines for hospitals design
●
Write standard templates for new hospital design and
equipment specifications.
●
Publications and seminars
Results
Large potential for demand control
–
–
–
–
–
–
–
•
Polikliniske og dagpasienter etter når på
døgnet de blir behandlet
Pasienter
•
Ventilation
Heating
Cooling
Daylight
Sunshading
Lighting
Small and large equipment
3000
2000
1000
0
0 2 4 6 8 1012 1416 18 2022
Time på døgnet
Building construction
–
–
–
–
–
U-value
Super insulation
Infiltration
Layout
PCM - Phase Change Materials
12
6
2015-09-24
Potential for energy demand
control
Ny Molde
Nytt Østfold
New designs: ventilation
energy still dominates
Ventilation heat
Vent. fan energy
Net energy demand
kWh/m2
AHL St.Olavs
(inkl .vent.befukting)
Hot water
1a. Romoppvarming
0,0
Nye Kirkenes
0
1b. Ventilasjonsvarme
14,0
16,9
25,7
2. Varmtvann
51,0
47,0
3a.Vifter
46,7
3b. Pumper
28,6
4. Belysning
54,0
5. Teknisk utstyr
49,0
29,8
6a. Romkjøling
35
6b. Vent.kjøling
30,0
4,0
31,8
54,0
2,7
Potential for energy demand control
●
Ventilation and lighting have highest potential for demand-control.
•
•
•
•
Local room heating (1a) is more difficult to demand-control due to time lag
Domestic hot water (2) already on demand, and water-saving taps installed
Most hospital technical equipment (5) is already on-demand
Room cooling (6a) is fixed by continuous process and IT equipment demands
Today's energy consumption
(kWh/m2)
Demand-controlled
(kWh/m2)
Reduction
1a Local room heating
55
47
1b Ventilation heating
2 Hot water
110
20
22
20
80%
3a Ventilation fan
50
25
50 %
20 %
4 Artificial lighting
50
40
5 Techn. equipment
65
65
6 a Room cooling
35
26
6b Ventilation cooling
15
15
25 %
400
260
35 %
Total net energy
7
2015-09-24
Potential for energy demand control
Ventilation
●
Energy saving potential for demand control at room level
is up to 50 %
●
Decouples heating from air handling; much less driving
with foot og gas and brake pedals :
●
Large ventilation air flows have a cooling effect; room
heater starts to counteract
●
Important side-effects of lower airflows:
•
•
Lower Specific Fan Power: power varies as speed
Higher effectiveness of heat recovery: very important in
hospitals which have only 55% recovery rate
●
Good results used with DCV in Børås hospital;
contributes to very low energy consumption (105
kWh/m² in building energy)
●
DCV will be even more important as we move toward
"passive house" hospitals -> large cooling demand
Design for demand control
No easy recipe!
Can start by dividing into functional areas
•
Good hospital logistics and patient flow will
generally enable good demand control also
•
Similar functions are usually grouped together
•
Enables better zonal control, especially for
corridors and other connecting areas in
hospitals
•
Easier to maintain correct pressure
relationships for ventilation.
•
Challenge to maintain flexibility
New Molde hospital design, NSW, 2011
8
2015-09-24
Design for demand control
Identify the smallest spaces for room demand-control
•
•
Patient rooms, bathrooms, treatment rooms, meeting rooms…
Suggestion: attach a schedule for occupancy and equipment
usage for each room in the room program; this will help HVAC
designers
Choose optimal control strategy for each room/space
•
•
•
•
Room type will determine control variables: time of day, CO2,
or presence detection
Patient rooms and other small rooms controlled by presence
detector, with modulating temperature on top
Sensing of CO2 not for treatment rooms or OP rooms due to
high ventilation rates
New sensing methods are coming, and their installed costs are
being reduced. May have applications in technical areas, labs.
Energy distribution - healthcare equipment
●
Large medical imaging equipment: 25% of total energy
●
Small healthcare medical equipment: 75% of total energy
utilization for healthcare equipment
utilization for healthcare equipment
9
2015-09-24
Power Flow - Hospitals specific equipment
Power (kW)
100%
?
50%
Time
Procedure time
Pause
19
PET/CT scan- Power consumption
Peak power 100%
Standby 25%
10
2015-09-24
CT scan - Power consumption
Peak power 100%
Standby 11%
Angiography - Power consumption
Peak power 100%
Standby 13%
11
2015-09-24
MRI - Power consumption
Peak power 100%
Standby 43%
Belysning i sykehus - ulike systemløsninger
Primære rom - ulike systemløsninger for belysning i ulike
sykehusarealer med medisinsk funksjon
- legekontor, undersøkelses- og behandlingsrom, laboratorium,
ultralys, røntgen og dialyse
Sekundære rom - ulike systemløsninger for belysning i ulike
sykehusarealer
- kantine, kjøkken, venterom, kontor, garderober, lager, toaletter,
korridor mv.
Definisjoner:
• Lux - Lysstyrke
• Ra - Fargegjengivelse
• Kelvin - Fargetemperatur
24
12
2015-09-24
Belysning i sykehus - primære rom
●
●
●
●
●
●
●
Legekontor - konsultasjon
Undersøkelse - og behandlingsrom
Laboratorium
Ultralyd og røntgen
Dialyse
Småkirurgi
Medisinrom
25
Belysning i sykehus - sekundære rom
●
●
●
●
●
●
●
●
●
●
●
●
Toaletter og garderober
Korridor
Oppholdsrom, kjøkken og kantine
Treningsrom, lekerom
Kontor, og vaktrom
Møterom
Trapperom
Heiser
Skyllerom, vaskerom, renhold
Lager, osv
Tekniske rom
Utomhus
Kilde: Fagerhult
26
13
2015-09-24
Belysning i sengerom
●
Energieffektiv belysning i et rom hvor man må ta hensyn til
- pasienters velvære
- sykehusansattes ulike arbeidsoppgaver
- undersøkelser
- hvile
- leselys for liggende og sittende pasienter/pårørende
●
Krav
blendfri
ulike scenarier
døgnrytme
Kilde: Fagerhult
27
Sengerom med bad
●
●
●
●
Liggende pasienter har direkte
innsyn mot himling og armaturer
Man kan unngå blending ved bruk
av avdekning eller indirekte
belysning
Generell belysning må kunne gi
inntil 1000 lux ved lege
undersøkelse
Dynamisk belysning er enklest å
gjennomføre med LED
28
14
2015-09-24
Belysning i operasjonsstuer
●
Energieffektiv belysning mht arbeidslys til
sykehuspersonalet
- før, etter og under operasjon
- type operasjon / inngrep
- men også pasienters velvære
Stikkord;
● allmennbelysning
● arbeidsbelysning
● ergonomisk lys
● energibruk
● lysstyring
29
Operasjonsrom, røntgen og ultralyd
●
●
●
●
Høykrevende visuelt arbeidsoppgave
Blending fra generell belysning må
være sperret
Blending fra operasjonslampe som gir
40 000-160 000 må være fullstendig
sperret
LED belysning kan brukes til
ergonomisk lys - lys spesielt tilpasset
medisinsk funksjon etter lysfarge og
intensitet.
30
15
2015-09-24
Legionella ensure tap water solutions
Heat treatment without using energy
FoU-seksj..
32
16
2015-09-24
33
34
17
2015-09-24
35
36
18
2015-09-24
Spesifikasjon av veksler
Temp inn kaldt vann
Temp ut kaldt vann
Legionella sikker inn
Legionella sikker ut
Effekt (kW)
LMTD
Vannm primær (l/s)
Vannm sekundær (l/s)
K-verdi (U*A)
6 'C
0,5 l/s
Veksl_1
22 %
0,11 l/s
T2 11,1 'C
Veksler 1
5
50
80
10
20
13,95
0,106
0,068
1,43
t1
t2
T1
T2
T4 65,0 'C
Ctrl + k
t2
21,2
78 %
T1
80 'C
Spesifikasjon av veksler
Veksler 1
Temp inn kaldt vann
t1
5
Temp ut kaldt vann
t2
50
Legionella sikker inn
Legionella sikker ut
T1
T2
80
10
Effekt (kW)
LMTD
Vannm primær (l/s)
Vannm sekundær (l/s)
K-verdi (U*A)
6 'C
0,5 l/s
Veksl_1
20 %
0,10 l/s
T2
6,3 'C
40
13,95
0,212
0,136
2,87
T4 65,0 'C
Ctrl + k
t2
21,1
80 %
T1
80 'C
19
2015-09-24
Spesifikasjon av veksler
Veksler 1
Temp inn kaldt vann
t1
5
Temp ut kaldt vann
t2
50
Legionella sikker inn
Legionella sikker ut
T1
T2
80
10
40
Effekt (kW)
LMTD
Vannm primær (l/s)
Vannm sekundær (l/s)
13,95
0,212
0,136
2,87
K-verdi (U*A)
6 'C
0,5 l/s
82 %
0,41 l/s
T2 31,4 'C
Veksl_1
T4 40,0 'C
Ctrl + k
t2
46,4
18 %
T1
80 'C
Spesifikasjon av veksler
Temp inn kaldt vann
Temp ut kaldt vann
Legionella sikker inn
Legionella sikker ut
Effekt (kW)
LMTD
Vannm primær (l/s)
Vannm sekundær (l/s)
K-verdi (U*A)
Vannm
0,5 l/s
t1
40 %
0,20 l/s
6 'C
Veksl_2
t1
t2
T1
T2
Veksler 1 Veksler 2
5
5
50
70
80
80
10
10
40
20
13,95
0,212
0,136
2,87
7,21
0,073
0,068
2,77
T3 17,22 'C
Ctrl + w
64 %
0,32 l/s
t2 27,32
T4
60 %
0,30 l/s
40,0 'C
T2 30,61
Veksl_1
36 %
Ctrl + k
t3 58,44
T1
Lavtemperatur kilde eks. varmepumpe
80 'C
Høy temperaturkilde
20
2015-09-24
Vannm
0,5 l/s
t1
40 %
0,20 l/s
6 'C
Veksl_2
T3 17,22 'C
Ctrl + w
64 %
0,32 l/s
t2 27,32
T4
60 %
0,30 l/s
40,0 'C
T2 30,61
Veksl_1
36 %
Ctrl + k
t3 58,44
T1
Lavtemperatur kilde eks. varmepumpe
80 'C
Høy temperaturkilde
Climate zones in Norway
Normal annual temperature
<-8
-7 - -6
-5 - -4
-3 - -2
-1 - -0
1-2
3-4
5-6
7-8
21
2015-09-24
Simulationmodel
43
Heating and cooling demand
4000000
3500000
3000000
Heating Load
2500000
Cooling Load
2000000
Varmeeffekt [W]
Kjøleeffekt [W]
1500000
1000000
500000
Utetemp. [°C]
-4,8
-3,2
-2,4
-1,6
-0,8
-0,3
0,3
0,8
1,3
1,9
2,5
3
3,4
3,9
4,4
4,9
5,3
5,8
6,3
6,7
7,2
7,8
8,4
8,9
9,5
10
10,6
11,1
11,5
12
12,6
13,1
13,6
14,1
14,7
15,2
15,8
16,5
17,1
17,8
18,6
19,8
21,8
0
22
2015-09-24
Demand profiles during a week
Room heating
Ventilation
heating & cooling
Room and process
cooling
Lighting and
other electrical
Heating and cooling energy in kWh
23
2015-09-24
Interacting heating and cooling
Building 2
Building 1
Heating system
Cooling system
arme
Building X
Building 3
Heating
Borehole
Freecooling
Heatstoreage
Source for HP
HP - COP
Cooling
47
47
50% Load
10% Energy
Gas
Oil
Bio
70/50 °C
Radiator
35/30 °C
Floorheating
50/30 °C
Ventilation
70 °C
50 °C
Temperature level DOWN
Tapwater
Heatpump /
Cooling engine
15/20 °C
Balancing
Act
Equipment
Temperature level UP
Serverroom
Ventilation
0 - 12 °C
48
24
2015-09-24
Temperature requirement
Heat:
• Radiator: 90/70, 80/60, 70/50 ºC
•
Consequence :αrad=f(∆T) , αconv = 1,7(∆T)¹/³
=> + 30% radiator size
Heat coil ventilation:
• Temp: 80/60, 50/30 ºC
Consequence :
•
Regulation
•
Larger coil
+
49
System outline 70/30 °C
70/50 °C
50/30 °C
50
25
2015-09-24
51
51
23 °C
52
52
26
2015-09-24
System Outline 70/30 °C- System
70/50 ’C
50/30 ’C
53
Tur- og returtemperaturer - Nytt anlegg, sekundær-nærvarme
Supply and Return flow secondary side
80
70
Tur
Ret rad/Tur vent
50
Retur
Lineær (Tur)
Lineær (Ret rad/Tur vent)
40
30
Lineær (Retur)
20
10
Utetemperaur ['C]
54
15,7
14,1
12,6
11,3
7,8
9,8
6,3
4,8
1,7
3,3
0,2
-1,3
-2,8
-4,3
-5,8
-7,4
-10
-8,9
0
-12
V anntem peratur ['C ]
60
FoU-seksj..
27
2015-09-24
Fluid temperature in borehole over 25 years
Simulation from a hospital north in Norway with an
annual outdoor temperature at Zero Degrees Celsius.
Simulations results with Earth Energy Designer
(Eskilson et al., 2010, from Lund University, Sweden).
Overview interacting heating and cooling system
56
28
2015-09-24
Simulation in different hospital area
Hospital area
Area (m2)
Bed ward
Public area
Day treatment area
Surgical Operation area
Office and administration area
2 231
916
478
687
1 347
Polyclinic area
Imaging area
Lab area
1 470
1 303
255
Patient hotel
Acute area
Total:
850
757
10 294
57
Results from simulations
No Alternative system input
System
COP
Savings
(%)
1
Reference 80/60 oC – heat pump
2,31
0
2
Reduced return temperature ventilation coil 40 oC
2,44
5
3
Reduced return temperature ventilation coil 30
oC
2,48
7
4
Reduced return temperature ventilation coil 25 oC
2,50
8
5
Dimension temperature ventilation coil 45/25 oC
2,54
9
6
Return temperature radiator 50 oC
2,78
17
7
Return temperature radiator 45 oC
2,86
19
8
Return temperature radiator 65/45 oC
2,82
18
9
Dimension system temperature 70/50 oC
3,68
37
10
Reduced condensation temperature heat pump from 53 to 50 oC
3,20
28
11
Dimension system temperature: 60/40 oC
4,17
45
12
Return temperature radiator 55/35 oC
4,17
45
13
Improved heat pump A++
14
Change the evaporation temperature from 8 to 10 oC
58
4,81
5,13
52
58
56
29
2015-09-24
Temperature fluctation through a year
1,5 and 5 meters from the borehole
59
59
Temperature fluctation through a
specific period of a year
60
30
2015-09-24
Temperature fluctation through a year 1,5
and 5 meters from the borehole - n=50
11'C
61
61
Temperature fluctation through a year 1,5
and 5 meters from the borehole n =100
9'C
62
62
31
2015-09-24
Guidelines
developed in
the project:
63
Conclusion
50 % reduction of energy consumption
is possible when taking into account
interdisciplinary design and
engineering
• Demand control
• Optimizing technical solutions with focus
on temperatures
• Requirements for technical equipment
• Integrated technical design and
installations
• Education of technical staff
64
32
2015-09-24
65
Thank you for your attention
trond.thorgeir.harsem@norconsult.com
33