 
        Hardware e Software das Tecnologias de Informação V 0.2, V.Lobo, EN/ISEGI, 2013 Hardware e Software das TI O mundo é apenas uma sequência de 0s e 1s Prof. Doutor Victor Lobo Licenciatura em Sistemas e Tecnologias de Informação Objectivo desta disciplina  Programa (traços gerais)  1. Introdução às máquinas de computação Representação de dados  3. Álgebra de Boole  4. Sistemas Digitais  5. Arquitectura de Computadores  6. Microprocessadores  7. Sistemas de Memória  8. Periféricos  9. Sistemas Operativos e Linguagens de programação Compreender o HARDWARE  2.  De que dispositivos são feitos os computadores ? que é a arquitectura de um computador ?  O que é um microprocessador ? O  Compreender os tipos de SOFTWARE  Linguagem máquina de alto nível  Sistemas operativos e “device drivers”  Linguagens Porque é que é importante ?  Para compreender o mundo que nos rodeia !  Porque só compreendendo como são as máquinas podemos compreender:  As suas limitações  As suas potencialidade  Como escolhê-las e comprá-las, e fazer bom uso delas  Porque faz parte do curriculum de STI…  Para Bibliografia  Livro de texto  Computer Organization and Architecture, Linda Null & Julia Lobur, Jones and Bartlett, 2006  Outros  Introdução às Ciências da Computação  An Invitation to Computer Science, 5th Ed, G.Michael Schneider, Judith Gersting  Breve introdução com hardware recente  Introdução geral a S.I.  acabar o curso é preciso saber isto (!)  Tecnologias de Informação, Sérgio Sousa, FCA, 2009. Introduction to Information Systems, Rainer, Turban et al., John Wiley & Sons, 2011 1 Hardware e Software das Tecnologias de Informação V 0.2, V.Lobo, EN/ISEGI, 2013 Bibliografia (mais detalhada) Avaliação   Sistemas Digitais e Microprocessaores  Digital Fundamentals (10th Ed), Floyd, Prentice-Hall, 2010  Sistemas Digitais, Padilha, McGraw-Hill Exame Final  Obrigatório  Trabalhos  Mini-Testes   Sistemas Operativos Modern Operating Systems (3rd Ed), Tannenbaum, Prentice-Hall, 2007  Sistemas Operativos, Alves Marques et al., FCA, 2009.    Datas: 23-Set 30-Set 7-Out 14-Out 4-Nov 11-Nov 18-Nov 25-Nov 2-Dez 9-Dez (recup) de pesquisa bibliográfica e apresentação (10%) Lista de temas disponível no site da cadeira Fazer uma apresentação de 10 min e relatório de 2 páginas.  NOTA Apresentações dos trabalhos de Programação em Assembler (20%) Data de Entrega: 2 Janeiro  Trabalho  (10+10%) Datas: 3 de Outubro & 11 de Novembro  Trabalho  para todos (50 % da nota) MÍNIMA EM TODAS AS PROVAS – 9 valores Horário de dúvidas e contactos  Email: vlobo@isegi.unl.pt  Dúvidas    2ª Feira às 18:30 (ou quando combinarmos) Por mail em qualquer altura Sempre que estiver no ISEGI (!)  Material  de apoio www.isegi.unl.pt/docentes/vlobo  Mudanças  de aulas Não há aula de HSTI no dia 21 e 24 de Outubro 1.3 An Example System Um exemplo: Computadores e a sua história O que é isto tudo?? 2 Hardware e Software das Tecnologias de Informação V 0.2, V.Lobo, EN/ISEGI, 2013 Elementos básicos de um computador  Arquitectura básica de Von Neumann Computadores Digitais  Saída de dados Unidade de Processamento  Manipular os dados, fazer as contas, processar a informação   Guardar  Operações Unidade de Armazenamento os dados Memória Controlo de aritmética e lógica (p/dados e programa) Unidade de Entrada/Saída (I/O)  Comunicar com o exterior Entrada de dados Componentes do sistema Componentes do sistema  Visão externa  (rede, scanner, etc) Bus de sistema / bus de expansão Visão interna Memória principal CPU processamento dos dados e controlo do sistema Teclado Monitor (video) Ligação através de uma “placa controladora” e programa (“driver”) dedicado Impressora Disco/ Disquettes Outros História das máquinas de computação  Máquinas que servem para processar informação   História das máquinas de computação  Fazer contas, guardar dados, automatizar processos  Máquina de Turing, artigo “sobre os números computáveis”  Primeiras máquinas “modernas” Antes dos computadores   Ábacos Máquina de Pascal e de Leibniz    Tabelas de logaritmos, e “computador moderno mecânico” Máquinas de Hollerith    Leitura de cartões, e processamento rudimentar de informação Máquinas analógicas dedicadas 2ª Grande guerra  ENIAC Máquinas de Babbage   Somas e subtracções com rodas dentadas Calculadores de tiro para artilharia Trabalho teórico dos anos 30  / Colossus / outros Computadores de 1ª Geração  Válvulas  UNIVAC (Sperry), ERA,  Aprox. 1945 - 1953 IBM 650 3 Hardware e Software das Tecnologias de Informação V 0.2, V.Lobo, EN/ISEGI, 2013 História das máquinas de computação  Computadores de 2ª Geração  Transistors discretos  IBM 7095,1401, primeiros História das máquinas de computação Computadores de 4ª Geração   VLSI, PDP  1954-1965  Cray 1.5 Historical Development  workstations / minicomputadores / mainframes / supercomputadores Computadores de 3ª Geração  Circuitos integrados  IBM 360, PDP-8, DEC-10,  1965-1980 Moore’s Law (1965)  Gordon 1.5 Historical Development  Moore, Intel founder density of transistors in an integrated circuit will double every year.” cost of capital equipment to build semiconductors will double every four years.”  In  “The density of silicon chips doubles every 18 months.” Rock’s Law  In 2005, a chip plants under construction cost over $2.5 billion. $2.5 billion is more than the gross domestic product of some small countries, including Belize, Bhutan, and the Republic of Sierra Leone.  For Moore’s Law to hold, Rock’s Law must fall, or vice versa. But no one can say which will give out first. 1968, a new chip plant cost about $12,000. At the time, $12,000 would buy a nice home in the suburbs. An executive earning $12,000 per year was “making a very comfortable living.” But this “law” cannot hold forever ...  Rock, Intel financier  “The Contemporary version: 1.5 Historical Development Rock’s Law  Arthur  “The  microprocessadores  1980 - …(1ºp em 1974)  Computadores pessoais / 1.6 The Computer Level Hierarchy  Computers consist of many things besides chips.  Before a computer can do anything worthwhile, it must also use software.  Writing complex programs requires a “divide and conquer” approach, where each program module solves a smaller problem.  Complex computer systems employ a similar technique through a series of virtual machine layers. 4 Hardware e Software das Tecnologias de Informação V 0.2, V.Lobo, EN/ISEGI, 2013 1.6 The Computer Level Hierarchy  Each virtual machine layer is an abstraction of the level below it.  The machines at each level execute their own particular instructions, calling upon machines at lower levels to perform tasks as required.   Level 4: Assembly Language Level  The   1.6 The Computer Level Hierarchy  Level 2: Machine Level  Also known as the Instruction Set Architecture (ISA) Level.  Consists of instructions that are particular to the architecture of the machine. Level 3: System Software Level  Controls executing processes on the system.  Protects system resources.  Assembly language instructions often pass through Level 3 without modification. Level 1: Control Level  A control unit decodes and executes instructions and moves data through the system.  Control units can be microprogrammed or hardwired.  A microprogram is a program written in a lowlevel language that is implemented by the hardware.  Hardwired control units consist of hardware that directly executes machine instructions. Level 5: High-Level Language Level level with which we interact when we write programs in languages such as C, Pascal, Lisp, and Java. upon assembly language produced from Level 5, as well as instructions programmed directly at this level. 1.6 The Computer Level Hierarchy execution and user interface level. level with which we are most familiar.  The  Acts  Level 6: The User Level  Program Computer circuits ultimately carry out the work. 1.6 The Computer Level Hierarchy  1.6 The Computer Level Hierarchy  Programs written in machine language need no compilers, interpreters, or assemblers. 1.6 The Computer Level Hierarchy  Level 0: Digital Logic Level  This level is where we find digital circuits (the chips).  Digital circuits consist of gates and wires.  These components implement the mathematical logic of all other levels. 5 Hardware e Software das Tecnologias de Informação V 0.2, V.Lobo, EN/ISEGI, 2013 1.7 The von Neumann Model  On the ENIAC, all programming was done at the digital logic level.  Programming the computer involved moving plugs and wires.  A different hardware configuration was needed to solve every unique problem type. Configuring the ENIAC to solve a “simple” problem required many days labor by skilled technicians. 1.7 The von Neumann Model  Today’s stored-program computers have the following characteristics:  Three hardware systems: A central processing unit (CPU) A main memory system  An I/O system 1.7 The von Neumann Model  Inventors of the ENIAC, John Mauchley and J. Presper Eckert, conceived of a computer that could store instructions in memory.  The invention of this idea has since been ascribed to a mathematician, John von Neumann, who was a contemporary of Mauchley and Eckert.  Stored-program computers have become known as von Neumann Architecture systems. 1.7 The von Neumann Model  This is a general depiction of a von Neumann system:  These computers employ a fetchdecode-execute cycle to run programs as follows . . .    The capacity to carry out sequential instruction processing.  A single data path between the CPU and main memory.  This single path is known as the von Neumann bottleneck. 1.7 The von Neumann Model  The control unit fetches the next instruction from memory using the program counter to determine where the instruction is located. 1.7 The von Neumann Model  The instruction is decoded into a language that the ALU can understand. 6 Hardware e Software das Tecnologias de Informação V 0.2, V.Lobo, EN/ISEGI, 2013 1.7 The von Neumann Model  Any data operands required to execute the instruction are fetched from memory and placed into registers within the CPU. 1.8 Non-von Neumann Models 1.7 The von Neumann Model  The ALU executes the instruction and places results in registers or memory. 1.8 Non-von Neumann Models  Conventional stored-program computers have undergone many incremental improvements over the years.  In the late 1960s, high-performance computer systems were equipped with dual processors to increase computational throughput.  These improvements include adding specialized buses, floating-point units, and cache memories, to name only a few.  In the 1970s supercomputer systems were introduced with 32 processors.   But enormous improvements in computational power require departure from the classic von Neumann architecture. Supercomputers with 1,000 processors were built in the 1980s.  In 1999, IBM announced its Blue Gene system containing over 1 million processors.  Adding processors is one approach. 1.8 Non-von Neumann Models Conclusion  Parallel processing is only one method of providing increased computational power.   More radical systems have reinvented the fundamental concepts of computation. This chapter has given you an overview of the subject of computer architecture.   These advanced systems include genetic computers, quantum computers, and dataflow systems. You should now be sufficiently familiar with general system structure to guide your studies throughout the remainder of this course.   At this point, it is unclear whether any of these systems will provide the basis for the next generation of computers. Subsequent chapters will explore many of these topics in great detail. 7
© Copyright 2025