2016-04-01 Maxwell’s Ekvationer Fö10 2016 ⋅dA = Gauss Lag för Elektriska Fältet ∫E Gauss Lag för Magnetiska Fältet ∫B ⋅dA Faraday’s Lag ∫E qenc ε0 =0 ⋅ds = − dΦ E + µ 0 ienc dt Ampere – Maxwell’s Lag ∫B ⋅ds Lorentz Kraften F =q ⋅E + qv×B = µ0 ε 0 dΦ B dt Maxwell’s Ekvationer Elektronens Magnetiska Dipolmoment Physics Handbook ∫E ⋅dA = qenc ∫B ⋅dA =0 ∫E ⋅ds = − ∫ B ⋅ d s = µ0 ε 0 div E = ∇ ⋅ E = ε0 dΦ B dt dΦ E + µ0 ienc dt qenc ε0 Orbital Magnetic div B = ∇ ⋅ B = 0 curl E = ∇ × E = − Dipol Moment dB dt dE curl B = ∇ × B = µ0 j + µ 0 ε 0 dt Spin Magnetic µ orb = − µS = − Dipol Moment e L orb 2m e S m Diamagnetism Svaga magnetiska dipoler skapas av externt magnetfält Paramagnetism Permanenta magnetiska dipoler ställer in sig i extern magnetfält Ferromagnetism Starka permanenta magnetiska dipoler påverkar varandra. Permanent magneter 32.9: Diamagnetism: 1. Diamagnetism: In diamagnetism, weak magnetic dipole moments are produced in the atoms of the material when the material is placed in an external magnetic field Bext; the combination gives the material as a whole only a feeble net magnetic field. If a magnetic field is applied, the diamagnetic material develops a magnetic dipole moment and experiences a magnetic force. When the field is removed, both the dipole moment and the force disappear. 32.10: Paramagnetism: Each atom of such a material has a permanent resultant magnetic dipole moment, but the moments are randomly oriented in the material and the material lacks a net magnetic field. An external magnetic field Bext can partially align the atomic magnetic dipole moments to give the material a net magnetic field. The ratio of its magnetic dipole moment to its volume V. is the magnetization M of the sample, and its magnitude is In 1895 Pierre Curie discovered experimentally that the magnetization of a paramagnetic sample is directly proportional to the magnitude of the external magnetic field and inversely proportional to the temperature T. is known as Curie’s law, and C is called the Curie constant. 1 2016-04-01 32.11: Ferromagnetism: 32.11: Ferromagnetism: Hyteresis Some of the electrons in these materials have their resultant magnetic dipole moments aligned, which produces regions with strong magnetic dipole moments. An external field Bext can align the magnetic moments of such regions, producing a strong magnetic field for the material. Magnetization curves for ferromagnetic materials are not retraced as we increase and then decrease the external magnetic field B0. Figure 32-18 is a plot of BM versus B0 during the following operations with a Rowland ring: If the temperature of a ferromagnetic material is raised above a certain critical value, called the Curie temperature, the exchange coupling ceases to be effective. Most such materials then become simply paramagnetic. I.Starting with the iron unmagnetized (point a), increase the current in the toroid until B0 (=µ0in) has the value corresponding to point b; II.reduce the current in the toroid winding (and thus B0) back to zero (point c); III.reverse the toroid current and increase it in magnitude until B0 has the value corresponding to point d; IV.reduce the current to zero again (point e); V.reverse the current once more until point b is reached again. The lack of retraceability shown in Fig. 32-18 is called hysteresis, and the curve bcdeb is called a hysteresis loop. 32.6: Magnets: The Magnetism of Earth: Ch. 33 Electromagnetic Waves • EM vågor matematiskt m.h.a. Maxwells ekvationer • Polarisation • Refraktion och Reflektion • Chromatisk Dispersion • Total Internal Reflection (33-1) Maxwell’s Rainbow Mathematical Description of Traveling EM Waves The wavelength/frequency range in which electromagnetic (EM) waves (light) are visible is only a tiny fraction of the entire electromagnetic spectrum. Fig. 33-5 Electric Field: E = E m sin ( kx − ω t ) Magnetic Field:B = Bm sin ( kx − ω t ) 2 2016-04-01 Mathematical Description of Traveling EM Waves Electric Field: E k= Utbredningshastighet Vacuum Permittivity: Vacuum Permeability: v= ω k = Changing magnetic fields produce electric fields, Faraday’s law of induction: 2π λ Angular frequency, vinkelfrekvens: Amplitude Ratio: Induced Electric Field = Em sin ( kx − ω t ) Wavenumber, Vågtal : λ τ ω= = dΦ B dt ∫E ⋅ds = − 2π ∫E ⋅ d s = ( E + dE ) h − Eh = h dE τ Φ B = B A = B hdx c= 1 µ0ε 0 ε0 ⇒ h dE = − h dx ⇒ µ0 Em =c Bm The Traveling EM Wave, Quantitatively Magnitude Ratio: E (t ) =c B (t ) The Traveling EM Wave, Quantitatively dB dt ⇒ dE dB =− dx dt ∂E ∂B =− ∂x ∂t ∂E ∂B = kEm cos ( kx − ω t ) and = −ω Bm cos ( kx − ω t ) ∂x ∂t kEm cos( kx − ωt ) = + ωBm cos( kx − ωt ) ⇒ Em ω = =c Bm k Polarization Induced Magnetic Field Changing electric fields produce magnetic fields, Maxwell’s law of induction: ∫ B ⋅ ds = µ0 ε 0 dΦ E dt ∫ B ⋅ d s = − ( B + dB) h + Bh = − h dB dΦ E dE = h dx dt dt dB ⇒ − h dB = µ 0 ε 0 ( h dx ) dt ∂B ∂E ⇒− = µ0 ε 0 ∂x ∂t The polarization of light describes how the electric field in the EM wave oscillates. Φ E = E A = E hdx ⇒ Fig. 33-7 Vertically planepolarized (or linearly polarized) − kBm cos ( kx − ω t ) = − µ0ε 0ω Em cos ( kx − ω t ) Em 1 1 = = =c→c= Bm µ0ε 0 (ω k ) µ0ε 0c 1 (33-13) µ0ε 0 Polarized Light Unpolarized or randomly polarized light has its instantaneous polarization direction vary randomly with time. Reflection and Refraction Although light waves spread as they move from a source, often we can approximate its travel as being a straight line → geometrical optics. What happens when a narrow beam of light encounters a glass surface? Law of Reflection One Reflection: θ1 ' = θ1 Only the electric field component along the polarizing direction of polarizing sheet is passed (transmitted); the perpendicular component is blocked (absorbed). Snell’s Law Refraction:n2 sin θ 2 sin θ 2 = = n1 sin θ1 n1 sin θ1 n2 n is the index of refraction of the material. Brytningsindex 3 2016-04-01 Waves For light going from n1 to n2: • n2 = n1 → θ2 = θ1 • n2 > n1 → θ2<θ1, light bent toward normal • n2 < n1 → θ2 >θ1, light bent away from normal Chromatic Dispersion The index of refraction n encountered by light in any medium except vacuum depends on the wavelength of the light. So if light consisting of different wavelengths enters a material, the different wavelengths will be refracted differently → chromatic dispersion. Total Internal Reflection Rainbows For light that travels from a medium with a larger index of refraction to a medium with a smaller index of refraction n1 > n1 → θ2 > θ1, as θ1 increases, θ2 will reach 90o (the largest possible angle for refraction) before q1 does. n2 n1 sin θ c = n2 sin 90° = n2 Critical Angle:θ c n1 Fig. 33-22 = sin −1 n2 n1 When θ2 > θc no light is refracted (Snell’s law does not have a solution!) so no light is transmitted → Total Internal Reflection Light as a Wave Ch. 35 Interference Huygen’s Principle: All points on a wavefront serve as point sources of spherical secondary wavelets. After time t, the new position of the wavefront will be that of a surface tangent to these secondary wavelets. • Hyugens principle • Interferens • Youngs Dubbelspalt • Diffraktion • Interferens i tunna filmer (35-2) 4 2016-04-01 Law of Refraction t= sin θ1 = sin θ 2 = λ1 λ1 v1 = λ2 v2 → (for triangle hce) hc λ2 hc P När två eller flera vågor samverkar uppstår interferens. Två vågor med samma w samverkar i punkten P sin θ1 λ1 v1 = = sin θ 2 λ2 v2 (for triangle hcg ) Index of Refraction: c n1 = v1 Interferens λ1 v1 = λ2 v2 n= S2 Faskillnaden mellan dessa blir δ = kr1 - kr2 = (r1 - r2 )*2π/λ Totala amplituden i P blir (10.3) c and n2 = v2 Law of Refraction: r2 S1 Y1 = A1 sin ( kr1 – wt ) Y2 = A2 sin ( kr2 – wt ) c v Amax då cos δ = 1, sin θ1 c n1 n2 = = sin θ 2 c n2 n1 Fig. 35-3 r1 eller Amin då cos δ = -1, n1 sin θ1 = n2 sin θ 2 eller Interference in different media A = A12 + A22 + 2 A1 A2 cos δ dvs δ = n 2π (r1 - r2 ) = n λ Konstruktiv Interferens dvs δ = (2n+1)π (r1 - r2 ) = (2n+1)λ/2 Destruktiv Interferens Diffraction v cn c fn = = = = f λn λ n λ Frekvensen hos ljuset i ett medium är samma som i vacuum. Eftersom utbredningshastigheten ändras måste våglängden ändras. λn v v λ = → λn = λ → λn = c n λ c For plane waves entering a single slit, the waves emerging from the slit start spreading out, diffracting. Since wavelengths in n1 and n2 are different, the two beams may no longer be in phase. Fig. 35-4 Number of wavelengths in n1: N 1 = N um ber of w aveleng th s in n 2 : N 2 = Assuming n2 > n1: N 2 − N1 = Ln2 λ − Ln2 λ = L λ L λ n1 = L λn 2 L λ n1 = = Ln1 λ L L n2 = λ n2 λ ( n2 − n1 ) N 2 − N1 = 1/2 wavelength → destructive interference (35-4) Young’s Experiment For waves entering two slits, the emerging waves interfere and form an interference (diffraction) pattern. Young’s Experiment For waves entering two slits, the emerging waves interfere and form an interference (diffraction) pattern. 5 2016-04-01 Interference in Double Slit Interference in Double Slit The phase difference between two waves can change if the waves travel paths of different lengths. What appears at each point on the screen is determined by the path length difference DL of the rays reaching that point. D >> d Konstruktiv interferens, dvs ljust band, då skillnaden i gångssträcka är jämna multiplar av våglängden. Fasskillnad jämna multiplar av π ∆L = d sinΘ = mλ m=0,1,2,3,,, Destruktiv interferens, mörka band, då skillnaden i gångsträcka är halva våglängder. Fasskillnad udda multiplar av π ∆L = d sinΘ = (2m+1)λ/2 m=0,1,2,3,,, Path Length Difference: ∆L = d sin θ Reflection Phase Shifts Interference from Thin Films n1 φ12 = ? n1 n1 > n2 n1 < n2 n2 n2 Reflection Off lower index Off higher index Reflection Phase Shift 0 0.5 wavelength θ ≈0 Fig. 35-16 Då en våg går från medium med lågt brytningsindex (lättare medium) till ett medium med högre brytningsindex får man ett fasskift motsvarande • 0.5 våglängder • π eller 180º (35-14) (35-15) Reflection Interference in thin Films Three effects can contribute to the phase difference between r1 and r2. 1. Differences in reflection conditions. B 0 λ A 2 3. Differences in the media in which the waves travel. One must use the wavelength in each medium (l / n) to calculate the phase. Normally phaseshift at A, but not at B. Konstruktiv interferens, ljust band, då skillnaden i gångsträcka 2L = ( m + 1 2 ) λ n2 Ch. 36 Diffraktion 2. Difference in path length traveled. •Diffraktion • Diffraktion i Enkelspalt • Diffraktionsgitter • XRAY Diffraktion for m = 0,1, 2,K (maxima-- bright film in air) Destruktiv interferens, mörkt band, då skillnaden i gångsträcka 2L = m λ n2 for m = 0,1, 2,K (minima-- dark film in air) 6 2016-04-01 Diffraction and the Wave Theory of Light Diffraktion i Enkel Spalt: Intensitetsminima Diffraction pattern from a single narrow slit. Side or secondary maxima Light Central maximum These patterns cannot be explained using geometrical optics (Ch. 34)! Fresnel Bright Spot. Light Bright spot (36-2) Diffraktion i Enkel Spalt: Intensitetsminima Diffraction by a Single Slit: Locating the Minima, cont'd Gör sedan samma argumentation för interferens mellan strålgångar från kanten och från a/4, vilket ger andra minimum. Jämför vågor som går från kanten respektive mitten av spalten, dvs avstånd a/2. a λ sin θ = → a sin θ = 2λ (second minimum) 4 2 P.s.s. som för dubbelspalten antar man då D>>a att dessa blir parallella och skillnaden I gångsträcka L = (a/2) sinΘ Till slut får vi interferens minimum vid Destruktiv interferens, intensitetsminima, då L = λ/2 = (a/2) sinΘ. a sin θ = mλ , for m = 1, 2, 3K dvs λ = a sinΘ (minima-dark fringes) Alla motsvarande strålgångar genom spalten ger samma bidrag. Fig. 36-5 Diffraction Gratings A device with N slits (rulings) can be used to manipulate light, such as separate different wavelengths of light that are contained in a single beam. How does a diffraction grating affect monochromatic light? Width of Lines The ability of the diffraction grating to resolve (separate) different wavelengths depends on the width of the lines (maxima). Fig. 36-20 Fig. 36-17 Fig. 36-18 d sin θ = mλ for m = 0,1, 2 K (maxima-lines) Fig. 36-19 7 2016-04-01 Grating Spectroscope Separates different wavelengths (colors) of light into distinct diffraction lines X-Ray Diffraction X-rays are electromagnetic radiation with wavelength ~1 Å = 10-10 m (visible light ~5.5x10-7 m). X-ray generation Fig. 36-23 X-ray wavelengths too short to be resolved by a standard optical grating Reflektions gitter Fig. 36-27 θ = sin −1 (1)( 0.1 nm ) = 0.0019° mλ = sin −1 d 3000 nm Fig. 36-22 X-Ray Diffraction Diffraction of x-rays by crystal: spacing d of adjacent crystal planes on the order of 0.1 nm → three-dimensional diffraction grating with diffraction maxima along angles where reflections from different planes interfere constructively 2d sin θ = mλ for m = 0,1, 2 K (Bragg's law) Fig. 36-28 8
© Copyright 2024