Pre-Calculus 139 θ Deg θ Rad W (θ ) sin(θ ) cos(θ ) tan(θ ) 0˚ 0 (1,0) 1 0 30˚ π 3 2 3 3 45˚ π 2 2 2 2 1 60˚ π ⎛ 3 1 ⎞ ⎜ ⎟ ⎜ 2 , 2 ⎟ ⎝ ⎠ ⎛ 2 2 ⎞ ⎜ ⎟ ⎜ 2 , 2 ⎟ ⎝ ⎠ ⎛ 1 3 ⎞ ⎜ , ⎟ ⎜ 2 2 ⎟ ⎝ ⎠ 0 1 2 3 2 1 2 3 90˚ π 1 0 ∞ 6 4 3 2 (0,1) Right Triangle Definitions opp 1. sin(θ )= hyp adj 2. cos(θ )= hyp opp 3. tan(θ )= adj adj 4. cot(θ )= opp hyp 5. sec(θ )= adj hyp 6. csc(θ )= opp Complement Relationships ⎛ π ⎞ 1. sin ⎜ − θ ⎟ = cos(θ ) ⎝ 2 ⎠ ⎛ π ⎞ 2. cos⎜ − θ ⎟ = sin (ϑ ) ⎝ 2 ⎠ ⎛ π ⎞ 3. tan ⎜ − θ ⎟ = cot(θ ) ⎝ 2 ⎠ ⎛ π ⎞ 4. cot⎜ − θ ⎟ = tan (θ ) ⎝ 2 ⎠ ⎛ π ⎞ 5. sec⎜ − θ ⎟ = csc(θ ) ⎝ 2 ⎠ ⎛ π ⎞ 6. csc⎜ − θ ⎟ = sec(θ ) ⎝ 2 ⎠ Reciprocal Identities 1 1. sin (θ ) = csc(θ ) 1 2. cos(θ ) = sec(θ ) 1 3. tan (θ ) = cot(θ ) 1 4. cot(θ ) = tan (θ ) 1 5. sec(θ ) = cos(θ ) 1 6. csc(θ ) = sin (θ ) Quotient Identities sin (θ ) 1. tan(θ ) = cos(θ ) cos(θ ) 2. cot(θ ) = sin (θ ) Pythagorean Identities 1. sin 2 (θ ) + cos 2 (θ ) = 1 2. 1 + tan 2 (θ ) = sec 2 (θ ) 3. 1 + cot 2 (θ ) = csc 2 (θ ) To confirm a proposed Trigonometric Identity, we work with only one side of the equation and make it look like the other side: Prove: sec x cot x = csc x Work on the left side: 1 cos x 1 = = csc x QED ⋅ cos x sin x sin x Assignment 139 – Page 284, #’s 6, 36, 38, 45, 50, 56, 79, 80, 81, 82, 83
© Copyright 2025