ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج اﻟﺮﺣﻤـــﻦﻋﺒﺪاﻟﺮﺣـــﻴﻢ ﺑﺴـــﻢ اﷲ ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ 1 2 ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت α А Alpha اﻟﻔﺎ β В Beta ﺑﺘﺎ γ Г Gamma δ Δ Delta ε Е Epsilon ζ Z Zeta η H Eta إﺗﺎ θ Θ Theta ﺗﻴﺘﺎ ι I Iota ﻳﻮﺗﺎ κ K Kappa آﺎﺑﺎ λ Λ Lambda μ M Mu ﻣﻴﻮ ν N Nu ﻧﻴﻮ ξ Ξ Xi آﺴﺎي ο O Omicron π Π Pi ﺑﺎي ρ Ρ Rho رو σ Σ Sigma τ Τ Tau υ Υ Upsilon φ Φ Phi ﻓﺎي χ Χ Chi آﺎي ψ Ψ Psi ﺑﺴﺎي ω Ω Omega أوﻣﻴﻐﺎ ﻏﺎﻣﺎ دﻟﺘﺎ إﺑﺴﻠﻮن زﻳﺘﺎ أو دﻳﻐﺎﻣﺎ ﻻﻣﺪا أو ﻻﻣﺒﺪا أﻣﻴﻜﺮون ﺳﻴﻐﻤﺎ ﺗﺎو أوﺑﺴﻠﻮن 3 ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ اﻟﻌﻼﻣﺔ إﻧﺠﻠﻴﺰي ≤ Less than equal ≥ Greater than ﻋﺮﺑﻲ ﻣﺜﺎل أﺻﻐﺮ أو ﻳﺴﺎويx ≤ y y أﺻﻐﺮ أو ﺗﺴﺎويx أآﺒﺮ أو ﻳﺴﺎويa ≥ b b أآﺒﺮ أو ﺗﺴﺎويa equal < Less than > Greater than ≅ Approximately Congruent ∝ Proportional ≡ Is congruent to Modulo ≠ Not equal ± Plus-minus = Equal × Times, cross أﺻﻐﺮ3 < 4 أآﺒﺮ3 > 2 ﺗﻘﺮﻳﺒًﺎ1.99997 ≅ 2 ( ﻣﺘﻄﺎﺑﻖ )هﻨﺪﺳﻪΔABC ≅ ΔA ′B ′C ′ ﻣﺘﻨﺎﺳﺐF ∝ x ⇒ F = kx ﺗﻜﺎﻓﺆ ﻣﺘﻄﺎﺑﻘﺔ5 ≡ 1(mod 2) ﻻ ﻳﺴﺎوي3 ≠ 2 زاﺋﺪ ﻧﺎﻗﺺx 2 = 1 ⇒ x = ±1 ( ﻳﺴﺎويa = b ) & (b = c ) ⇒ a = c ، ﺿﺮب ﻋﺪدي2 × 3 = 6 → ﺟﺪاء ﺿﺮب ﻣﺘﺠﻬﻲ A = ax i + ay j + az k → B = bx i + b y j + bz k i → → A × B = ax bx + Plus - Minus ﺟﻤﻊ2 + 3 = 5 ﻧﺎﻗﺺ، ﻃﺮح2 − 3 = −1 j k ay by az bz ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ 6 ÷ 3 = 2ﺗﻘﺴﻴﻢ 50%اﻟﻨﺴﺒﺔ اﻟﻤﺌﻮﻳﺔ 00 50 0اﻟﻨﺴﺒﺔ ﻓﻲ اﻷﻟﻒ → → A ⋅ B = A B cosθ ﺿﺮب داﺧﻠﻲ 5! = 1 × 2 × 3 × 4 × 5 = 120ﻋﺎﻣﻠﻲ أو ﻓﺎآﺘﻮرﻳﻞ ﺟﺬر ﺟﺬر ﺗﺮﺑﻴﻊ 4=2 ﺟﺬر ﺗﻜﻌﻴﺐ 27 = 3 3 ﺟﺬر ﻧﻮﻧﻲ m n ﻧﺎﻗﻞ أو ﻳﺒﺎدل ﺻﻔﻮف و أﻋﻤﺪة ﻓﻲ ﻣﺼﻔﻮﻓﺔ ﻧﺎﻗﻞ 4 : Divisionأو /أو Divided by ÷ Percent % Per thousand 00 Dot . Factorial ! 0 Square root Transpose AT B = A T ⇒ b ji = aij 5.3 ⇒ [ x ] = 5 & y = 5.6 ⇒ [ y ] = 6ﺟﺰء ﺻﺤﻴﺢ ⎤ a12 ⎦⎥ a22 ⎡ a11ﻣﺼﻔﻮﻓﺔ ⎢a ⎣ 21 3(2 + (4 − 1)) = 15هﻼﻻن ،ﻗﻮﺳﺎن ﻣﺠﻤﻮﻋﻪ ﻣﺘﺘﺎﻟﻴﻪ Bracket ][ Matrix Parentheses ) ( Set Braces }{ Sequence ﺟﺰء آﺴﺮي ][10, 20 ) ( −1,0 ﻓﺘﺮة ﻣﻐﻠﻘﺔ ﻓﺘﺮة ﻣﻔﺘﻮﺣﺔ close –interval open-interval ][, )(, 5 ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ [, ) close-open ( ,] open-close ∗ Convolution ﻓﺘﺮة ﻣﻐﻠﻘﺔ ﻣﻦ ( −5, −2] اﻟﻄﺮف اﻷﻳﺴﺮ [ −10,13) ﻓﺘﺮة ﻣﻐﻠﻘﺔ ﻣﻦ اﻟﻄﺮف اﻷﻳﻤﻦ ﻣﻠﻔﻮف ﻓﻲ ﺗﺤﻮﻳﻼت ﻓﻮرﻳﻴﻪ F { g (x ) * f (x )} = F { g (x )} × F {f (x )} Absolute value ∑ اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ Determinant ﻣﺤﺪدة Summation ﻣﺠﻤﻮع ⎧x , x > 0 x =⎨ ⎩−x , x < 0 a11 a21 a22 n =10 ∑ n =0 ∏ Product ﺿﺮب n =10 ∩ ﺗﻘﺎﻃﻊ = a11 × a22 − a12 × a21 1 1 1 1 = + + ⋅⋅⋅ + n +2 2 3 11 ∏ n =0 Intersection a12 1 1 1 1 = × × ⋅⋅⋅× n +1 2 3 11 n =10 ∩A n = A 0 ∩ A1 ∩ ⋅⋅⋅ ∩ A10 n = A 0 ∪ A1 ∪ ⋅⋅⋅ ∪ A10 n =0 n =10 ∪ Uonion ﺗﺤ ﺎدإ ∪A n =0 6 ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ ∫ Integral ﺗﻜﺎﻣﻞ 2 ∫ 1 1 2 1 3 xdx = x 2 = (4 − 1) = 2 1 2 2 ∫∫ Double integral ﺗﻜﺎﻣﻞ ﺛﻨﺎﺋﻲ ∫∫ f (x , y )dxdy ∫∫∫ ∫ Triple integral ﺗﻜﺎﻣﻞ ﺛﻼﺛﻲ Line integral ﺗﻜﺎﻣﻞ ﺧﻄﻲ ∫∫∫ g (x , y , z )dxdydz ∫ dl ∫∫ Surface integral ∫∫∫ Volume integral Contour integral C ﺗﻜﺎﻣﻞ ﺳﻄﺤﻲ A ﺗﻜﺎﻣﻞ ﺣﺠﻤﻲ Therefore إذن ∵ Because ﻷن ∃ Exist ∃/ Not exist ∀ For all ⇒ ⇐ ∫∫∫ dν V ∴ ¬ ∼ أو ∫∫ d σ Propositional if then ﻣﻜﻤﻢ وﺟﻮدي b ﺗﻮﺟﺪa ∀ ﻟﺠﻤﻴﻊa , ∃b ﻣﻜﻤﻢ ﻏﻴﺮ ﺟﻮدي b ﻻ ﺗﻮﺟﺪa ∀ ﻟﺠﻤﻴﻊa , ∃/b ﻣﻜﻤﻢ آﻠﻲ b ﺗﻮﺟﺪa ∀ ﻟﺠﻤﻴﻊa , ∃b ∼( ∼ ﻧﻘﻴﺾ أو ﻧﻔﻲp ) = p إﺳﺘﻨﺘﺎج ﻣﻦ اﻟﻄﺮفp ⇒ q ⎫ ⇒ p⇒r اﻷﻳﺴﺮq ⇒ r ⎬ ⎭ إﺳﺘﻨﺘﺎج ﻣﻦ اﻟﻄﺮف اﻷﻳﻤﻦ 7 ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ ⇔ if and only if iff ∈ Membership Element of ∉ Not member إﺳﺘﻨﺘﺎج ﻣﻦ اﻟﻄﺮﻓﻴﻦp ⇒ q ⎫ ⇒ p ⇔q إذا و ﻓﻘﻂ إذاq ⇒ p ⎬ ⎭ ﻳﻨﺘﻤﻲA = {a ,b ,c } , a ∈ A ﻋﻀﻮ ﻣﻦ ﻻ ﻳﻨﺘﻤﻲ أوA = {a ,b ,c } , d ∉ A ﻏﻴﺮﻋﻀﻮ ∪ Union إﺗﺤﺎدA = {a ,b ,c } , B = {a , d } A ∪ B = {a ,b ,c , d } Intersection ﺗﻘﺎﻃﻊA ∩ B = {a} ⊆ ⊂ و (proper) Subset ﺟﺰﺋﻴﻪC = {a} , C ⊆ A ⊇⊃ و superset إﺣﺘﻮاء ∩ ⊄ Not subset ∅ Empty set ⊂ ∅ ﻏﻴﺮ ﺟﺰﺋﻴﻪ / B { = ∅ اﻟﻤﺠﻤﻮﻋﻪ اﻟﺨﺎﻟﻴﻪ } ∅′ = M ﻣﺘﻤﻢ اﻟﻤﺠﻤﻮﻋﺔ اﻟﺨﺎﻟﻴﺔ ﻳﺴﺎوي اﻟﻤﺠﻤﻮﻋﺔ اﻟﺸﺎﻣﻠﺔ أوD X ' Derivation to x x إﺷﺘﻘﺎق ﺑﺎﻟﻨﺴﺒﺔ ل d dx ∂ , df = 2x dx , ∂f = 2x ∂x , df 2 = 6x dx 2 f ′(x ) = 2x Paritial ﺗﻔﺎﺿﻞ ﺟﺰﺋﻲ derivation dn dx n f (x ) = x 2 Derivation n order nth , nth n ﺗﻔﺎﺿﻞ رﺗﺒﺔ f (x ) = x 2 f (x ) = x 3 8 ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ ∂n ∂x n Partial derivation n ﺗﻔﺎﺿﻞ ﺟﺰﺋﻲ رﺗﺒﺔ n f (x ) = x 3 , ∂f 2 = 6x ∂x 2 order nth ∇ Nabla Laplace ﻧﺎﺑﻼ أو ﻣﻌﻤﻞ ﻻﺑﻼس ∇= ∂ ∂ ∂ + + ∂x ∂y ∂z operator (Nabla) ∇2 Square Lap. Op. Laplacian AB → AB ↔ AB Line segment Ray Infinity line ﻣﺮﺑﻊ )ﺗﺮﺑﻴﻊ( ﻣﻌﻤﻞ ∂2 ∂2 ∂2 ∇ = 2+ 2+ 2 ﻻﺑﻼس ∂x ∂y ∂z 2 ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻢ (ﺷﻌﺎع )ﻣﺴﺘﻘﻴﻢ ﻣﺴﺘﻘﻴﻢ ﻏﻴﺮ ﻣﻨﺘﻪ ﻣﺜﻠﺚΔABC , ABC اﻟﻤﺜﻠﺚ Δ Triangle ∠ Angle (∠ زاوﻳﻪ )ﺣﺎدةABC , ABC اﻟﺰاوﻳﻪ ∟ Right angle (زاوﻳﻪ )ﻗﺎﺋﻤﺔ Square Parallelogram ﻣﺮﺑﻊ ﻣﺘﻮازي اﻷﺿﻠﻊ ○ Circle داﺋﺮﻩ ⊥ Perpendicular ﻋﻤﻮدAB ⊥ AC Parallel ﻣﻮازيAB AC ∼ Similar ﺗﺸﺎﺑﻪΔABC ∼ ΔA ′B ′C ′ ≅ Congruent ﺗﻄﺎﺑﻖΔABC ≅ ΔA ′B ′C ′ Arc ﻗﻮس ABC ﻗﻮس ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ " 30°15' 25ﻋﻼﻣﺔ اﻟﺪرﺟﻪ ﻋﻼﻣﺔ اﻟﺪﻗﻴﻘﺔ ﻋﻼﻣﺔ اﻟﺜﺎﻧﻴﺔ ﻓﻲ اﻟﺼﻔﺤﺔ ) ( −1,5.7 إﺣﺪاﺛﻴﺎت آﺎرﺗﻴﺰﻳﺔ 9 Degree ° Minute ' " Second Cartesian ) (x , y Coordinate ﻓﻲ اﻟﻔﻀﺎء ) (1.4,0, 2إﺣﺪاﺛﻴﺎت ﻓﻀﺎﺋﻴﺔ إﺣﺪاﺛﻴﺎت ﻗﻄﺒﻴﺔ ° ) (9, 25 → AB V ⊕Wﻣﺠﻤﻮع ﻣﺒﺎﺷﺮ ﻣﺘﺠﻬﻪ Wو Vﻓﻀﺎﺋﺎن ﻣﺘﺠﻬﻴﺎن Space Coo. ) (x , y , z Polar Coo. ) ( r ,θ Vector → Direct sum ⊕ n ﺗﺤﻠﻴﻞ اﻟﻔﻀﺎﺋﺎت اﻟﻤﺘﺠﻬﻴﺔ أو اﻟﺰﻣﺮ X = ⊕X i i =1 اﻟﻰ ﻓﻀﺎﺋﺎت ﻣﺘﺠﻬﻴﺔ ﺟﺰﺋﻴﺔ أو اﻟﻰ زﻣﺮ ﺟﺰﺋﻴﺔ n ﺗﺤﻠﻴﻞ اﻟﻔﻀﺎﺋﺎت اﻟﻤﺘﺠﻬﻴﺔ أو اﻟﺰﻣﺮ X = ⊗X i i =1 ﺟﺪاء ﻣﺒﺎﺷﺮ ،ﺟﺪاء Direct product ⊗ ﺳﻠّﻤﻲ اﻟﻰ ﻓﻀﺎﺋﺎت ﻣﺘﺠﻬﻴﺔ ﺟﺰﺋﻴﺔ أو اﻟﻰ زﻣﺮ ﺟﺰﺋﻴﺔ p ∧q q p ﺛﺎﺑﺖ اﻟﻮﺻﻞ T T T )اﻟﻌﻄﻒ( ،و F F T F T F F F F p ∨q q p T T T T F T T T F F F F and ∧ ﺻﺢ True T ﻏﻠﻂ False F ﺛﺎﺑﺖ اﻟﻔﺼﻞ ،أو or ∨ ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ !n = P n = (n )k k !) (n − k ﺗﺒﺪﻳﻞ 10 Permutation (n ) kأو kﺷﺊ ﻣﻦ nﺷﺊ Pkn ﺗﺒﺪﻳﻞ اﻷﺷﻴﺎء ﻣﺴﻤﻮح و ﺗﻜﺮارهﺎ ﻏﻴﺮ ﻣﺴﻤﻮح ⎞⎛n !n = ⎟⎟ ⎜⎜ = C n !) k ⎝ k ⎠ k!(n − k ﺗﻮﻓﻴﻘﻴﺔ Combination kﺷﺊ ﻣﻦ nﺷﺊ ) ( أو C kn n k اﻟﺘﺒﺪﻳﻞ و اﻟﺘﻜﺮار ﻏﻴﺮ ﻣﺴﻤﻮح = iاﻟﻌﺪد اﻟﺨﻴﺎﻟﻲ −1 Imaginary i number e = 2.7182818284...ﻋﺪد ﻧﺎﺑﻴﺮ Napier’s ﻋﺪد أوﻳﻠﺮ constant e Euler’s number π = 3.14159265... اﻟﻨﺴﺒﺔ اﻟﺜﺎﺑﺘﺔ ϕ = 1.618033988 اﻟﻨﺴﺒﺔ اﻟﺬهﺒﻴﺔ ﻣﺘﻮﺳﻂ أو وﺳﻂ n ∑xn n =1 n Pi π ϕ mean x Golden ratio = x sin x =1 x →0 x lim 1 ∞= + x −1 lim+ ﻧﻬﺎﻳﺔ ﻻ ﻧﻬﺎﻳﺔ Infinity ∞ x →1 }⋅⋅⋅ = {1, 2,3, 4, ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟﻄﺒﻴﻌﻴﻪ }⋅⋅⋅ = {0,1, 2,3, 4, limit lim 0 اﻷﻋﺪاد اﻟﻄﺒﻴﻌﻴﻪ ﻣﻊ 0 Natural numbers Natrural with 0 0 ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ }⋅⋅⋅ = {⋅⋅⋅, −2, −1,0,1,2, ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد 11 Integer numbers اﻟﺼﺤﻴﺤﻪ ⎧m ⎫ ⎬= ⎨ : m , n ∈ , n ≠ 0 ⎩n ⎭ ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد Rational اﻟ ُﻤﻨﻄﻘﺔ numbers إﺗﺤﺎد ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟ ُﻤﻨﻄﻘﺔ و اﻟﻐﻴﺮ ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد ُﻣﻨﻄﻘﺔ) ،اﻟﺴﺎﻟﺒﺔ و اﻟﻤﻮﺟﺒﺔ و اﻟﺼﻔﺮ( اﻟﺤﻘﻴﻘﻴﺔ Real numbers ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟﺤﻘﻴﻘﻴﺔ اﻟﻤﻮﺟﺒﺔ و اﻟﺼﻔﺮ ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد Positive Real . اﻟﺤﻘﻴﻘﻴﺔ اﻟﻤﻮﺟﺒﺔ mumbers ﻣﺠﻤﻮﻋﺔ ﻋﺪدﻳﺔ ﺗﻜﻮن ﻓﻴﻬﺎ اﻷﻋﺪاد ﺑﺼﻮرة ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد Complex اﻟﻤﺮآﺒﺔ أو اﻟﻌﻘﺪﻳﺔ numbers x + iy و هﻜﺬا ،ﺳﻠﺴﻠﺔ ﻏﻴﺮ and so on + ⋅⋅⋅ ﻣﻨﺘﻬﻴﺔ ) y := f ( xﺗﻌﺮﻳﻒ اﻟﻄﺮف اﻷﻳﺴﺮ ﻣﻦ ﺧﻼل اﻟﻄﺮف اﻷﻳﻤﻦ Left hand side =: is defined by the right hand side max {−1,3,4,2} = 4 ﻧﻬﺎﻳﺔ ﻋﻈﻤﻰ Maximum } { max min {−1,3,4, 2} = −1 ﻧﻬﺎﻳﺔ ﺻﻐﺮى Minimum } { min 1 2 = sin 30° 1 2 = cos 60° ﺟﻴﺐ ﺟﻴﺐ اﻟﺘﻤﺎم tan 45° = 1ﻇﻞ Sine sin Cosine cos Tangent tan 12 ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ cot Cotangent sec Secant csc Cosecant ﻗﺎﻃﻊ اﻟﺘﻤﺎم Arc sin Arc sine ﻗﻮس اﻟﺠﻴﺐ Arc cos Arc cosine ﻇﻞ اﻟﺘﻤﺎمcot 45° = 1 ﻗﺎﻃﻊ ﻗﻮس اﻟﺠﻴﺐ ﺗﻤﺎم secθ = 1 cosθ cscθ = 1 sin θ Arc sin 1 = 30° 2 π 45° = ( ) rad 4 Arc cos Arc tan Arc tangent Arc cot Arc cotangent Arc sec Arc secant Arc csc Arc cosecant أوsinh Hyperbolic sine sh أوcosh ch sec h Hyperbolic cosine Hyperbolic secant cs c h Hyperbolic cosevant : رادﻳﺎنRadian 2 π = 45° = ( ) rad 2 4 ﻗﻮس اﻟﻈﻞ ﻗﻮس اﻟﻈﻞ ﺗﻤﺎم ﻗﻮس اﻟﻘﺎﻃﻊ ﻗﻮس اﻟﻘﺎﻃﻊ اﻟﺘﻤﺎم e x − e −x sinh x = ()اﻟﻬﺬﻟﻮﻟﻲ 2 ﺟﻴﺐ اﻟﺰاﺋﺪي e x + e −x cosh x = ()اﻟﻬﺬﻟﻮﻟﻲ 2 ﺟﻴﺐ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي ﻗﺎﻃﻊ اﻟﺰاﺋﺪي ()اﻟﻬﺬﻟﻮﻟﻲ ﻗﺎﻃﻊ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي ()اﻟﻬﺬﻟﻮﻟﻲ sec hx = 2 e x + e −x cs c hx = 2 e − e −x x ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ ﻇﻞ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي e 2x − 1 tanh x = 2 x )اﻟﻬﺬﻟﻮﻟﻲ( e +1 ﻇﻞ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي e 2x + 1 coth x = 2 x )اﻟﻬﺬﻟﻮﻟﻲ( e −1 ﻗﻮس اﻟﺠﻴﺐ اﻟﺰاﺋﺪي )اﻟﻬﺬﻟﻮﻟﻲ( ⎧1, i = j ⎩0, i ≠ j ⎨ = δ ij )n (n + 1 2 tangent th cot anh Hyperbolicأو cotangent Arc hyperbolic coth Arc sinh sine ﻗﻮس اﻟﺠﻴﺐ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي )اﻟﻬﺬﻟﻮﻟﻲ( cosine دﻟﺘﺎ آﺮوﻧﻜﺮ tanhأو Kronecher delta Tensor Arc cosh δ T ijأو T jki T jki iدﻟﻴﻞ ﻋﻠﻮي و jو kدﻻﺋﻞ ﺳﻔﻠﻴﻪ = Sn Hyperbolic Arc hyperbolic i = 1, 2و T ij = T 1 j + T 2 jﺗﻴﻨﺴﻮر أو ﻣﻮﺗﺮ ، 13 1 + 2 + 3 + ⋅⋅⋅ + n ﻣﺠﻤﻮع ﻣﺘﺘﺎﻟﻴﺔ Log 10100 = Log 100 = 2ﻟﻮﻏﺎرﻳﺜﻢ Log e x = ln xاﻟﻠﻮﻏﺎرﻳﺜﻢ اﻟﻄﺒﻴﻌﻲ Sequence Sn Logarithm Log ab Natural ln logarithm 102 = 100 aأس n ) P ( A Bإﺣﺘﻤﺎل وﻗﻮع Aإذا ﺣﺪﺛﺖ Bإﺣﺘﻤﺎل a power n an Probability | ﻓﻲ ﻧﻈﺮﻳﺔ اﻟﺪوال ﻟﺘﻌﺮﻳﻒ ﻗﻴﻤﺔ اﻟﺪاﻟﺔ أو اﻹﺷﺘﻘﺎق أو اﻟﺘﻜﺎﻣﻞ ﻓﻲ ﻧﻘﻄﺔ أو ﻧﻘﺎط ﻣﻌﻴﻨﺔ x =0+ ∂f ∂x داﻟﺔ أو ﺗﺎﺑﻊ Function ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ )) g (x ) → f ( g (x ○ fﺗﺮآﻴﺐ ﺗﺎﺑﻊ اﻟﻌﻼﻣﺔ أو ⎧1, x > 0 ⎪ = sgn xاﻹﺷﺎرة ⎨0, x = 0 ⎪−1, x < 0 ⎩ ∞ ﻧﺤﻮ اﻷﺳﻔﻞ Rounded down ﻧﺤﻮ اﻷﻋﻠﻰ Rounded up ∂F ∂F ∂F + + ∂x ∂y ∂z = divF = ∇⋅ F k ∂ ∂z Fz ∂ ∂y Fy ∂ ∂x Fx sign function sgn x xﻳﺴﻌﻰ ﻧﺤﻮ ∂F ∂F ∂F i+ j+ k ∂x ∂y ∂z j Composition O Tend to = gradF =∇× F i 14 ↓ ﺗﺪرج Gradient ↑ grad ﺗﺒﺎﻋﺪ Divergence div Rotation curl دوران = curlF = ∇× F ﻳﻀﻢ هﺬا اﻟﺒﺤﺚ ﻣﻌﻈﻢ ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت و ﻟﻴﺲ ﺟﻤﻴﻌﻬﺎ .آﺬﻟﻚ ﺑﻌﺾ اﻟﺮﻣﻮز ﻟﻬﺎ إﺳﺘﻌﻤﺎﻻت أﺧﺮى أآﺘﻔﻴﺖ ﺑﺄﺷﻬﺮهﺎ . ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ ﺷﺘﺎء 2008 ل ا ج www.jalalalhajabed.com : "! و# ا$ ا jalal.alhajabed@hotmail.com jalal.alhajabed@yahoo.com
© Copyright 2024