$SSHQGL[& 62/87,216729(5,),&$7,21352%/(06,1 &+$37(5 C.1. INTRODUCTION 7KLVDSSHQGL[FRQWDLQVWKHDQDO\WLFDOVROXWLRQVIRUWKHWKUHHYHULILFDWLRQSUREOHPV GLVFXVVHGLQ&KDSWHU C.2. VERIFICATION PROBLEM ONE – TERZAGHI ONEDIMENSIONAL CONSOLIDATION 7HU]DJKLGHULYHGWKHIROORZLQJSDUWLDOGLIIHUHQWLDOHTXDWLRQWRGHVFULEHWKH VHWWOHPHQWRIDVDWXUDWHGFOD\OD\HUDQGGLVVLSDWLRQRIH[FHVVSRUHSUHVVXUHVZLWK WLPH cv :KHUH (TXDWLRQ& ∂ 2 u ∂u = ∂ 2 z ∂t cv LVWKHFRHIILFLHQWRIFRQVROLGDWLRQ u LVWKHH[FHVVSRUHZDWHUSUHVVXUHLQWKHVRLO t LVWLPH z LVGHSWK 7KHERXQGDU\DQGLQLWLDOFRQGLWLRQVDUH u ( z ,0 ) = q u( 0, t ) = 0 0 ≤ z ≤ 2H IRU t > 0 u( 2 H , t ) = 0 + LV WKH OHQJWK RI WKH ORQJHVW GUDLQDJH SDWK 7KH VHSDUDWLRQ RI YDULDEOHV WHFKQLTXHLVXVHGWRREWDLQDVROXWLRQWRWKHSDUWLDOGLIIHUHQWLDOHTXDWLRQIRUWKH $SSHQGL[& 'DYLG-%HQWOHU SUHVFULEHGERXQGDU\DQGLQLWLDOFRQGLWLRQV7KHUHVXOWLQJVROXWLRQIRU u( z , t ) LVD FRQYHUJHQWLQILQLWHVHULHV ∞ u 4 (2 n + 2)π z (2 n + 1) 2 π 2 =∑ T sin exp − q n = 0 (2 n + 1)π 2 H 4 (TXDWLRQ& :KHUH T LVWKHGLPHQVLRQOHVVWLPHIDFWRU = cv t H2 7KHGHJUHHRIFRQVROLGDWLRQDWDQ\GHSWK]LVJLYHQE\ U z = 1 − u 7KHDYHUDJH q GHJUHHRIFRQVROLGDWLRQ8LVREWDLQHGE\LQWHJUDWLQJWKHGHJUHHRIFRQVROLGDWLRQ U z RYHUWKHHQWLUHVRLOFROXPQDQGGLYLGLQJE\WKHKHLJKWRIWKHVRLOFROXPQ ∞ U = 1− ∑ n =0 12n + 16 π 7KHH[SUHVVLRQVIRU (2n + 1) π T "# ! 4 $ 2 8 2 2 exp 2 (TXDWLRQ& u DQG U DUHHDV\WRHYDOXDWHXVLQJHLWKHUDSURJUDPPDEOH q FDOFXODWRURUDVSUHDGVKHHW C.3. VERIFICATION PROBLEM TWO – CONSOLIDATION OF CONTIGUOUS CLAY LAYERS WITH DIFFERENT PERMEABILITY *UD\ GHYHORSHG DQDO\WLFDO VROXWLRQV WR JHQHUDO RQHGLPHQVLRQDO SUREOHP RI WZR FRQVROLGDWLQJ DGMDFHQW FRPSUHVVLEOH VWUDWD *UD\·V VROXWLRQ DQG LWV QXPHULFDOHYDOXDWLRQIRUYHULILFDWLRQSUREOHPDUHGHPRQVWUDWHGLQWKHIROORZLQJ 0DWKFDGZRUNVKHHW'FRQWLJXRXVOD\HUVPFG Verification Problem Two - consolidation of contiguous clay layers with different permeability The purpose of this Mathcad worksheet is to evaluate the expressions for the excess pore pressure in two contiguous clay of unlike compressibility developed by Gray, H. (1944), "Simultaneous consolidation of contiguous layers of unlike compressible soils", ASCE Transactions, No. 2258, pp. 1327-1356. I a1 k1 c1 e1 h1 Case a. Free drainage at top and bottom Case b. Free drainage at top only Terminology and definitions stress-strain relations: the soil is assumed to be linearly elastic k = coefficient of permeability av = coefficient of compressibility e = void ratio e0 = initial void ratio c = coefficient of consolidation p = surface traction applied at t = 0 Hs H 1 e z h 1 e ks µ = poisson's ratio E = Young's modulus D = constrained modulus mv = coefficient of compressibility k 1 D e k c a v .γ .( 1 z e2 Hs II a2 k2 c2 h2 = νh1 The general cases of two adjacent compressible strata: E .( 1 µ ) E G . . . (1 µ ) (1 2 µ ) 2 (1 µ ) mv e) 1 D av mv 1 e0 Define four dimensionless numbers (µ, σ, ν, T): µ 2 c1 c2 σ 1 . k s1 µ k s2 ν h2 h1 T c1 h1 u1 = excess pore pressure in layer I u2 = excess pore pressure in layer II U1 = average degree of consolidation in layer I U2 = average degree of consolidation in layer II 2 .t Note: The time factor, T, is based only on the properties of layer I and the time, t. 327 Appendix C 328 Gray (1944) developed the following analytical solutions for the two cases: Case a ∞ ∑ u1 = C n e − TA n sin( A n 2 n =1 ∞ ∑ u2 = z ) sin( µν A n ) h1 C n e − TA n sin( A n ) sin( 1 + ν − 2 n =1 ∞ U 1 = 1 − 2∑ sin(µνAn )(σ sin(µνAn ) + sin An ) z )µ An h1 (1 − cos An )e −TA 2 n (An ) (σ sin (µνAn ) + µν sin ( An )) 2 ∞ sin An (σ sin µνAn + sin An ) (1 − cos µνAn )e −TA U2 = 1− ∑ 2 2 2 µν n=1 (An ) (σ sin µνAn + µν sin An ) 2 n =1 2 2 2 n in which An must be a root of F ( A ) = σ cos A sin µν A + sin A cos µν A and Cn = 2 p σ sin µν A n + sin µν A n σ A n sin 2 µν A n + µν sin 2 A n Case b u1 = u2 = ∞ ∑ n =1 ∞ ∑ n =1 2 C n e − TA 2 n ∞ U U 1 2 z ) sin( µν A n ) h1 C n e − TA n cos( A n = 1 − 2∑ n =1 = 1 − 2 µν (A n ) cos( A n ) sin( 1 + ν − z )µ An h1 sin( A n )(cos( A n ) sin µν A n ) 2 ( σ sin ∞ 2 cos ∑ (A ) (σ 2 n =1 n ( µν A n ) + µν cos 2 sin 2 2 G ( A ) = σ sin A sin µν A + cos A cos µν A and σ A n sin 2 ) µν A n + µν cos in which An must be a root of Cn = 2 ( A n )) A n (1 − cos µν A n 2 p cos A n µν A n + µν A n cos 2 An e − TA n 2 An ) e − TA 2 n Verification Problem Two - consolidation of contiguous clay layers with different permeability 329 Develop solution for Case b using Gray's solution. First, set up procedure for finding roots of G(A). G( A , σ , µ , ν ) σ .sin( A ) .sin( µ .ν .A ) cos( A ) .cos( µ .ν .A ) Define the function zbrak which will bracket the first n roots of G(A,σ,µ,ν). The brackets for each root are returned as a row in an array. The values of the left and right brackets are in column zero and one, respectively. The variable inc controls the step size of A that zbrak uses when incrementing A. zbrak( n , σ , µ , ν , inc ) W 0 A 0 B A fa G( A , σ , µ , ν ) for i ∈ 1 .. n check 0 while check 0 B B inc G( B , σ , µ , ν ) if fa .fb < 0 fb check 1 Wi 1,0 A Wi 1,1 B A B fa fb if fa .fb > 0 fa fb A B W Define the function brent, which uses Brent's method for finding the root of a function known to lie between a and b. The root is refined until its accuracy is tol or the maximum no. of iterations is reached. First, define the functions test and test1 which will perform logical tests for brent. test( fb , fc ) if fc > 0 if fb > 0 1 break if fc < 0 if fb < 0 otherwise 1 break 1 test1( e , toli , fa , fb ) 1 if fa > fb 1 otherwise if e toli Machine ε: ε mach 1 .10 15 Appendix C Reference for Brent's method: Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-Hall), Chapters 3, 4. brent( a , b , σ , µ , ν , tol ) itmax fa 100 G( a , σ , µ , ν ) G( b , σ , µ , ν ) break if fa .fb > 0 fb c a fc fa d b e d a for i ∈ 1 .. itmax if test( fb , fc ) > 0 c if a fc fa d b e d a fc < fb a b b c c a fa fb fb fc fc fa 2 .ε mach . b 0.5 .( c b ) toli xm 0.5 .tol b break if xm toli break if fb 0 if test1( e , toli , fa , fb ) > 0 s fb fa if a c p q2 2 .xm .s 1.0 otherwise fa q2 fc r fb s 330 Verification Problem Two - consolidation of contiguous clay layers with different permeability r fc p s .( 2 .xm .q2 .( r q2 ) ( b a ) .( 1.0 q2 ( q2 1.0 ) .( r 1.0 ) .( s 1.0 ) q2 if p > 0 q2 p p if 2 .p < min e d d p q2 3 .xm .q2 toli .q2 e .q2 otherwise d xm e d otherwise d xm e a b b fa fb b b b b fb d d if d > toli xm toli . xm G( b , σ , µ , ν ) otherwise r) ) 331 Appendix C 332 Define remaining functions necessary for solving an example problem for Case b. INC 0.1 i the variable i will determine how many terms are evaluated when approximating the infinite series. 12 u 1 p , σ , µ , ν , z, h 1 , T sum :excess pore pressure in layer I 0 zbrak( i , σ , µ , ν , INC ) W for n ∈ 1 .. i An brent Wn 1,0 , Wn 1,1 , σ , µ , ν , TOL 2 .p .cos( An ) Cn σ .An .sin( µ .ν .An ) µ .ν .An .cos( An ) 2 2 term Cn .exp( T .An ) .cos An . sum sum 2 z . sin( µ .ν .An ) h1 term sum u 2 p , σ , µ , ν , z, h 1 , T sum 0 :excess pore pressure in layer II zbrak( i , σ , µ , ν , INC ) W for n ∈ 1 .. i An brent Wn 1,0 , Wn 1,1 , σ , µ , ν , TOL 2 .p .cos( An ) Cn σ .An .sin( µ .ν .An ) 2 µ .ν .An .cos( An ) 2 term 2 Cn .exp( T .An ) .cos( An ) .sin µ .An . 1 sum sum ν z h1 term sum u p, σ , µ , ν , z, h 1, T Data p , σ , µ , ν , h 1 , T , inc u 1 p, σ , µ , ν , z, h 1, T if z h 1 u 2 p, σ , µ , ν , z, h 1, T otherwise a0 , 0 0 a0 , 1 u p , σ , µ , ν , a0 , 0 , h 1 , T step ν .h 1 h1 inc for j ∈ 1 .. inc a aj , 0 aj aj , 1 u p , σ , µ , ν , aj , 0 , h 1 , T 1, 0 step :general expression for excess pore pressure at elevation z. Data is a function for generating an excess pore pressure isochrones. Verification Problem Two - consolidation of contiguous clay layers with different permeability 333 Example Problem (after Gray, H. 1944) p H σ 100 2 µ ν 5 Data p , σ , µ , ν , h 1 , 100 , 100 4 h1 2 e1 e2 Data p , σ , µ , ν , h 1 , 200 , 100 I 1 0.8 The solution for this example agrees with Gray's solution. z/H 0.6 0.4 0.2 0 0 0.2 0.4 T = 100 T = 200 0.6 0.8 1 Values of u/p Example of how the first i roots of G(A) are found A 0 , .02 .. .7 i 5 First, zbrak is called to bracket the roots 2 G( A , σ , µ , ν ) I zbrak( i , σ , µ , ν , .05 ) j 1 .. i Next, brent is called to find the roots. Brent uses the brackets found by zbrak. 0 rj ,I brent Ij 1 1, 0 j 2 0 0.5 A 1 brackets solj 1 G rj roots 1 ,σ,µ,ν 0.071 1.874 10 0.2 0.215 0 I = 0.35 0.4 0.5 0.55 0.65 0.7 r = 0.36 , σ , µ , ν , 1 .10 sol = 2.331 10 0.508 0 0.657 0 13 15 13 check the roots Value of G at roots 0.05 0.1 0.25 1, 1 Appendix C 334 Define the expressions for the degrees of consolidation of layers I and II for case b. i 12 INC .1 Ucon 1 ( σ , µ , ν , T ) sum 0 zbrak( i , σ , µ , ν , INC ) W for n ∈ 1 .. i An brent Wn An Ucon 2 ( σ , µ , ν , T ) W 2. sum sum 2 .sum sum , Wn 1, 1 , σ , µ , ν , TOL sin( An ) .cos( An ) .sin( µ .ν .An ) term 1 1,0 σ .sin( µ .ν .An ) 2 µ .ν .cos( An ) .exp( T .An2 ) 2 term 0 zbrak( i , σ , µ , ν , INC ) for n ∈ 1 .. i An term sum 1 brent Wn 1,0 , Wn 2 cos( An ) .( 1 1, 1 cos( µ .ν .An ) ) 2 An . σ .sin( µ .ν .An ) sum , σ , µ , ν , TOL 2 µ .ν .cos( An ) 2 .exp( T .An2 ) term 2 . sum µ .ν Define expression for "resultant" degree of consolidation for both layers. U res( σ , µ , ν , T ) U1 Ucon 1 ( σ , µ , ν , T ) U2 Ucon 2 ( σ , µ , ν , T ) ν .U2 1 U1 ν Verification Problem Two - consolidation of contiguous clay layers with different permeability 335 Verification problem 2 for SAGE p 100 σ 1 2 1 2 µ ν 1 h1 5 e1 e2 First, plot G(A) to find out nature of function for the parameters of the given problem. A 0 , .1 .. 10 1 G( A , σ , µ , ν ) 0 1 0 5 A 10 INC = 0.1 is a reasonable increment for the function zbrak to bracket the roots of G(A) for this problem. Note that INC must be small enough to "capture" each root of G(A). Data p , σ , µ , ν , h 1 , .1 , 100 I Data p , σ , µ , ν , h 1 , .5 , 100 1 0.8 0.6 z/H H 0.4 0.2 0 0 0.2 T = 0.10 T = 0.50 0.4 0.6 Values of u/p 0.8 1 Appendix C T trial( beg , end , n ) T val k beg Define the function Ttrial to generate the time factors, T, for a plot of resultant U versus the logarithm of T. 10 0 1 for j ∈ beg .. end num 10 1 beg is the beginning log cycle (i.e. 0 for 100 ) j for jj ∈ 1 .. n T val k k 336 num . k end is the ending log cycle (i.e. 1 for 101 ) n is the number of increments for T in each log cycle 10 . jj n 1 Example: 1 T val 3.333 6.667 T trial( 0 , 2 , 3 ) = 10 33.333 66.667 l 0 , 1 .. 40 100 :range variable used for plot Resultant U versus log T for Verification Problem 2 1 0.8 U 0.6 0.4 0.2 0 1 10 3 0.01 0.1 T 1 10 9HULILFDWLRQSUREOHPWKUHH²VXUIDFHVHWWOHPHQWRIFOD\OD\HUFRQVROLGDWLQJ XQGHUDVWULSIRRWLQJORDG C.4. VERIFICATION PROBLEM THREE – SURFACE SETTLEMENT OF CLAY LAYER CONSOLIDATING UNDER A STRIP FOOTING LOAD *LEVRQHWDOGHULYHGDQH[SUHVVLRQIRUWKHVHWWOHPHQWRIWKHVXUIDFHRID FOD\OD\HUORDGHGZLWKDVWULSIRRWLQJ7KHH[SUHVVLRQGHYHORSHGE\*LEVRQHWDO DQG LWV QXPHULFDO HYDOXDWLRQ DUH GHPRQVWUDWHG LQ WKH IROORZLQJ 0DWKFDG ZRUNVKHHW*LEVRQHWDOVROXWLRQPFG Appendix C 338 The purpose of this MathCAD worksheet is to evaluate the expression for the surface settlement of a clay layer loaded with a strip footing. The original derivations were done by Gibson, R.E., Schiffman, R.L.,and Pu, S.L. "Plane Strain and Axially Symmetric Consolidation of a Clay Layer on a Smooth Impervious Base," Quartly Journal of Mechanics and Applied Mathematics, Vol. XXIII, Pt. 4, 1970, pp. 505-520. The expression that they developed is difficult to evaluate, because it involves an semi-infinite integral and an infinite series. Furthermore, it also involves finding the roots of a characteristic equation. b b f x,r z h Gibson et al found the following expression for the settlement of the surface of the clay layer. ∞ η. f . 2. G w o ( x, t ) 2 Γ ( x, λ ) . tanh ( λ ) . 2 . η. M ( λ ) 2 2. η 1 λ P( λ , t ) dλ 0 where: ∞ L( λ ) 2 1 λ . η .( 1 λ .csch( λ ) .sech( λ ) ) 1 λ P( λ , t ) 2 n=1 1 M ( λ ) λ .η .coth( λ ) .( 1 F α n, λ 1 M( λ ) 1. 1 2 λ .csch( λ ) .sech( λ ) ) tan α n 2 1 1 α n .tan α n αn are the roots of the characteristic equation: α 2 2 ct λ . 2 h F α n, λ b x 2 .h . sin λ . .cos λ . plane strain . h h πλ b r Γ ( r , λ ) b . J 1 λ . .J 0 λ . h h axisymmetric material parameters: ν = poisson's ratio L( λ ) α .M ( λ ) .tan( α ) 2 Γ ( x, λ ) αn exp G = shear modulus k = permeability of the clay η 1 1 ν 2 .ν G E . 2 (1 ν) c 2 .G .η . k γw γw = unit weight of pore fluid (water) c = coefficient of consolidation Verification Problem Three - surface settlement of clay layer consolidating under strip footing load 339 For the purposes of an example problem: h 4 ν 0.30 k b 4 E 33333 γw η 1 (1 ν 2 .ν ) G 0.0028 η .( 1 2 .( 1 c ν) M( λ ) 1. 1 2 1 .10 ε k 2 .G .η . γw 1 .10 12 1 .10 14 12 plane strain case λ .csch( λ ) .sech( λ ) ) 1 F( α , λ ) TOL ε mach E 1 L( λ ) 1000 62.4 b x 2 .h . sin λ . .cos λ . h h π .λ Γ ( x, λ ) f tan( α ) 2 1 .λ M( λ ) η .( 1 λ .coth ( λ ) λ .csch( λ ) .sech( λ ) ) tan( α ) 2 α Determine the roots ,αn , of the characteristic equation α2 - L(λ) - α∗M(λ)*tan(α) q( α , λ ) α 2 L( λ ) α .M ( λ ) .tan( α ) Define the function bisect which returns a vector containing a and b, where a and b define an interval (a,b) for which f(a)*f(b)<0, using the Bisection Method. For this case f(x) is q(a,l) bisect ( n , λ , φ , itmax ) a (n 1 ) .π b n 1 . π 2 iter The initial estimate of (a,b) is (nπ,n+1/2π) 0 while iter < itmax xnew iter b a a 2 iter Note: α1 occurs in the interval (0,π/2), α2 occurs in the interval (π,3π/2) and so on. 1 a b break if fa (a (b a b b a π <φ q( a , λ ) fnew The function, bisect, will be used to determine a very small interval (a,b) which contains αn . q ( xnew , λ ) xnew ) if ( fa .fnew > 0 ) xnew ) if ( fa .fnew 0 ) Appendix C 340 Define the function Muller which uses Muller's method to refine the estimate of αn , the root of q(α,λ). Mulle r 0x, x 1 , x 2 , maxit , λ for iter ∈ 1.. maxit h0 x1 x0 h1 x2 x1 P0 q x 0, λ P1 q x 1, λ P2 q x 2, λ P1 δ0 P0 h0 P2 δ1 P1 h1 a0 P2 a2 δ1 δ0 h1 h0 a1 a 2 .h 1 δ1 D a1 2 4 .a 2 .a 0 E a1 D if a1 E a1 D otherwise h 2. D > a1 D a0 E xstar 2x x0 x1 x1 x2 x2 xstar h xstar Reference: Asaithambi, N.S. Numerical Analysis Theory and Practice. Saunders College Publishing. Verification Problem Three - surface settlement of clay layer consolidating under strip footing load 341 Define the root finding function alpha. alpha finds the nth root of the characteristic equation: q(α,λ). Alpha uses the bisection method to narrow the interval around the nth root and then calls Muller to "polish" the root. Note: Muller's method finds real and complex roots. alpha( n , λ ) x bisect ( n , λ , ε , 42 ) Re Muller x0 , Example: an x0 x1 2 alpha( 2 , 5 ) , x1 , 1 , λ an = 4.314963 term( n , λ , t ) Define the function, term, which evaluates the nth term of P(l,t). αn q ( an , 5 ) = 1.776357 10 14 alpha( n , λ ) num denom exp αn 2 2 c .t λ . 2 h F α n, λ num denom Define the function, H(λ,t), which estimates P(λ,t) by summing P(λ,t) until the terms computed become insignificant. H( λ , t ) H 0 i 350 si 0 10 .TOL check while check > TOL i i 1 term( i , λ , t ) si check H H si H if H >0 si break if i 1 H Note that roundoff and truncation errors pose serious problems to the evaluation of P(λ,t) using H(λ,t). Next, Euler's transformation of alternating series and van Wijngaarden's implementation will be examined as an alternative way of approximating P(λ,t). Appendix C 342 Define the function Euler, which evaluates Euler's transformation of alternating series with van Wijngaarden's implementation. One term of the original alternating series are incorporated into the estimates of the partial differences. , wk1, wk2 , su m) sub 1( nter m if wk2 wk1 newsum n nterm otherwise newsum n 0.5. wk2 sum Sub1 is a subroutine used by Euler. Sub1 determines whether a new partial difference should be evaluated (increase nterm by 1) or just revise the estimate of S. 1 sum wk2 nterm n newsum Eule (r ter ,m jter , wks m p) if jter m 1 n Euler estimates the summation of a convergent infinite series whose terms alternate in sign. 1 0.5. term sum wksp2 term otherwise n wksp0 tmp wksp2 wksp2 term for j ∈ 1.. n 1 dum wksp j wkspj tmp wkspn 2 if n 2 2 0.5 . wkspj 1 tmp dum 2 0.5 . wkspn a sub 1 n, wksp n n a0 sum Wijngaarden's implementation adapts Euler's transformation to positive or negative convergent series. 1 1 tmp , wkspn 2 , wksp1 a1 wksp0 n wksp1 sum wksp Reference: Press, W.H., Teukolosky, S. A., Vetterling, W.T., and Flannery, B.P. Numerical Recipes in FORTRAN. 2nd ed. Cambridge University Press. Verification Problem Three - surface settlement of clay layer consolidating under strip footing load ∞ Set up a trial series to evaluate the function Euler. Solve the problem: A ( k) n n=1 trial( k ) j for k<1: 0 s k A 1 0 W k 0 check 10 .TOL W old 0 The function trial uses the Euler function to estimate A. while check > TOL j j 1 s 0 for t ∈ 8 , 7 .. 0 s ( 1) s t 2 .k s 1. j t 2 .j Use van Wijngaarden's procedure for evaluating a positive series with Euler's technique (i.e. convert the series into an alternating series) s Euler( s , j , W ) W W1 check W old W old W old if W old > 0 W1 W1 j Asum( k , n ) s Asum evaluates A through n terms. 0 for j ∈ 1 .. n s Asum s j k 1 , 22 = 0.333333333333314 4 trial 0.33333333333335 1 = 4 22 A 1 3 for k = 1/4 This verifies that Euler works, but it does not offer significant savings in computations in this particular case. 343 Appendix C 344 Define J(λ,t), which will estimate P(λ,t) using the Euler's transformation. Van Wijngaarden's transformation is used to convert P(λ,t) into an alternating series (terms in the sum alternate in sign). Euler's transformation only works for alternating series. J( λ , t ) W 0 check 10. TOL jterm 0 Σ 0 r 0 while check > TOL r r 1 jterm wr jterm 1 0 for k ∈ 12, 11 .. 0 wr ( 1) wr k k 2 .ter m 2 .r , λ , t wr jterm 1. wr ,W W Eule r wr , jter m check Σ Σ W1 Σ if Σ >0 W1 Σ r Examples of estimating P(λ,t) with J(λ,t) and H(λ,t): J( 10, 0) = 2.284385 H( 10 , 0 ) = 2.266755 J( .5, 0) = 23 J( 10, 1) = 2.36028 10 0.13361 H( .5 , 0 ) = 0.133549 24 7 H( 10 , 1 ) = 2.36028 10 7 7 J( .5, 1) = 0.087142 H( .5 , 1 ) = 0.087142 6 It is apparent that the functions J and H give slightly different results at times early in the solution, but there is almost no difference in the values later in the solution. The source of this difference is probably round-off error. The round-off is probably larger for H since it is a simple summation. Verification Problem Three - surface settlement of clay layer consolidating under strip footing load Define the function Gauleg which will return a matrix whose 1st column contains the Gauss points and whose 2nd column contains the Gauss weights for the m-point quadrature rule for the interval (a,b) Gauleg( a , b , m ) j m 2 3 .10 0.5 .( a 14 eps xm xl 1 b) 0.5 .( b a) for i ∈ 1 .. j z cos π . i .25 m .5 2 .eps check while check > eps p1 1 p2 0 for k ∈ 1 .. m p3 p2 p2 p1 ( 2 .k p1 pp m. z1 z z z1 1, 0 Am Ai i,0 1, 1 Am i,1 (k 1 ) .p3 z .p1 p2 z .z 1 p1 pp check Ai 1 ) .z .p2 k z z1 xm xl .z xm xl .z 2. ((1 Ai xl . z z ) .pp .pp ) 1,1 A Examples: 0.354062724 Gauleg( 1 , 1 , 2 ) = 0.5773502692 1 0.5773502692 1 0.872664626 Gauleg( 0 , π , 3 ) = 1.5707963268 1.3962634016 2.7875299296 0.872664626 345 Appendix C 346 Now, define a MathCAD function, w, to evaluate the settlement, w, at any (x,t). The variable quad control how the integration is performed. Gauss-Legendre quadrature with a quad-point rule is used. The integral is broken up into subintegrals each of length π. This is done because the period of the function, w, is π. w( x , t , qua d) w i 0 0 GAUS Gaule g( 0, π , qua d) check 1 while check > 1 .10 i i a (i b i .π 3 1 sum 1) .π 0 for j ∈ 1.. qua d weight λ GAUSj sum w w GAUSj 1,0 1,1 a su m Γ ( x , λ ) . w sum check sum w η .f . w 2 .G w( 0 , 0 , 5 ) = 0.079367 tan h( λ ) . 2 .η .M ( λ ) 2 2 .η 1 λ 2 J( λ , t ) .weight 0 Verification Problem Three - surface settlement of clay layer consolidating under strip footing load Define two functions: wfinal - evaluates the final settlement at x wimmed - evaluates the immediate settlement at x w final( x , n , quad ) w 0 check 1 for i ∈ 1 .. 2 .n a (i b i. 1). π 2 π 2 Gauleg( a , b , quad ) GAUS sum 0 for j ∈ 1 .. quad weight λ GAUSj sum w w w immed( x , n , quad ) GAUSj sum w sum check sum w η .f ( 2 .η 1 ) .G w final( x , n , quad ) . 1, 1 1, 0 Γ ( x , λ ) .tanh( λ ) .weight λ .( 1 λ .csch( λ ) .sech( λ ) ) .w 2 .η 1 2 .η For our example problem: w final( 0 , 20 , 5 ) = 0.111079 G .w final( 0 , 20 , 5 ) w immed( 0 , 5 , 5 ) = 0.07976 G .w immed( 0 , 20 , 5 ) b .f b .f = 0.356018 = 0.254298 These results agree with Figure 5 from Gibson et al, 1970. The following pages contain plots that investigate the nature of the functions involved in Gibson et al's solution. 347 Appendix C jj ..1 30 ll 348 1 0 Plot of the first 30 terms of the infinite series P(λ,t). for λ = 1and t = 0 and 0.02 ter m( j ,j ,l0.02 l ) 0.1 ter m( j ,j ,l0l) 0.2 0 10 20 30 jj The effects of noise and roundoff error appear in the higher values of αn (~n>10). λ = 1 0 q( alph (a ,j j) , l l) 5 10 9 1 10 8 0 ll 10 jj 20 30 Now set λ = 20 and replot the data. 20 0 J( l ,l )0 = ter m( j ,j ,l0.02 l ) ter m( j ,j ,l0l) 4.566113 J( l ,l .02 )= 25 0.2 29 H( l l, 0) = 4.4956 0.4 0 10 20 30 jj H( l l, .02) = 0.428654 Note the "pulse" type shape of the plot of the infinite series P(λ,t). This "pulse" shape appears when λ is greater than π. 5 10 10 0 ter m( j ,jπ , 0.02 ) q( alph (a ,j j) , l l) 0.428654 0 0.1 ter m( j ,jπ , 0 ) ter m( j ,jπ .2 , 0 ) 0.2 5 10 10 0 10 jj 20 1 30 0.3 0 1 jj 2 1 Verification Problem Three - surface settlement of clay layer consolidating under a strip footing load ll 349 0 , .2 .. 20 Plot of integrand of wfinal vs. lambda 0.08 This plot clearly shows the damped oscillating nature of the integrand of Gibson et al's expression for settlement. 0.06 0.04 0.02 0 0.02 0 ll 5 10 15 20 20 , 20.2 .. 40 Plot of integrand of wfinal vs. lambda 4 10 4 2 10 4 0 2 10 4 4 10 4 20 25 30 35 40 SAGE results are compared with this solution in Chapter 3.
© Copyright 2025