ﺍﻷﻭﻟﻰ ﺒﺎﻜﺎﻟﻭﺭﻴﺎ ﻋﻠﻭﻡ ﺭﻴﺎﻀﻴﺔ ﺘﻤﺎﺭﻴﻥ ﻋﻤﻭﻤﻴﺎﺕ ﺤﻭل ﺍﻟﺩﻭﺍل ﺍﻟﻌﺩﺩﻴﺔ Prof : BEN ELKHATIR • ﺗﻤﺮﻳﻦ:01 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻌﺩﺩﻴﺘﻴﻥ fﻭ gﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﻤﺎ ﻴﻠﻲ : 1− x = ) f ( xﻭ g ( x ) = 3 − 2x − x 2 1+ x G JG ﻭ ﻟﻴﻜﻥ ) (C fﻭ ) (C gﻤﻨﺤﻨﻴﻴﻬﻤﺎ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﻤﻨﻅﻡ O , i , j -(1ﺤﺩﺩ ﺃﻓﺎﺼﻴل ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Cﻭ ) (C f g ) ( • ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ ، f ( x ) = x 2 − x + 1 :ﻭ ) (C fﻤﻨﺤﻨﺎﻫﺎ G JG ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﻤﻨﻅﻡ . O , i , j ) ) 3 -(1ﺘﺤﻘﻕ ﻤﻥ ﺃﻥ \ = ، D fﺜﻡ ﺒﻴﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺼﻐﻭﺭﺓ ﺒﺎﻟﻌﺩﺩ 2 1 1 1 ⎡1 ⎡ -(2ﺃﺜﺒﺕ ﺃﻥ : ، ∀x ∈ ⎢ , +∞ ⎢ : x − < f ( x ) ≤ x − +ﺜﻡ ﺇﺴﺘﻨﺘﺞ ﺃﻥ ﻤﻨﺤﻨﻰ 2 2 2x ⎣2 ⎣ ⎡1 ⎡ ﻗﺼﻭﺭ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ⎢ ∞ ⎢ , +ﻴﻭﺠﺩ ﻀﻤﻥ ﺍﻟﺸﺭﻴﻁ ) ( ∆1ﺍﻟﻤﺤﺩﻭﺩ ﺒﺎﻟﻤﺴﺘﻘﻴﻤﻴﻥ : ⎣2 ⎣ 1 1 ( D1 ) : y = x −ﻭ . ( D 2 ) : y = x + 2 2 -(3ﺒﻴﻥ ﺃﻥ ، ∀x ∈ \ : f (1 − x ) = f ( x ) :ﺜﻡ ﺇﺴﺘﻨﺘﺞ ﺃﻥ ﻤﻨﺤﻨﻰ ﻗﺼﻭﺭ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ . . x 3 + 3x 2 ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ≥ 2 : x +1 -(3ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻌﺩﺩﻴﺘﻴﻥ hﻭ kﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﻤﺎ ﻴﻠﻲ : 2 x = ) . k (x = ) h (xﻭ 1− x x −2 (I ) : . أ -ﺒﻴﻥ ﺃﻥ hﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ﻭ ﺃﻥ ، ∀x ∈ D h ∩ \ − : h ( x ) = f ( x + 1) :ﺜﻡ ﺃﻨﺸﻰﺀ G JG ) (C hﻓﻲ ﺍﻟﻤﻌﻠﻡ O , i , jﺇﻨﻁﻼﻗﺎ ﻤﻥ ) . (C f ) ( ب -ﺒﻴﻥ ﺃﻥ kﺩﺍﻟﺔ ﺯﻭﺠﻴﺔ ﻭ ﺃﻥ ، ∀x ∈ D k ∩ \ − : k ( x ) = 1 + f ( x ) :ﺜﻡ ﺃﻨﺸﻰﺀ G JG ) (C kﻓﻲ ﺍﻟﻤﻌﻠﻡ O , i , jﺇﻨﻁﻼﻗﺎ ﻤﻥ ) . (C f ) • ( • ﺗﻤﺮﻳﻦ:02 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻌﺩﺩﻴﺘﻴﻥ fﻭ gﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﻤﺎ ﻴﻠﻲ : 2 x f (x ) = x 2 − +1ﻭ x x +x −2 3 ) = ) . g (x 2 ﺍﻟﻤﺠﺎل ⎤1 ⎤ ﺍﻟﻤﺠﺎل ⎥ ⎥ −∞,ﻴﻭﺠﺩ ﻀﻤﻥ ﺍﻟﺸﺭﻴﻁ ) ( ∆ 2ﺍﻟﻤﺤﺩﻭﺩ ﺒﺎﻟﻤﺴﺘﻘﻴﻤﻴﻥ : ⎦2 ⎦ 3 1 ( D1' ) : y = −x +ﻭ . ( D 2' ) : y = −x + 2 2 ﺗﻤﺮﻳﻦ:04 ﻨﻌﺘﺒﺭ ﺍﻟﺩﻭﺍل ﺍﻟﻌﺩﺩﻴﺔ fﻭ gﻭ hﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ \ ﺒﻤﺎ ﻴﻠﻲ : ) f ( x ) = (1 + x )( 2 − xﻭ ) g ( x ) = f ( xﻭ ) h ( x ) = f ( x G JG -(1ﺃﻨﺸﻰﺀ ﺍﻟﻤﻨﺤﻨﻰ ) (C fﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﻤﻨﻅﻡ . O , i , j G JG -(2ﺒﻴﻥ ﺃﻥ gﺩﺍﻟﺔ ﺯﻭﺠﻴﺔ ،ﺜﻡ ﺃﻨﺸﻰﺀ ) (C gﻓﻲ ﺍﻟﻤﻌﻠﻡ O , i , jﺇﻨﻁﻼﻗﺎ ﻤﻥ ) . (C f G JG -(3ﺃﻜﺘﺏ ) h ( xﺒﺩﻭﻥ ﻗﻴﻤﺔ ﻤﻁﻠﻘﺔ ،ﺜﻡ ﺃﻨﺸﻰﺀ ) (C hﻓﻲ ﺍﻟﻤﻌﻠﻡ O , i , jﺇﻨﻁﻼﻗﺎ ﻤﻥ ) . (C f G JG -(4ﺇﻨﻁﻼﻗﺎ ﻤﻥ ) (C fﺃﻨﺸﻰﺀ ﻓﻲ ﺍﻟﻤﻌﻠﻡ O , i , jﻤﻨﺤﻨﻰ ﻜل ﺩﺍﻟﺔ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻟﺘﺎﻟﻴﺔ : ⎞ ⎛ 1 ⎜⎜ . ∀x ∈ D g − {0} : -(1ﺤﺩﺩ D fﻭ ، D gﺜﻡ ﺒﻴﻥ ﺃﻥ ⎟⎟ = f ( x ) : ⎠ ) ⎝ g (x -(2ﺒﻴﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﺘﺯﺍﻴﺩﻴﺔ ﻗﻁﻌﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻟﻴﻥ [∞ ]0, +ﻭ [ [ −1, 0ﻭ ﺘﻨﺎﻗﺼﻴﺔ ﻗﻁﻌﺎ ﻋﻠﻰ ]]−∞, −1 ( . G JG -(2ﺃﻨﺸﻰﺀ ﻓﻲ ﺍﻟﻤﻌﻠﻡ O , i , jﺍﻟﻤﻨﺤﻨﻴﻴﻥ ) (C fﻭ ) ، (C gﺜﻡ ﺤل ﻤﺒﻴﺎﻨﻴﺎ ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ \ ( ﺗﻤﺮﻳﻦ:03 ) ( ) ( ) ( ( ) f 1 : x 6 −f ( xﻭ ) f 2 : x 6 f ( − xﻭ ) f 3 : x 6 −f ( − x . ) -(3ﺇﺴﺘﻨﺘﺞ ﺭﺘﺎﺒﺔ ﺍﻟﺩﺍﻟﺔ gﺜﻡ ﺃﻨﺸﻰﺀ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ . -1- f 4 : x 6 f (− x ﻭ ) f 5 : x 6 f ( −x . ﺍﻷﻭﻟﻰ ﺒﺎﻜﺎﻟﻭﺭﻴﺎ ﻋﻠﻭﻡ ﺭﻴﺎﻀﻴﺔ ﺘﻤﺎﺭﻴﻥ ﻋﻤﻭﻤﻴﺎﺕ ﺤﻭل ﺍﻟﺩﻭﺍل ﺍﻟﻌﺩﺩﻴﺔ Prof : BEN ELKHATIR • -(3ﺒﻴﻥ ﺃﻥ hﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ﻭ ﺃﻥ . ∀x ∈ \ − : h ( x ) = f ( − x ) : G JG -(4ﺃﻨﺸﻰﺀ ) (C gﻭ ) (C hﻓﻲ ﺍﻟﻤﻌﻠﻡ O , i , jﺇﻨﻁﻼﻗﺎ ﻤﻥ ) . (C f ﺗﻤﺮﻳﻦ:05 2x + 3 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ \ ﺒﻤﺎ ﻴﻠﻲ : x 2 +4 -(1ﻟﻴﻜﻥ ) t ( x , yﻤﻌﺩل ﺘﻐﻴﺭ fﺒﻴﻥ xﻭ yﺤﻴﺙ xﻭ yﻋﻨﺼﺭﻴﻥ ﻤﻥ \ ﻭ . x ≠ y ) = ) . f (x ﺒﻴﻥ ﺃﻥ : ) ( x + 4 )(1 − y ) + ( y + 4 )(1 − x ) + 4 )( y 2 + 4 2 (x -(5ﺃﻨﺸﻰﺀ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﻜل ﻤﻥ fﻭ gﻭ ، hﺜﻡ ﺇﺴﺘﻨﺘﺞ ﺠﺩﺍﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﻭﺍل ﺍﻟﺘﺎﻟﻴﺔ : f Dfﻭ g Dfﻭ . h Df • ﺗﻤﺮﻳﻦ:08 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻌﺩﺩﻴﺘﻴﻥ gﻭ hﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﻤﺎ ﻴﻠﻲ : ⎞ 1 2 ⎛⎞ ⎛ 1 . h ( x ) = ⎜1 + ⎟⎜ 1 + g (x ) = 1+ﻭ ⎟ x ⎠ ⎝ x ⎠⎝ 1 − x -(1ﺒﻴﻥ ﺃﻥ ، h = g D f :ﺤﻴﺙ fﺤﺩﻭﺩﻴﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻴﻨﺒﻐﻲ ﺘﺤﺩﻴﺩﻫﺎ . -(2ﺃﻨﺸﻰﺀ ﺠﺩﻭﻟﻲ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻌﺩﺩﻴﺘﻴﻥ fﻭ ، gﺜﻡ ﺇﺴﺘﻨﺘﺞ ﺭﺘﺎﺒﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ h ﻭ ﺃﻨﺸﻰﺀ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ . -(3ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﺩﺍﻟﺔ hﻤﺼﻐﻭﺭﺓ ﺒﺎﻟﻌﺩﺩ 9ﻋﻠﻰ ﺍﻟﻤﺠﺎل [ ]0,1ﻭ ﻤﻜﺒﻭﺭﺓ ﺒﻨﻔﺱ ﺍﻟﻌﺩﺩ ﻋﻠﻰ = ) t (x , y ] ]−∞, −4ﻭ ] [ −4,1ﻭ [∞[1, + ﺜﻡ ﺇﺴﺘﻨﺘﺞ ﺭﺘﺎﺒﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﻜل ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : ﻭ ﺃﻨﺸﻰﺀ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ . 1 -(2ﺒﻴﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻤﻜﺒﻭﺭﺓ ﺒﺎﻟﻌﺩﺩ 1ﻭ ﻤﺼﻐﻭﺭﺓ ﺒﺎﻟﻌﺩﺩ . − 4 2x + 1 = ) . g (x -(3ﻟﺘﻜﻥ gﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ : x −2 2 . ∀x ∈ \ : −3 ≤ g D f ( x ) ≤ − ﺒﻴﻥ ﺃﻥ \ = ، D g Dfﻭ ﺃﻥ : 5 -(4ﺒﻴﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ gﺘﻨﺎﻗﺼﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻟﻴﻥ [ ]−∞, 2ﻭ [∞ ، ]2, +ﺜﻡ ﺇﺴﺘﻨﺘﺞ ﺭﺘﺎﺒﺔ g D f ﻭ ﺃﻨﺸﻰﺀ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ . • ﺗﻤﺮﻳﻦ :06ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻌﺩﺩﻴﺘﻴﻥ fﻭ gﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﻤﺎ ﻴﻠﻲ : [∞]−∞, 0[ ∪ ]1, + • 4 −2 1− x 1 + 2x 2 = ) f (xﻭ 1 − 2x 2 1+ x -(1ﻗﺎﺭﻥ ﻋﻠﻰ D = D f ∩ D gﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ ، gﺜﻡ ﺤﺩﺩ ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ ل ) (C fﻭ ) . (C g = ) g (x -(2ﻗﺎﺭﻥ ﺍﻟﻌﺩﺩﻴﻥ Aﻭ Bﺤﻴﺙ : • 999000 1000002 = Aﻭ 999998 1001000 . ) f ( x ) = −x ( x + 2ﻭ ) g ( x ) = x ( 2 − xﻭ G JG -(1ﺃﻨﺸﻰﺀ ﺍﻟﻤﻨﺤﻨﻰ ) (C fﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﻤﻨﻅﻡ O , i , j ) -(2ﺒﻴﻥ ﺃﻥ gﺩﺍﻟﺔ ﺯﻭﺠﻴﺔ ﻭ ﺃﻥ : ( . ﺗﻤﺮﻳﻦ:09 ﺇﻨﻁﻼﻗﺎ ﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﺘﺎﻟﻲ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]: [ −4, 4 3 2 0 3 −2 0 = . B −4 4 x f −3 ﺗﻤﺮﻳﻦ:07 ﻨﻌﺘﺒﺭ ﺍﻟﺩﻭﺍل ﺍﻟﻌﺩﺩﻴﺔ fﻭ gﻭ hﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ \ ﺒﻤﺎ ﻴﻠﻲ : ) ( 1 ﺃﻨﺸﻰﺀ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ gﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ (1) : g ( x ) = −f ( x ) + 1 : ) 1− f (x 2 1 = ) ( 3) : g ( xﻭ ⎦⎤ ) ( 2 ) : g ( x ) = ⎡⎣ f ( xﻭ = ) ( 4) : g ( x ) f (x ) 3 + f (x . h (x ) = x (2 − x . ⎞⎛1 ⎟ ⎜ ( 5) : g ( x ) = fﻭ ⎠ ⎝x ) . ∀x ∈ \ − : g ( x ) = f ( x -2- ) (x 2 ( 6) : g ( x ) = f ﻭ ) . (7) : g ( x ) = f (3 − x ﺍﻷﻭﻟﻰ ﺒﺎﻜﺎﻟﻭﺭﻴﺎ ﻋﻠﻭﻡ ﺭﻴﺎﻀﻴﺔ ﺘﻤﺎﺭﻴﻥ ﻋﻤﻭﻤﻴﺎﺕ ﺤﻭل ﺍﻟﺩﻭﺍل ﺍﻟﻌﺩﺩﻴﺔ Prof : BEN ELKHATIR • ﺗﻤﺮﻳﻦ:10 G JG ﻤﺜل ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﻤﻨﻅﻡ O , i , jﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ( ) ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : 1 ⎞⎟(1) : f ( x ) = E ⎜⎛ x + 1 ⎝2 ⎠ ) ( 2 ) : f ( x ) = E ( 2x − 1ﻭ ) ( 3) : f ( x ) = E ( x 2ﻭ • ﺗﻤﺮﻳﻦ:11 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ \ ﺒﻤﺎ ﻴﻠﻲ : ) E (x )( 4 ) : f ( x ) = ( −1 ) . f (x ) = x − E (x -(1ﺒﻴﻥ ﺃﻥ fﺩﺍﻟﺔ ﺩﻭﺭﻴﺔ ﺩﻭﺭﻫﺎ . T = 1 G JG -(2ﻤﺜل ﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل [ [ −1, 2ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﻤﻨﻅﻡ O , i , j ) ( . -(3ﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ \ ﻜل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ : x x ( 2 ) : f ( x ) = 1 −ﺤﻴﺙ *` ∈ . n (1) : f ( x ) = 1 −ﻭ 5 n • ﺗﻤﺮﻳﻦ:12 ⎛ ⎞⎞ ⎛ x ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ \ ﺒﻤﺎ ﻴﻠﻲ . f ( x ) = E ⎜ x − 2E ⎜ ⎟ ⎟ : ⎠⎠ ⎝ 2 ⎝ -(1ﺒﻴﻥ ﺃﻥ fﺩﺍﻟﺔ ﺩﻭﺭﻴﺔ ﺩﻭﺭﻫﺎ . T = 2 -(2ﻋﺭﻑ fﻋﻠﻰ ﺍﻟﻤﺠﺎل [ ، [ 0, 2ﺜﻡ ﺃﻨﺸﻰﺀ ﻤﻨﺤﻨﺎﻫﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [ [ −2, 4ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ G JG ﻭ ﻤﻤﻨﻅﻡ . O , i , j ) ( abouzakariya@yahoo.fr Abdellah BEN ELKHATIR – Lycée alfath – khémisset -3-
© Copyright 2024