Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer Niklas Wahlström 1 Roland Hostettler2 Fredrik Gustafsson1 Wolfgang Birk2 1 Division of Automatic Control Linköping University Linköping, Sweden 2 Division of Systems and Interaction Luleå University of Technology Luleå, Sweden Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Background Traffic monitoring in wireless sensor network Sensor nodes equipped with a magnetometer. Limitations: Energy budget Computational resources. Information you can extract Number of vehicles Type of vehicle Heading direction Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Problem formulation Magnetic field 2-axis magnetometer has been deployed on the roadside y x yy 0 0 2−axis magnetometer 0.5 1 Time [s] 1.5 2 Magnetometer measures a distortion of the magnetic field. We want to classify the heading direction of the vehicle! Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Magnetic dipole The vehicle can be modeled as a magnetic dipole: h(t) = 3(r(t) · m)r(t) − kr(t)k2 m kr(t)k5 y Magnetic field m Vehicle Heading direction Road r(t) Sensor position z x We measure two components of the magnetic field. y(kT ) = 1 0 0 h(kT ) + e(kT ), 0 1 0 Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer k = 1, · · · , N AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Simulated examples Three different vehicle are heading in positive x-direction m Heading direction Heading direction r(t) r(t) x Sensor r(t) x Sensor hx hy 0 4 0 x Sensor hx hy 0 2 Time [s] Heading direction m hx 0 y y y m hy 0 2 Time [s] Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer 4 0 2 Time [s] 4 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Simulated examples Three different vehicle are heading in positive x-direction y y m y m Heading direction Heading direction Heading direction m r(t) r(t) x Sensor t=2.55 r(t) x Sensor t=2.14 x Sensor t=2.1 hy hy t=3.41 t=1.95 t=2.73 t=1.72 hy t=2.2 t=1.55 t=2.66 t=1.68 hx t=1.2 hx hx All measurement trajectories are turning clockwise! Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Key idea t=2.55 t=2.14 t=2.1 hy hy t=3.41 t=1.95 t=1.68 hx t=2.73 t=1.72 hy t=2.2 t=1.55 t=2.66 t=1.2 hx hx Idea: Classify heading direction by the turn of the measurement trajectory! Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET 0 0.7 0.77 yx 0.5 1 Time [s] 0.54 yy 0 0.5 1 Time [s] 0.74 0.65 0.98 0.59 yx x yy y 1.17 y and y yx and yy Real world data 0.79 0 0.91 0.5 1 Time [s] 0.7 yx Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer 0 1.2 yy yx and yy yy yx and yy 1.11 0.5 1 Time [s] 0.91 yx 1.03 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET 0 0.77 yx 0.5 1 Time [s] 0.54 0.7 0 yy y y 1.17 yx and yy yx and yy Real world data 0.74 0.65 0.98 0.59 yx 0.5 1 Time [s] 0.79 0 0.91 0.5 1 Time [s] 0.7 yx 0 1.2 yy yx and yy yy yx and yy 1.11 0.5 1 Time [s] 0.91 yx 1.03 Classify driving direction by the turn of the measurement trajectory! Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET The theorem Assume the magnetic dipole model h= 3(r · m)r − krk2 m krk5 then dr y 1 2 x r dr x y r dr y > 0 r 111111111 000000000 000000000 111111111 000000000 111111111 000000000 111111111 ⇔ y x 1 2 x h dhx y h dhy > 0 11111111111dh 00000000000 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 h x Observe: Independent of m ! Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET The classifier Integrate over all infinitesimal area segments f = Z x h (t) dhx (t)/dt dhx hy dhy = hy (t) dhy (t)/dt dt. Z x h The time discrete version will then be f N −1 x x x hky (hky+1 − hky )/T T = h (h k k+1 − hk ) /T k =1 N −1 y y = (hxk hk+1 − hk hxk+1 ) k =1 y y =(hx1:(N−1) )T h(1+1):N − (h1:(N−1) )T hx(1+1):N ∑ ∑ Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET The classifier · · · yk+1 yk · · · Sum over all triangles The enclosed area can be computed as two inner products! y y f̂ = (yx1:(N−1) )T y(1+1):N − (y1:(N−1) )T yx(1+1):N The sign of f̂ determines the heading direction. Note: h has been replaced with the measurement y which contains noise. Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET The improved classifier · · · yk+1 yk · · · The variance of f̂ can be reduced by trading for some bias. Idea: Average over larger triangles! y y f̂p = (yx1:(N−p) )T y(1+p):N − (y1:(N−p) )T yx(1+p):N Observe: The feature still only consists of two inner products! Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Experimental results N 2 sensor nodes W E South-North 45 min S 88 vehicles travelling south-north Sensor 2 99 vehicles travelling north-south Sensor 1 North-South Correct classification by the two sensors Sensor 1 Sensor 2 South-North (Sensor 1) North-South (Sensor 2) 87/88 82/88 91/99 99/99 Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Summary Vehicle heading direction classification using a 2-axis magnetometer. A two-fold classification problem. One strong feature has been derived and extracted from data. It is fast (difference of two inner products) Theoretical justification is provided. It works on real world data with good results Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Summary Vehicle heading direction classification using a 2-axis magnetometer. A two-fold classification problem. One strong feature has been derived and extracted from data. It is fast (difference of two inner products) Theoretical justification is provided. It works on real world data with good results =⇒ Fast and accurate classifier for this application! Niklas Wahlström, Roland Hostettler, Fredrik Gustafsson, Wolfgang Birk Rapid Classification of Vehicle Heading Direction with Two-Axis Magnetometer AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
© Copyright 2025