EXAMENSARBETE I ELEKTROTEKNIK 300 HP, AVANCERAD NIVÅ STOCKHOLM, SVERIGE 2016 An Economical & Technical Study of the Participation of a Virtual Power Plant on the Swiss Balancing Market WRITTEN IN COLLABORATION WITH SWISSELECTRICITY ROMAIN BOURDETTE KTH KUNGLIGA TEKNISKA HÖGSKOLAN SKOLAN FÖR ELEKTRO- OCH SYSTEMTEKNIK TRITA EE 2016:018 www.kth.se BACKGROUND STUDY - - - - - ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ 𝑃𝑛𝑅+ 𝑃𝑛𝑅− 𝑠𝑒𝑐,𝑏𝑖𝑑 𝐼𝑛,𝑖 𝑠𝑒𝑐,𝐸 𝐼𝑛,𝑖 𝑡𝑒𝑟+,𝑏𝑖𝑑 𝐼𝑛,𝑖 𝑡𝑒𝑟+,𝐸 𝐼𝑢𝑛𝑖𝑡 𝑛 ∝+ 𝑖 ∝− 𝑖 𝜆𝑠𝑒𝑐+ 𝑖 ¤/MWh 𝜆𝑠𝑒𝑐− 𝑖 ¤/MWh 𝜆𝑡𝑒𝑟+,𝐸 𝑘,𝑏𝑖𝑑 ¤ 𝜆𝑡𝑒𝑟−,𝐸 𝑘,𝑏𝑖𝑑 ¤ 𝑈𝑛 𝜀𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝜇 + 𝐸𝑛,𝑡𝑒𝑟 + 𝐸𝑛,𝑡𝑒𝑟 - 𝑠𝑒𝑐,𝑏𝑖𝑑 𝐼𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑠𝑒𝑐,𝑏𝑖𝑑 𝐼𝑛,𝑖 𝑛=𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑖=𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑓𝑓𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓𝑓𝑒𝑟𝑒𝑑 𝑠𝑒𝑐,𝑏𝑖𝑑 𝐼𝑛,𝑖 = { max (𝜆𝑠𝑒𝑐,𝑏𝑖𝑑 × 𝑃𝑛 (𝜆𝑠𝑒𝑐,𝑏𝑖𝑑 )) | 𝜆𝑠𝑒𝑐,𝑏𝑖𝑑 < 𝜆𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑠𝑒𝑐 } 𝐼 𝑠𝑒𝑐,𝑏𝑖𝑑 𝜆𝑏𝑖𝑑 𝑡𝑒𝑟+,𝑏𝑖𝑑 𝐼𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑒𝑟+,𝑏𝑖𝑑 ∑ 𝐼𝑛,𝑖 𝑖=𝑜𝑓𝑓𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑠𝑒𝑐𝐸 𝐼𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑠𝑒𝑐.𝐸 𝐼𝑛,𝑖 𝑛=𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑖=𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑓𝑓𝑒𝑟𝑠 𝑝𝑟𝑒𝑞𝑢𝑎𝑙. 𝑖𝑛 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑠𝑒𝑐,𝐸 𝑠𝑒𝑐+ 𝑠𝑒𝑐− ) 𝐼𝑛,𝑖 = (1 − 𝜇 ∗ (𝑈𝑛 + 𝜀𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ))(𝑃𝑛𝑅+ ∗∝+ + 𝑃𝑛𝑅− ∗∝− 𝑖 ∗ 𝜆𝑖 𝑖 ∗ 𝜆𝑖 ∝+ 𝑖 ∝− 𝑖 𝜆+𝑠𝑒𝑐,𝑖 𝑈𝑛 𝜀𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝜆−𝑠𝑒𝑐,𝑖 𝑡𝑒𝑟 𝐼𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑡𝑒𝑟+,𝐸 𝐼𝑛,𝑘 ∑ 𝑢=𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑘=𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓𝑓𝑒𝑟𝑠 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑝𝑟𝑒𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑅+ 𝑡𝑒𝑟+,𝐸 𝑡𝑒𝑟+,𝐸 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 )) 𝐼𝑛,𝑘 = ∑(𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦+ (𝜆𝑡𝑒𝑟+,𝐸 𝑘,𝑏𝑖𝑑 ) ∗ 𝜆𝑘,𝑏𝑖𝑑 ) ∗ 𝑃𝑛 ∗ 𝑇 ∗ (1 − 𝜇 ∗ (𝑈𝑛 + 𝜀𝑛 𝑏𝑖𝑑 𝜆𝑡𝑒𝑟+,𝐸 𝑘,𝑏𝑖𝑑 𝜇 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝜆𝑡𝑒𝑟+,𝐸 𝑘,𝑏𝑖𝑑 ) 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦+ (𝜆𝑡𝑒𝑟+,𝐸 𝑘,𝑏𝑖𝑑 ) + − + − + − + − 𝐶𝑢𝑛𝑖𝑡 𝑛 (𝐸𝑡𝑒𝑟 , 𝐸𝑡𝑒𝑟 , 𝐸𝑠𝑒𝑐 , 𝐸𝑠𝑒𝑐 ) = 𝑀𝐶(𝐸𝑡𝑒𝑟 , 𝐸𝑡𝑒𝑟 , 𝐸𝑠𝑒𝑐 , 𝐸𝑠𝑒𝑐 ) + 𝐹𝐶 + 𝐸𝑛,𝑠𝑒𝑐 + 𝐸𝑛,𝑡𝑒𝑟 − 𝐸𝑛,𝑠𝑒𝑐 − 𝐸𝑛,𝑡𝑒𝑟 + 𝐸𝑛,𝑡𝑒𝑟 = ∑ ∑ 𝑘=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑡𝑖𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓𝑓𝑒𝑟𝑠 𝑝𝑟𝑒𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 + + 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝜆𝑡𝑒𝑟 𝑘,𝑏𝑖𝑑 ) ∗ 𝑇 ∗ 𝑃𝑛 𝑏𝑖𝑑=𝑏𝑖𝑑 𝑚𝑢𝑙𝑡𝑖−𝑙𝑒𝑣𝑒𝑙 𝑏𝑖𝑑𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 − − 𝐸𝑛,𝑡𝑒𝑟 = ∑ ∑ 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝜆𝑡𝑒𝑟− 𝑘,𝑏𝑖𝑑 ) ∗ 𝑇 ∗ 𝑃𝑛 𝑘 𝑏𝑖𝑑 + + − − 𝐸± = 𝐸𝑡𝑒𝑟 + 𝐸𝑠𝑒𝑐 + 𝐸𝑠𝑒𝑐 + 𝐸𝑡𝑒𝑟 + + 𝐸𝑡𝑒𝑟 , 𝐸𝑠𝑒𝑐 >0 − − 𝐸𝑠𝑒𝑐 , 𝐸𝑡𝑒𝑟 <0 + 𝐸𝑡𝑒𝑟 = +1 𝑀𝑊ℎ. − 𝐸𝑡𝑒𝑟 = − 1 𝑀𝑊ℎ. 𝐹𝐶 = 𝐶𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 + ∆𝐶𝑚𝑎𝑖𝑛𝑡𝑎𝑛𝑐𝑒 + − + − 𝑀𝐶(𝐸𝑡𝑒𝑟 , 𝐸𝑡𝑒𝑟 , 𝐸𝑠𝑒𝑐 , 𝐸𝑠𝑒𝑐 ) + = ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 (𝐸± ) − ∆𝑆𝑒𝑙𝑒𝑐,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 (𝐸± ) + ∆𝐶𝑓𝑢𝑒𝑙 (𝐸± )) + 𝐶𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 (𝐸𝑡𝑒𝑟 ) ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 = 𝜃𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 × (−𝐸 𝑎𝑐𝑡𝑢𝑎𝑙 + 𝐸 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) = 𝜃𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 × (−𝐸± ) 𝜃𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐸± < 0) 𝐸± > 0 ∆𝑆𝑒𝑙𝑒𝑐,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 (𝐸± ) = 𝜃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 × (𝐸 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 < 0 𝜃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 ∆𝑆𝑒𝑙𝑒𝑐,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 = 𝜃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 × (𝐸± ) 𝐸± < 0) ∆𝐶𝑓𝑢𝑒𝑙 (𝐸± ) = 𝜃𝑓𝑢𝑒𝑙 × 𝐸± + 𝐸𝑡𝑒𝑟 1 × ) × 𝑐𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 𝑃 + 1.5 𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 = 𝑎𝑏𝑠 ( ) 1.5 × 𝑐𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 ≈ 𝑛𝑏 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡𝑢𝑝 × 𝑐𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 −∆𝑆𝑒𝑙𝑒𝑐,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 > 0 𝜃𝑓𝑢𝑒𝑙 + ) 𝐶𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 (𝐸𝑡𝑒𝑟 = 𝑎𝑏𝑠 ( 𝑐𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 + 𝐸𝑡𝑒𝑟 𝑀𝐶𝐺1 = ∆𝐶𝑓𝑢𝑒𝑙 + ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 + + 𝐶𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 (𝐸𝑡𝑒𝑟 ) ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑀𝐶𝐺2 = ∆𝐶𝑓𝑢𝑒𝑙 − ∆𝑆𝑒𝑙𝑒𝑐,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟 𝑀𝐶𝐿1 = 0 ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 = 0 𝑀𝐶𝐿2 = ∆𝑃𝑒𝑙𝑒𝑐,𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 - - μ = 10 Portfolio: List of participating units Simulation Market Data Forecast method Bidding processes Bid acceptance processes 𝑡𝑒𝑟+,𝑏𝑖𝑑 𝐼𝑛,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑡𝑒𝑟+,𝑏𝑖𝑑 𝐼𝑛,𝑖 = ∑ (𝑖𝑛𝑐𝑜𝑚𝑒𝑤𝑒𝑒𝑘𝑙𝑦 𝑏𝑖𝑑𝑠 + ∑ 𝑖𝑛𝑐𝑜𝑚𝑒𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑑𝑠 ) 𝑖=𝑜𝑓𝑓𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑤𝑒𝑒𝑘𝑠 𝑏𝑙𝑜𝑐𝑘𝑠 Delivery calls models ∝+ 𝑖 ∝− 𝑖 𝜆𝑠𝑒𝑐+ 𝑖 𝜆𝑠𝑒𝑐− 𝑖 ∝+ 𝑖 ∝− 𝑖 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝜆𝐸𝑛𝑒𝑟𝑔𝑦 𝜆𝐸𝑛𝑒𝑟𝑔𝑦 (𝑓) = 𝐴 ∗ 𝑒 −𝑓∗𝑋 ⇔ 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝜆𝐸𝑛𝑒𝑟𝑔𝑦 ) = − 1 𝜆 ∗ ln ( ) 𝑋 𝐴 ≈ 40 €/𝑀𝑊ℎ Market revenue from the delivery of control energy ≈ 40 €/𝑀𝑊ℎ - - 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝜆𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝜆𝐸𝑛𝑒𝑟𝑔𝑦 ) = − 1 𝜆 ∗ ln ( ) 𝑋 𝐴 - - ≤ = ≤ ≤ > > - - - . Bidding Strategy XX X XX XX XX XX X X X X X X XX X X XX XX X XX X XXX XX XX XX X XX XX X X X XX Bidding Strategy XX XXX X XXX X XX X X XXX XX XX XX X XX XX X XX XX X X X X X XX X X X X XX X X X X X X X Bidding Strategy X X X X XX XX X XX X - 𝑝 𝑥𝑡 = 𝑐 + ∑ 𝜙𝑖 𝑥𝑡−𝑖 𝑖=1 𝜙𝑖 𝑝 𝑥𝑡 = 𝑐 + ∑ 𝜙𝑠.𝑖 𝑥𝑡−𝑠.𝑖 𝑖=1 𝜙𝑖 𝐴𝑅(3) + 𝑆𝐴𝑅52 (1) ∶ 𝑥̂𝑡 = 𝜙1 𝑥𝑡−1 + 𝜙2 𝑥𝑡−2 + 𝜙3 𝑥𝑡−3 + 𝜙52 𝑥𝑡−52 𝐴𝑅(1) + 𝑆𝐴𝑅6 (2) ∶ 𝑥̂𝑡 = 𝜙1 𝑥𝑡−1 + 𝜙6 𝑥𝑡−6 + 𝜙12 𝑥𝑡−12 MWh/MW/week 25 20 αi + (MWh/MW/week) αi - (MWh/MW/week) 15 10 5 0 -5 -10 -15 -20 -25 Week 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
© Copyright 2025