Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 6, 226-229 Available online at http://pubs.sciepub.com/tjant/2/6/7 © Science and Education Publishing DOI:10.12691/tjant-2-6-7 Generalized Inequalities Related to the Classical Euler’s Gamma Function Kwara Nantomah* Department of Mathematics, University for Development Studies, Navrongo Campus, Navrongo UE/R, Ghana *Corresponding author: mykwarasoft@yahoo.com, knantomah@uds.edu.gh Received October 10, 2014; Revised November 26, 2014; Accepted December 14, 2014 Abstract This paper presents some inequalities concerning certain ratios of the classical Euler’s Gamma function. The results generalized some recent results. Keywords: Gamma function, q-Gamma function, k-Gamma function, (p,q)-Gamma function, (q,k)-Gamma function, inequality Cite This Article: Kwara Nantomah, “Generalized Inequalities Related to the Classical Euler’s Gamma Function.” Turkish Journal of Analysis and Number Theory, vol. 2, no. 6 (2014): 226-229. doi: 10.12691/tjant-26-7. is the k-generalized Pochhammer symbol. Furthermore, Krasniqi and Merovci [4] defined the (p,q)-Gamma function Γ( p,q ) (t ) for p ∈ N , q ∈ (0,1) and 1. Introduction We begin by outlining the following basic definitions well-known in literature. The celebrated classical Euler’s Gamma function, Γ(t ) is defined for t > 0 as ∞ t > 0 as [ p ]tq [ p ]q ! Γ( p,q ) (t ) = , [t ]q [t + 1]q [t + p ]q where − x t −1 Γ(t ) = ∫ e x dx. [ p ]q = 0 The q-Gamma function, Γ q (t ) is defined for q ∈ (0,1) and t > 0 as (see [2]) ∞ Γ q (t ) = (1 − q )1−t ∏ 1 − qn n =1 1 − q t +n . Also, the k-Gamma function, Γ k (t ) was defined by Diaz and Pariguan [1] for k > 0 and t > 0 as ∞ k − x t −1 k x dx. Γ k (t ) = ∫e 1− q p . 1− q The psi function, ψ (t ) otherwise known as the digamma function is defined as the logarithmic derivative of the Gamma function. That is, d Γ′(t ) InΓ(t )= . Γ(t ) dt ψ (t )= The q-digamma function, k-digamma function, (p,q)diagamma function and (q,k)-digamma function are similarly defined as follows: 0 Diaz and Teruel [5] further defined the (q,k)-Gamma function Γ( q,k ) (t ) for q ∈ (0,1) , k > 0 and t > 0 as t −1 (1 − q k )qk,k , Γ( q,k ) (t ) = ψ q (t ) = Γ′q (t ) d InΓ q (t ) = , dt Γ q (t ) ψ k (t ) = Γ′ (t ) d InΓ k (t ) = k , dt Γ k (t ) d dt Γ′( p,q ) (t ) ψ ( p,q ) (t ) = InΓ( p,q ) (t ) = t −1 (1 − q ) k Γ( p,q ) (t ) and where (t )n,k = t (t + k )(t + 2k ) (t + (n − 1)k ) = n −1 ∏ (t + jk ) j =0 d dt Γ′( q,k ) (t ) ψ ( q,k ) (t ) = InΓ( q,k ) (t ) = Γ( q,k ) (t ) . It is common knowledge that these functions exhibit the following series charaterizations (see also [7-12]): Turkish Journal of Analysis and Number Theory ∞ ψ q (t ) = −In(1 − q ) + (Inq ) ∑ q nt n =1 1 − q n ∞ t Ink - γ 1 − +∑ k t n =1 nk (nk + t ) ψ k= (t ) p ψ ( p= , q ) (t ) In[ p ]q + (Inq ) ∑ q nt n =1 1 − q n ∞ q nkt -In(1 − q ) + (Inq ) ∑ ψ= ( q , k ) (t ) nk k n =1 1 − q (1) (2) where γ = 0.577215664901532... represents the EulerMascheroni’s constant. Of late, the following double inequalities were presented in [7] by the use of some monotonicity properties of some functions related with the Gamma function. (1 − q )−t Γ q (α ) [ p ]tq Γ( p,q ) (α ) ≥ ≥ Γ( p,q ) (α + t ) (1 − q )1−t Γ q (α + 1) [ p ]tq−1 Γ( p,q ) (α + 1) ≥ Γ( q,k ) (α ) 1 (1−t ) (1 − q ) k t −γ t kΓ Γ( q,k ) (α + t ) (6) < p ∞ q nt q nt = (Inq ) u ∑ − w∑ ≤ 0. n − qn n 1 1= n 1 1 − q = We conclude the proof by substituting t by α + β t . Lemma 2.2. Suppose that α > 0 , β > 0 k (α k (α ) < Γ( q,k ) (α ) t −γ t αk k e k Γ (7) + 1) (α + t )(1 − q ) Γ k (α + t ) Γ( q,k ) (α + t ) In(1- q ) k + uψ q (α + β t ) − wψ ( q,k ) (α + β t ) ≤ 0. uIn(1 − q ) − w In(1- q ) + uψ q (t ) − wψ ( q,k ) (t ) k ∞ q nt q nkt = (Inq ) ∑ u −w ≤ 0. n 1 − q nk n =1 1 − q Ink uγ u + + k k α + βt + uψ k (α + β t ) − wψ ( p,q ) (α + β t ) > 0. 1−t k Γ Ink uγ u + + + uψ q (t ) − wψ ( p,q ) (t ) k k t ∞ p t q nt − w∑ > 0. n nk (nk + t ) n 11 − q 1= = u∑ n = We conclude the proof by substituting t by α + β t . Lemma 2.4. Suppose that α > 0 , β > 0 , u > 0 w > 0 , t > 0 , q ∈ (0,1) and k > 0 . Then, + 1) ( q , k ) (α Proof. From the characterization in equations (2) and (3) we obtain, wIn[ p ]q − u (8) k (α , wIn[ p ]q − u (α + t )[ p ]tq−1 Γ( p,q ) (α + 1) t −γ t αk k e k Γ < uIn(1 − q ) + wIn[ p]q + uψ q (t ) − wψ ( p,q ) (t ) t > 0 , k > 0 , p ∈ N and q ∈ (0,1) . Then, for t ∈ (0,1) , α > 0 , p ∈ N , q ∈ (0,1) and k > 0 . (α Proof. From the characterization in equations (1) and (3) we obtain, k (α ) t −1 γ (1−t ) + 1)k k e k Γ −t + t )(1 − q ) k + uψ q (α + β t ) − wψ ( p,q ) (α + β t ) ≤ 0. We conclude the proof by substituting t by α + β t . Lemma 2.3. Suppose that α > 0 , β > 0 , u > 0 w > 0 , Γ( q,k ) (α + 1) Γ k (α + t ) < t (α + t )[ p ]q Γ( p,q ) (α ) Γ( p,q ) (α + t ) (α uIn(1 − q ) + wIn[ p]q uIn(1 − q ) − w for t ∈ (0,1) , α > 0 , q ∈ (0,1) and k ≥ 1 . αk k e β >0 , Proof. From the characterization in equations (1) and (4) we obtain, Γ q (α + t ) (1 − q )1−t Γ q (α + 1) ≥ , u ≥ w > 0 , t > 0 , p ∈ N and q ∈ (0,1) . Then, (5) for t ∈ (0,1) , α > 0 , p ∈ N and q ∈ (0,1) . −t (1 − q ) k We begin with the following Lemmas. Lemma 2.1. Suppose that α > 0 u ≥ w > 0 , t > 0 , q ∈ (0,1) and k ≥ 1 . Then, Γ q (α + t ) (1 − q )−t Γ q (α ) 2. Supporting Results (3) (4) 227 + 1) for t ∈ (0,1) , α > 0 , q ∈ (0,1) and k > 0 . Results of this form can also be found in [8,9,10,11,12]. By utilizing similar techniques as in the previous results, this paper seeks to provide some generalizations of the above inequalities. We present our results in the following sections. In(k u (1 − q ) w ) uγ u + + k k α + βt + uψ k (α + β t ) − wψ ( q,k ) (α + β t ) > 0. − Proof. From the characterization in equations (2) and (4) we obtain, 228 − Turkish Journal of Analysis and Number Theory (1 − q )−u β t Γ q (α )u In(k u (1 − q ) w ) uγ u + + + uψ q (t ) − wψ ( q,k ) (t ) k k α + βt ∞ ∞ t q − w(Inq ) ∑ > 0. nk nk (nk + t ) 1= n 11 − q = u∑ n (1 − q ) nkt − wβ t k Γ ≥ We conclude the proof by substituting t by α + β t . η (t ) = In q ∈ (0,1) by [ p ]−q wβ t Γ( p,q ) (α + β t ) w (9) , t ∈ (0, ∞) u ≥ w . Then, E is non-increasing on t ∈ (0, ∞) and the inequalities: −u β t Γ q (α ) wβ t [ p ]q Γ( p,q ) (α ) w Γ q (α + β t ) u ≥ u Γ( p,q ) (α + β t ) w (1 − q )u β (1−t ) Γ q (α + β )u (10) [ p ]qwβ (t −1) Γ( p,q ) (α + β ) w are valid for each t ∈ (0,1) . Proof. Let λ (t ) = InE (t ) for every t ∈ (0, ∞) . Then (1 − q )u β t Γ q (α + β t )u wβ (1−t ) k Γ ( q , k ) (α + β )w wβ In(1 − q ) k + u βψ q (α + β t ) − wβψ ( q,k ) (α + β t ) η ′= (t ) u β In(1 − q ) − In(1 − q ) = β uIn(1 − q ) − w k + uψ q (α + β t ) − wψ ( q,k ) (α + β t ) ≤ 0 as a result of Lemma 2.2. That implies η is nonincreasing on t ∈ (0, ∞) . Consequently, F is nonincreasing on t ∈ (0, ∞) and for each t ∈ (0,1) we have, G (t ) = + u βψ q (α + β t ) − wβψ ( p,q ) (α + β t ) = β uIn(1 − q ) + wIn[ p ]q as a result of Lemma 2.1. That implies λ is nonincreasing on t ∈ (0, ∞) . Consequently, E is nonincreasing on t ∈ (0, ∞) and for each t ∈ (0,1) we have, α u − u β t u βγ t k e k Γ k (α + β t )u (13) [ p ]−q wβ t Γ( p,q ) (α + β t ) w u β t u βγ t − k k e k Γ yielding equation (10). Theorem 3.2. Define a function F for q ∈ (0,1) and k ≥ 1 by (11) < (α + β ) u u < Γ k (α + β t )u Γ( p,q ) (α + β t ) w u β (t −1) u βγ (1−t ) k k e k Γ (α + β t ) u k (α + β ) wβ (t −1) [ p ]q Γ( p,q ) (α + β ) w (14) u are valid for each t ∈ (0,1) . Proof. Let µ (t ) = InG (t ) for every t ∈ (0, ∞) . Then w where u , w , α , β are positive real numbers such that u ≥ w . Then, F is non-increasing on t ∈ (0, ∞) and the inequalities: k (α ) (α + β t )u [ p ]qwβ t Γ( p,q ) (α ) w E (0) ≥ E (t ) ≥ E (1) + β t) (α + β t )u k where u , w , α , β are positive real numbers. Then, G is increasing on t ∈ (0, ∞) and the inequalities: + uψ q (α + β t ) − wψ ( p,q ) (α + β t ) ≤ 0 ( q ,k ) (α + β t )w Then, (t ) u β In(1 − q ) + wβ In[ p]q λ ′= , t ∈ (0, ∞) ( q ,k ) (α yielding equation (12). Theorem 3.3. Define a function G for t ∈ (0, ∞) , p ∈ N , q ∈ (0,1) and k > 0 by Then, (1 − q )u β t Γ q (α + β t )u uβ t k Γ F (0) ≥ F (t ) ≥ F (1) + uInΓ q (α + β t ) − wInΓ( p,q ) (α + β t ) uβ t (1 − q ) k Γ (1 − q )u β t Γ q (α + β t )u wβ t In(1 − q ) k + uInΓ q (α + β t ) − wInΓ( q,k ) (α + β t ) [ p ]q− wβ t Γ( p,q ) (α + β t ) w = u β tIn(1 − q ) + wβ tIn[ p ]q = F (t ) (12) = u β tIn(1 − q ) − where u , w , α , β are positive real numbers such that λ (t ) = In Γ( q,k ) (α + β t ) w (1 − q )u β (1−t ) Γ q (α + β )u (1 − q ) (1 − q )u β t Γ q (α + β t )u ≥ w Γ q (α + β t )u are valid for each t ∈ (0,1) . Proof. Let η (t ) = InF (t ) for every t ∈ (0, ∞) . Then We now present our results in the following Theorems. Theorem 3.1. Define a function E for p ∈ N and (1 − q ) ( q , k ) (α ) (1 − q ) 3. Main Results E (t ) = ≥ µ (t ) = In (α + β t )u k − u β t u βγ t k e k Γ k (α + β t )u [ p ]−q wβ t Γ( p,q ) (α + β t ) w Turkish Journal of Analysis and Number Theory uβ t u βγ t Ink + + wβ tIn[ p ]q k k + uInΓ k (α + β t ) − wInΓ( p,q ) (α + β t ). 229 In(k u (1 − q ) w ) u βγ uβ + + α + βt k k + u βψ k (α + β t ) − wβψ ( q,k ) (α + β t ) = uIn(α + β t ) − −β δ ′(t ) = In(k u (1 − q ) w ) uγ u = β − + + α βt + k k Then, Ink − γ uβ + α + βt k + u βψ k (α + β t ) − wβψ ( p,q ) (α + β t ) µ ′(t ) = wβ In[ p]q − u β + uψ k (α + β t ) − wψ ( q,k ) (α + β t ) > 0 as a result of Lemma 2.4. That implies δ is nonincreasing on t ∈ (0, ∞) . Consequently, H is nonincreasing on t ∈ (0, ∞) and for each t ∈ (0,1) we have, Ink uγ u = β wIn[ p ]q − u + + k k α + βt + uψ k (α + β t ) − wψ ( p,q ) (α + β t ) > 0 as a result of Lemma 2.3. That implies µ is nonincreasing on t ∈ (0, ∞) . Consequently, G is non- H (0) < H (t ) < H (1) yielding equation (16). increasing on t ∈ (0, ∞) and for each t ∈ (0,1) we have, 4. Conclusion G (0) < G (t ) < G (1) yielding equation (14). Theorem 3.4. Define a function H for t ∈ (0, ∞) , q ∈ (0,1) and k > 0 by H (t ) = (α + β t )u e u βγ t k Γ uβ t wβ t k k (1 − q ) k Γ k (α + β t )u ( q , k ) (α + β t) (15) If we fix u= w= β= 1 in inequalities (10), (12), (14) and (16), then we respectively obtain the inequalities (5), (6), (7) and (8) as special cases. By this, the previous results [7] have been generalized. Competing Interests w The authors have no competing interests. where u , w , α , β are positive real numbers. Then, H is increasing on t ∈ (0, ∞) and the inequalities: α ue (α < − u βγ t k Γ u k (α ) uβ t wβ t − − + β t )u k k (1 − q ) k Γ [1] ( q , k ) (α ) w Γ k (α + β t )u (16) Γ( q,k ) (α + β t ) w (α + β )u e < (α References u βγ (1−t ) k Γ u k (α + β ) u β (1−t ) wβ (1−t ) + β t )u k k (1 − q ) k Γ( q,k ) (α + β )w are valid for each t ∈ (0,1) . Proof. Let δ (t ) = InH (t ) for every t ∈ (0, ∞) . Then (α + β t )u e δ (t ) = In k u βγ t k Γ uβ t wβ t k (1 − q ) k Γ k (α + β t )u ( q , k ) (α + β t )w u βγ t u β t wβ t − Ink − In(1 − q) k k k + uInΓ k (α + β t ) − wInΓ( q,k ) (α + β t ). = uIn(α + β t ) + Then, R. Diaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matematicas 15(2)(2007), 179-192. [2] T. Mansour, Some inequalities for the q-Gamma Function, J. Ineq. Pure Appl. Math. 9(1)(2008), Art. 18. [3] F. Merovci, Power Product Inequalities for the Γk Function, Int. Journal of Math. Analysis, 4(21)(2010), 1007-1012. [4] V. Krasniqi and F. Merovci, Some Completely Monotonic Properties for the (p, q)-Gamma Function, Mathematica Balkanica, New Series 26(2012), 1-2. [5] R. Diaz and C. Teruel, q,k-generalized gamma and beta functions, J. Nonlin. Math. Phys. 12(2005), 118-134. [6] V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for Γ and ζ Functions, Mathematical Communications 15(2)(2010), 365-376. [7] K. Nantomah, On Certain Inequalities Concerning the Classical Euler's Gamma Function, Advances in Inequalities and Applications, Vol. 2014 (2014) Art ID 42. [8] K. Nantomah and M. M. Iddrisu, Some Inequalities Involving the Ratio of Gamma Functions, Int. Journal of Math. Analysis 8(12)(2014), 555-560. [9] K. Nantomah, M. M. Iddrisu and E. Prempeh, Generalization of Some Inequalities for theRatio of Gamma Functions, Int. Journal of Math. Analysis, 8(18)(2014), 895-900. [10] K. Nantomah and E. Prempeh, Generalizations of Some Inequalities for the p-Gamma, q-Gamma and k-Gamma Functions, Electron. J. Math. Anal. Appl. 3(1)(2015),158-163. [11] K. Nantomah and E. Prempeh, Some Sharp Inequalities for the Ratio of Gamma Functions, Math. Aeterna, 4(5)(2014), 501-507. [12] K. Nantomah and E. Prempeh, Generalizations of Some Sharp Inequalities for the Ratio of Gamma Functions, Math. Aeterna, 4(5)(2014), 539-544.
© Copyright 2025